Previous Issue
Volume 12, June
 
 

Environments, Volume 12, Issue 7 (July 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 1199 KiB  
Article
Assessment of Health Risks Associated with PM10 and PM2.5 Air Pollution in the City of Zvolen and Comparison with Selected Cities in the Slovak Republic
by Patrick Ivan, Marián Schwarz and Miriama Mikušová
Environments 2025, 12(7), 212; https://doi.org/10.3390/environments12070212 - 20 Jun 2025
Abstract
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with [...] Read more.
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with increased incidence of respiratory and cardiovascular diseases, asthma attacks, and heart attacks, as well as chronic illnesses and premature mortality. The most vulnerable groups include children, the elderly, and individuals with pre-existing health conditions. This study focuses on the analysis of health risks associated with PM10 and PM2.5 air pollution in the city of Zvolen, which serves as a representative case due to its urban structure, traffic load, and industrial activity. The aim is to assess the current state of air quality, identify the main sources of pollution, and evaluate the health impacts of particulate matter on the local population. The results will be compared with selected Slovak cities—Banská Bystrica and Ružomberok—to understand regional differences in exposure and its health consequences. The results revealed consistently elevated concentrations of particulate matter (PM) across all analyzed cities, frequently exceeding the guideline values recommended by the World Health Organization (WHO), although remaining below the thresholds set by current national legislation. The lowest average concentrations were recorded in the city of Zvolen (PM10: 20 μg/m3; PM2.5: 15 μg/m3). These lower values may be attributed to the location of the reference monitoring station operated by the Slovak Hydrometeorological Institute (SHMÚ), situated on J. Alexy Street in the southern part of the city—south of Zvolen’s primary industrial emitter, Kronospan. Due to predominantly southerly wind patterns, PM particles are transported northward, potentially leading to higher pollution loads in the northern areas of the city, which are currently not being monitored. We analyzed trends in PM10 and PM2.5 concentrations and their relationship with hospitalization data for respiratory diseases. The results indicate a clear correlation between the concentration of suspended particulate matter and the number of hospital admissions due to respiratory illnesses. Our findings thus confirm the significant adverse effects of particulate air pollution on population health and highlight the urgent need for systematic monitoring and effective measures to reduce emissions, particularly in urban areas. Full article
Show Figures

Figure 1

20 pages, 1973 KiB  
Article
Greenhouse Gas Emissions from Fertilization Practices in Maize Cropping in Sub-Saharan Africa: Toward Climate-Smart Agriculture
by Pawend-taoré Christian Bougma, Loyapin Bondé, Valaire Séraphin Ouehoudja Yaro, Idrissa Dicko, Aurelie Flavy Rufine Zongo, Amanuel Woldeselassie Gebremichael, Mounkaila Mohamed, Claudia Malz, Jörg Matschullat, Anja Linstädter and Oumarou Ouédraogo
Environments 2025, 12(7), 211; https://doi.org/10.3390/environments12070211 - 20 Jun 2025
Abstract
The intensive use of nitrogen (N) fertilizers in maize (Zea mays L.) cropping in sub-Saharan Africa (SSA) contributes significantly to nitrous oxide (N2O) emissions. Due to limited data on emissions and emission factors (EFs) in SSA, this study investigates GHG [...] Read more.
The intensive use of nitrogen (N) fertilizers in maize (Zea mays L.) cropping in sub-Saharan Africa (SSA) contributes significantly to nitrous oxide (N2O) emissions. Due to limited data on emissions and emission factors (EFs) in SSA, this study investigates GHG emissions and proposes EFs under different fertilization regimes in maize cropping in Burkina Faso (West Africa). A randomized complete block design was used with five treatments: (i) control: no fertilizer (CK), (ii) cattle manure (M), (iii) chemical fertilizer (NPK), (iv) a combination of chemical fertilizer and cattle manure (NPKM) at the national recommended rate, and (v) farmers’ practices, which involve chemical fertilizer combined with manure at the farmers’ rate (NPKM+). Cumulative N2O emissions varied significantly among treatments (p < 0.05), with the highest under NPKM (2.86 kg N2O-N ha−1) and the lowest under CK (1.93 ± 0.11 kg N2O-N ha−1). NPKM also showed the highest methane (CH4) uptake (−0.62 kg CH4-C ha−1; p < 0.001), while CK exhibited an increasing trend (0.74 kg CH4-C ha−1). The highest N2O EF was recorded for NPK (0.37 ± 0.05%), 63% lower than the Intergovernmental Panel on Climate Change default value. Although NPKM treatment resulted in the highest global warming potential and maize yield, it also achieved the lowest greenhouse gas intensity per unit of yield, highlighting a more efficient trade-off between productivity and climate impact with nitrogen fertilizer use. NPKM+ was the most effective in maintaining high maize productivity with lower yield-scaled N2O emissions and GHG intensity. These findings suggest that an integrated approach combining organic and inorganic fertilizers can mitigate soil GHG emissions. Further research is needed to refine climate-smart fertilizer combinations for sustainable maize production in SSA. Full article
Show Figures

Figure 1

17 pages, 2373 KiB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop