Previous Issue
Volume 12, May
 
 

Environments, Volume 12, Issue 6 (June 2025) – 27 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 1202 KiB  
Article
The Impacts of Gentrification on Air Pollutant Levels and Child Opportunity Index near New York City Schools
by Kyung Hwa Jung, Zachary Pitkowsky, Kira L. Argenio, James W. Quinn, Jeanette A. Stingone, Andrew G. Rundle, Jean-Marie Bruzzese, Steven Chillrud, Matthew Perzanowski and Stephanie Lovinsky-Desir
Environments 2025, 12(6), 199; https://doi.org/10.3390/environments12060199 (registering DOI) - 11 Jun 2025
Abstract
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. [...] Read more.
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. Given their central role in both environmental and social contexts, we examined the relationship between gentrification, pollutants, and child opportunity near schools in New York City. Methods: School locations (Ntotal = 1482) were classified into gentrifying (n = 624), non-gentrifying (n = 198), and higher-SES (ineligible for gentrification; n = 660) neighborhoods. Annual average pollutant levels (black carbon (BC), fine particulates (PM2.5), nitrogen dioxide (NO2)) were assessed near schools. Child opportunity index (COI 2.0) was used to evaluate overall opportunity and three domains: education; health/environment; social/economic. Results: On average, pollution was highest in gentrifying neighborhoods compared to non-gentrifying (5–8.6% difference) and higher-SES (4.8–14.8% difference) neighborhoods. Average air pollution levels remained consistently higher in gentrifying neighborhoods both before and after gentrification compared to non-gentrifying and higher-SES neighborhoods. Regarding childhood opportunity, education, and social/economic opportunities were better and health/environment opportunities were worse in gentrifying compared to non-gentrifying neighborhoods. Conclusions: Gentrifying neighborhoods are at risk for higher exposure to pollutants and lower health/environment childhood opportunities compared to other neighborhoods. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

16 pages, 2288 KiB  
Article
Unveiling Heavy Metal Distribution in Different Agricultural Soils and Associated Health Risks Among Farming Communities of Bangladesh
by Sumaya Sharmin, Qingyue Wang, Md. Rezwanul Islam, Yogo Isobe, Christian Ebere Enyoh and Wu Shangrong
Environments 2025, 12(6), 198; https://doi.org/10.3390/environments12060198 - 11 Jun 2025
Abstract
Heavy metal pollution is a growing public health concern owing to rising environmental pollution throughout the world. The situation is more vulnerable in Bangladesh; therefore, this study assessed contamination levels in different land use categories such as rural, local market, industrial, research, and [...] Read more.
Heavy metal pollution is a growing public health concern owing to rising environmental pollution throughout the world. The situation is more vulnerable in Bangladesh; therefore, this study assessed contamination levels in different land use categories such as rural, local market, industrial, research, and coastal areas, as well as the related health risks for farmers in Bangladesh. A total of 45 soil samples were considered from three depths (0–5 cm, 5–10 cm, and 10–15 cm) across five different areas, with three replications per depth, following the monsoon season. Samples were prepared using a diacid mixture, and heavy metals (Cu, Ni, Mn, Cr, Zn, Pb) were investigated using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Health risks were evaluated using standard assessment models. The results showed that coastal agricultural soils had the highest heavy metal concentrations (except Pb), while rural areas had the lowest (except Cu and Ni), with no clear depth-based pattern. Two contamination sources were identified: component 1 (Cu, Ni, Mn, Cr, Zn) and component 2 (Pb, Zn), indicating mixed and anthropogenic sources, respectively. The Pollution Load Index (PLI) was highest in coastal areas and lowest in rural areas. The average daily intake of metals followed the order of inhalation > dermal > ingestion, with inhalation being the primary exposure route. The highest cumulative cancer risk (CCR) was observed in coastal agricultural soils (5.82 × 10−9), while rural soils had the lowest CCR (8.24 × 10−10), highlighting significant regional differences in health risks. Full article
Show Figures

Figure 1

13 pages, 5640 KiB  
Article
Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy)
by Sofia De Gregorio, Marco Camarda, Antonino Pisciotta and Vincenzo Francofonte
Environments 2025, 12(6), 197; https://doi.org/10.3390/environments12060197 - 11 Jun 2025
Abstract
The Earth’s degassing is an important factor in evaluating global carbon budget estimates and understanding the carbon cycle. As a result, numerous studies have focused on this topic. However, current estimates predominantly focus on subaerial CO2 emissions and CO2 deep submarine [...] Read more.
The Earth’s degassing is an important factor in evaluating global carbon budget estimates and understanding the carbon cycle. As a result, numerous studies have focused on this topic. However, current estimates predominantly focus on subaerial CO2 emissions and CO2 deep submarine emissions, particularly along mid-ocean ridges (MORs), whereas very few and only spatially limited estimates of shallow submarine CO2 emissions have been reported, despite being widespread features of the seafloor. This study reports the results of measuring the dissolved CO2 concentrations in shallow submarine environments along the coast of Vulcano Island (Aeolian Islands, Italy). For the areas exhibiting the highest concentrations, we calculated the amount of diffuse degassing by computing the sea–air CO2 flux. The results revealed extremely high dissolved CO2 concentrations, reaching up to 24 vol.% in areas with visible hydrothermal activity, including one location far from the island’s main crater. Notably, elevated CO2 levels were also detected in areas with minimal or no apparent hydrothermal discharge, indicating the occurrence of diffuse degassing processes in these areas. In addition, the calculated diffuse degassing flux was comparable in magnitude to the CO2 flux directly emitted into the atmosphere from the island’s main bubbling pools. Full article
Show Figures

Figure 1

13 pages, 1253 KiB  
Article
Modeling Air Pollution in Metropolitan Lima: A Statistical and Artificial Neural Network Approach
by Miguel Angel Solis Teran, Felipe Leite Coelho da Silva, Elías A. Torres Armas, Natalí Carbo-Bustinza and Javier Linkolk López-Gonzales
Environments 2025, 12(6), 196; https://doi.org/10.3390/environments12060196 - 10 Jun 2025
Abstract
Particulate matter is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 is a pollutant composed of particles smaller than 10 µm. These particles are harmful to the respiratory system. The air quality in the region [...] Read more.
Particulate matter is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 is a pollutant composed of particles smaller than 10 µm. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the available PM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. This study demonstrates that classical time series models, particularly ARIMA and SSA, achieve lower average forecast errors than LSTM across stations SMP, CRB, and ATE. This finding suggests that for data with seasonal patterns and relatively short time series, traditional models may be more efficient and robust. Although neural networks have the potential to capture more complex relationships and long-term dependencies, their performance may be limited by hyperparameter settings and intrinsic data characteristics. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

15 pages, 1166 KiB  
Article
A Multidimensional Assessment of CO2-Intensive Economies Through the Green Economy Index Framework
by Halina Falfushynska
Environments 2025, 12(6), 195; https://doi.org/10.3390/environments12060195 - 9 Jun 2025
Abstract
Despite growing international consensus on the urgency of climate action, global CO2 emissions have continued to rise, exposing a critical implementation gap between environmental ambition and reality. This study explores the readiness and structural capacity of the world’s most CO2-intensive [...] Read more.
Despite growing international consensus on the urgency of climate action, global CO2 emissions have continued to rise, exposing a critical implementation gap between environmental ambition and reality. This study explores the readiness and structural capacity of the world’s most CO2-intensive countries to transition toward a green and hydrogen-based economy. We introduce and apply the Green Economy Index, a composite measure integrating 31 indicators across four core dimensions—political and regulatory efficiency, socio-economic status, infrastructure, and sustainable targets. Using data from 29 countries emitting over 200 Mt of CO2 in 2022, the analysis combines principal component analysis, Random Forest modeling, and network-based correlation analysis to classify nations into frontrunners, transitional performers, and structural laggers. The results reveal significant disparities in green economy readiness, with high-income countries showing institutional maturity and infrastructural robustness, while middle-income nations remain constrained by fossil fuel dependencies and governance challenges. Importantly, we highlight the growing utility of machine learning and multivariate statistics in capturing complex sustainability interdependencies. The Green Economy Index framework offers a relevant tool to benchmark progress, diagnose barriers, and guide targeted interventions in global decarbonization efforts. Full article
Show Figures

Figure 1

31 pages, 1013 KiB  
Review
Reviewing Treatment Options for Organohalogen Contamination: From Established Methods to Fungal Prospects
by Gerardo Aguilar, Jr., Leadin Khudur, Attila Tottszer, Julie A. Besedin, Sali K. Biek and Andrew S. Ball
Environments 2025, 12(6), 194; https://doi.org/10.3390/environments12060194 - 9 Jun 2025
Abstract
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and [...] Read more.
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and thermal treatments. While these methods can be effective, they are often limited by high costs, energy demands, toxic byproduct formation, and sustainability concerns. Emerging biological approaches offer promising alternatives. Among these, fungal-based degradation methods (mycodegradation) remain significantly underrepresented in the literature, despite fungi demonstrating a high tolerance to contaminants and the ability to degrade structurally complex compounds. Key findings reveal that white-rot fungi such as Phanerochaete chrysosporium and Trametes versicolor possess enzymatic systems capable of breaking down persistent organohalogens under conditions that inhibit bacterial activity. This review also identifies critical research gaps, including the need for direct comparative studies between fungal and bacterial systems. The findings suggest that integrating mycodegradation into broader treatment frameworks could enhance the environmental performance and reduce the long-term remediation costs. Overall, this review highlights the importance of diversifying remediation strategies to include scalable, low-impact biological methods for addressing the global challenge of organohalogen contamination. Full article
Show Figures

Figure 1

17 pages, 2003 KiB  
Article
Enhancing the Detection and Identification Sensitivity of Organophosphorus Pesticide-Related Phenols via Derivatization and LC-ESI-MS/MS: A Straightforward Approach to Identify the Specific Pesticide Involved in Exposure
by Avi Weissberg, Tamar Shamai Yamin, Avital Shifrovitch, Adi Tzadok, Merav Blanca and Moran Madmon
Environments 2025, 12(6), 193; https://doi.org/10.3390/environments12060193 - 8 Jun 2025
Abstract
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, [...] Read more.
Organophosphorus (OP) pesticides are a class of chemicals that are extensively used worldwide. The exposure to and use of organophosphates can be assessed by analyzing their metabolites and degradation products, such as dialkyl phosphate (DAP), dialkyl thiophosphate (DATP), and dialkyl dithiophosphate (DADTP). However, since these metabolites/hydrolysis products can result from the metabolism or breakdown of several organophosphorus pesticide families, they serve as nonspecific biomarkers and do not indicate the specific pesticide involved in exposure. In an earlier study, chemical derivatization using N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was described to improve the signal intensity of numerous organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) analysis. In the present study, CAX-B was employed to derivatize a set of seven phenolic compounds corresponding to the complementary portion of OP pesticides. The derivatization process using CAX-B was performed in acetonitrile with potassium carbonate at 50 °C for 30 min. LC-Orbitrap-ESI-MS/MS was used to analyze the resulting phenol derivatives and their fragmentation patterns were studied. Notably, the derivatized phenols were markedly more sensitive than the underivatized phenols when LC-ESI-MS/MS was used in MRM technique, without being affected by the sample matrix (soil or plant extracts). This derivatization technique aids in identifying OP pesticides, offers insights into their subfamily, and pinpoints a specific compound through the analysis of corresponding phenol derivative. Full article
Show Figures

Figure 1

18 pages, 3573 KiB  
Article
A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures
by Lu-Ming Chen, Jui-Wen Chen, Timothy J. Lecher and Paul C. Davidson
Environments 2025, 12(6), 192; https://doi.org/10.3390/environments12060192 - 7 Jun 2025
Viewed by 179
Abstract
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, [...] Read more.
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, such as stormwater management. Their impacts and benefits on other environmental aspects should not be ignored, especially for those with limited discussion in the literature. Therefore, this study monitored the surface and air temperatures of three types of pavements: conventional impermeable concrete (IC), pervious concrete (PC), and the patented JW Eco-technology (JW). As UHIs are more intense in the summer, temperature profiles during targeted periods when surface temperatures exceeded 40 °C for consecutive days were examined. In addition, as an available option at the study site, shade was created to evaluate its effect on surface temperatures across the pavement systems. Overall, the annual average surface and air temperatures of the three pavements were similar. However, seasonal and diurnal variations in temperatures were both observed, suggesting summer was the season when the differences in temperatures among pavements were most noticeable. Investigation during the targeted periods revealed that the average surface temperatures of PC were 2.4–2.7 °C and 3.2–3.3 °C higher than those observed on IC and JW, and the average air temperature of PC was 1.8 °C greater than that of IC and JW between 12:00 and 16:00. On the contrary, the average surface temperatures of PC were significantly lower than those on IC (1.3–1.4 °C) and JW (1.5 °C) between 21:00 and 5:00. Results also indicate that shade was an effective way to alleviate the high surface temperatures during the warm hours by lowering surface temperatures 21.0 °C, 15.4 °C, and 15.0 °C, for PC, IC, and JW, respectively. Finally, temperatures associated with the aqueducts of JW Eco-technology and the impacts on overall surface temperatures will be discussed. Full article
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Integration of Mosses (Funaria hygrometrica) and Lichens (Xanthoria parietina) as Native Bioindicators of Atmospheric Pollution by Trace Metal Elements in Mediterranean Forest Plantations
by Malek Bousbih, Mohammed S. Lamhamedi, Mejda Abassi, Damase P. Khasa and Zoubeir Bejaoui
Environments 2025, 12(6), 191; https://doi.org/10.3390/environments12060191 - 6 Jun 2025
Viewed by 245
Abstract
Atmospheric emissions of industrial-origin trace metals are a major environmental problem that negatively affects air quality and the functioning of forest ecosystems. Traditional air quality monitoring methods require investments in equipment and infrastructure. Indeed, it is difficult to measure most of these pollutants [...] Read more.
Atmospheric emissions of industrial-origin trace metals are a major environmental problem that negatively affects air quality and the functioning of forest ecosystems. Traditional air quality monitoring methods require investments in equipment and infrastructure. Indeed, it is difficult to measure most of these pollutants because their concentrations usually occur at very low levels. However, this study explores an ecological approach for low-cost air quality biomonitoring that is based on native biological indicators in the context of the Mediterranean basin. This study aims (i) to evaluate the lichen species composition, diversity, and distribution across three distinct forest sites; (ii) investigate the relationship between lichen species richness and proximity to the pollution source; and (iii) evaluate heavy metal bioaccumulation using a moss species (Funaria hygrometrica) and a lichen species (Xanthoria parietina) as bioindicators of atmospheric pollution. High concentrations of toxic metals were observed along the transect and closer to the pollutant source with marked interspecies variability. X. parietina exhibited high bioaccumulation potential for most toxic metals (Fe, Zn, Pb, Cr, Cu, and Ni) compared to F. hygrometrica with concentrations varying across the three sites, reaching maximum dry-mass values of 6289 µg/g for Fe at the first site and 226 µg/g for Zn at Site 3. Our results suggest that X. parietina can be used as a potential bioindicator for long-term spatial biomonitoring of air quality by determining atmospheric toxic metals concentrations. Full article
Show Figures

Figure 1

13 pages, 1072 KiB  
Article
Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
by Piergiorgio Romano, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli and Laura Rustioni
Environments 2025, 12(6), 190; https://doi.org/10.3390/environments12060190 - 5 Jun 2025
Viewed by 332
Abstract
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic [...] Read more.
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic waste into a resource, such as compost. This study explores the effectiveness of compost derived from the organic fraction of municipal solid waste (MSW) not only as a mulching technique but also as a potential biological agent for weed control through allelopathic mechanisms in vineyards. Experiments were conducted both in the field and under controlled conditions. In the field, compost was applied under the vine row as mulch and incorporated into the soil. Under controlled conditions, germination tests were performed to assess weed inhibition at different compost concentrations. Field results demonstrated that compost applications, both as mulch and incorporated into the soil, significantly inhibited weed growth during the first period after application compared to the tilled control without compost. Thus, this inhibition is not limited to physical mulching; it also applies to the release of allelopathic compounds from compost. Controlled condition experiments showed strong inhibition of germination in Cichorium intybus and Foeniculum vulgare seeds, confirming the anti-germinative effects of compost, particularly on small-seeded weed species. Compost is a promising tool for sustainable vineyard management, offering fertilization and weed-suppression benefits while reducing herbicide use. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

10 pages, 593 KiB  
Brief Report
Locating Low-Cost Air Quality Monitoring Devices in Low-Resource Regions Is Not Enough to Acquire Robust Air Quality Data Usable for Policy Decisions
by Adaeze Emekwuru, Alexander Wokoma, Otonye Ojuka, Isaac Amadi, Miebaka Moslen, Chidinma Amuzie and Nwabueze Emekwuru
Environments 2025, 12(6), 189; https://doi.org/10.3390/environments12060189 - 4 Jun 2025
Viewed by 158
Abstract
Air quality monitoring (AQM) is key to maintaining healthy air in cities. This is crucial in low- and middle-income countries due to increasing evidence of poor air quality but lack of monitors to consistently collect evaluate air quality data and effect policy changes, [...] Read more.
Air quality monitoring (AQM) is key to maintaining healthy air in cities. This is crucial in low- and middle-income countries due to increasing evidence of poor air quality but lack of monitors to consistently collect evaluate air quality data and effect policy changes, mainly because of the costs of monitoring devices. In participating in a challenge for the development of low-cost AQM devices in low-resource regions, an Arduino-based device with sensors for particulate matter size, temperature, and humidity data acquisition was developed for deployment in Port Harcourt, a city in Nigeria’s Niger Delta region, exposed to poor air quality partly due to gas and oil production activities. During the project, challenges to AQM were encountered, including inadequate awareness of air quality issues, lack of necessary AQM device components, unavailability of trained manpower and partnerships, and lack of funding. However, lack of a means of calibrating the device was a major hindrance, as no reference AQM instrument was available, rendering the data acquired largely qualitative, educational, and useless for regulatory purposes. There is an urgent need for AQM in such cities. However, a robust AQM strategy must be designed and used to address these constraints, especially whilst using low-cost devices, for significant progress in acquiring robust air quality data in such low-resource regions to be made. Full article
Show Figures

Figure 1

25 pages, 4088 KiB  
Article
Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling
by Themistoklis Sfetsas, Sopio Ghoghoberidze, Panagiotis Karnoutsos, Vassilis Tziakas, Marios Karagiovanidis and Dimitrios Katsantonis
Environments 2025, 12(6), 188; https://doi.org/10.3390/environments12060188 - 4 Jun 2025
Viewed by 205
Abstract
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection [...] Read more.
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection of 192 moss samples was undertaken at 16 urban sampling points over the March–July 2024 period. Concentrations of 21 PTEs were quantified using ICP-MS, and contamination levels were assessed through contamination factor (CF), enrichment factor (EF), and pollution load index (PLI). Positive matrix factorization (PMF) modeling and multivariate statistical analyses were used to identify pollution sources and spatiotemporal variations. Results revealed persistent hotspots with significant anthropogenic enrichments of elements, such as Fe, Mn, Sn in industrial zones and Tl, Ce, Pt in traffic corridors. PMF modeling attributed 48% of the measured PTE variance to traffic-related sources, 35% to industrial sources, and 17% to crustal material. Seasonal transitions showed a significant 3.5-fold increase in Tl during summer, indicating elevated traffic-related emissions. This integrated multi-index and source apportionment framework demonstrates the efficacy of Syntrichia moss for high-resolution urban air quality assessment. The approach offers a cost-effective, scalable, and environmentally friendly tool to support EU-aligned air quality management strategies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

17 pages, 1856 KiB  
Article
Convergence Research for Microplastic Pollution at the Watershed Scale
by Heejun Chang, Elise Granek, Amanda Gannon, Jordyn M. Wolfand and Janice Brahney
Environments 2025, 12(6), 187; https://doi.org/10.3390/environments12060187 - 3 Jun 2025
Viewed by 295
Abstract
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the [...] Read more.
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the problem, co-design research, and co-produce knowledge in tackling this issue. Using a convergence research framework, we investigated the perception of microplastic pollution among different end users, delivered educational materials to K-12 teachers and practitioners, and identified key sampling points for assessing environmental microplastic concentrations in the Columbia River Basin, United States. Three community partner workshops identified regional issues and concerns associated with microplastic pollution and explored potential policy intervention strategies. The stakeholder survey, co-designed with community partners, identified varying perceptions around microplastic pollution across educators, government employees, non-profit employees, and industry practitioners. Pre- and post-test results of teacher workshops show increases in participants’ knowledge after taking a four-week summer class with the knowledge being translated to their students. Community partners also helped develop a unique passive sampling plan for atmospheric deposition of microplastics using synoptic moss samples and provided freshwater samples for microplastic quantification across the basin. Our study drew three major lessons for successfully conducting convergence environmental research—(1) communication and trust building, supported by the use of key-informants to expand networks; (2) co-creation through collaboration, where partners and students shaped research and education to enhance impact; and (3) change-making, as project insights were translated into policy discussions, community outreach, and classrooms. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

16 pages, 1259 KiB  
Article
Enhancement in Lithium Recovery from Spent Lithium Batteries by Nanofiltration Membranes
by Giuseppe Prenesti, Antonio Tagarelli, Rosangela Elliani, Anna Napoli, Alessio Caravella, Elena Tocci, Gregorio Cappuccino and Alfredo Cassano
Environments 2025, 12(6), 186; https://doi.org/10.3390/environments12060186 - 1 Jun 2025
Viewed by 295
Abstract
The recovery of lithium from extracts obtained from a black mass of spent lithium-ion batteries treated with a ternary solvent system at acidic pH was investigated using flat-sheet nanofiltration (NF) membranes operated according to a dead-end configuration. Specifically, four samples obtained at different [...] Read more.
The recovery of lithium from extracts obtained from a black mass of spent lithium-ion batteries treated with a ternary solvent system at acidic pH was investigated using flat-sheet nanofiltration (NF) membranes operated according to a dead-end configuration. Specifically, four samples obtained at different pH values (2.5 and 5) and extraction times (48, 96 and 168 h) were treated in selected operating conditions by using two commercial polymeric membranes (denoted DK and HL, with an approximate molecular weight cut-off of 150–300 Da) up to a volume reduction factor (VRF) of 4. Membrane performance was assessed in terms of productivity and selectivity towards specific ions, including lithium. For most treated samples, the HL membrane exhibited higher permeate fluxes in comparison to the DK membrane. However, the DK membrane performed better in terms of lithium rejection than the HL membrane, with a negative rejection at VRF 4 observed for all treated samples. More than 90% of multivalent ions were rejected by both membranes independently of the VRF. The membrane ability to retain multivalent ions led to their progressive concentration in the retentate as the VRF increased. The extraction time did not impact the NF performance of both membranes in terms of ion rejection. For the DK membrane conditions of extraction of 96 h and pH 5 represented the best trade-off between flux, ion rejection, and total lithium recovery. Full article
Show Figures

Figure 1

15 pages, 5518 KiB  
Article
Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation
by Steve Comfort, Amanda Araújo da Silva, Jessica Powell, Rebecca Cain, Ashleigh McGreer and Renato F. Dantas
Environments 2025, 12(6), 185; https://doi.org/10.3390/environments12060185 - 31 May 2025
Viewed by 371
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, -SO3H), PFASs act as surfactants that are attracted to bubble–water interfaces. Foam fractionation is the process of facilitating PFAS–air bubble interactions for the purpose of removing contaminants from tainted water. In this paper, we report on the use of foam fractionation and electrochemical oxidation (EO) under stirred batch conditions (200 mL) to remediate PFAS-contaminated water. We used radiolabeled PFOA (perfluorooctanoic acid; 14C-PFOA) as a representative surrogate to quickly screen treatment variables of flow rate, pH, temperature, and soap mass. Using radiolabeled PFASs eliminated the possibility of cross-contamination and greatly reduced analytical costs and processing time. The results showed that foam fractionation can remove 80 to 90 percent of PFOA from water within 30 min and that 90 to 100 percent of the PFOA in the concentrated foamate can be oxidized via electrochemical oxidation (-14COOH → 14CO2). We also tested the efficacy of the combined foam fractionation–EO treatment in natural waters by spiking 14C-PFOA and a cosolvent (CTAB) into PFAS-contaminated water obtained from two field sites with divergent PFAS concentrations and differing sources of PFAS contamination (natural drainage ditch vs. WWTP). Using a larger-scale tank (3500 mL), we observed that foam fractionation was 90% effective in removing 14C-PFOA from the WWTP effluent but only 50% effective for the drainage ditch water. Regardless, EO was highly effective in oxidizing 14C-PFOA in the foamate from both sources with half-lives (T1/2) ranging from 8.7 to 15 min. While water chemistry differences between source waters may have influenced foam fractionation and require additional investigations, tank experiments provide the first proof-of-concept experiment using 14C-PFASs that foam fractionation and electrochemical oxidation can be used in tandem to treat PFAS-contaminated water. Full article
Show Figures

Figure 1

21 pages, 46714 KiB  
Article
Street-Level Sensing for Assessing Urban Microclimate (UMC) and Urban Heat Island (UHI) Effects on Air Quality
by Lirane Kertesse Mandjoupa, Pradeep Behera, Kibria K. Roman, Hossain Azam and Max Denis
Environments 2025, 12(6), 184; https://doi.org/10.3390/environments12060184 - 30 May 2025
Viewed by 221
Abstract
During the intense heatwaves of late summer 2024, Washington, D.C.’s urban landscape revealed the powerful influence of urban morphology on microclimates and air quality. This study investigates the impact of building height-to-width (H/W) ratios on the urban heat island (UHI) effect, using a [...] Read more.
During the intense heatwaves of late summer 2024, Washington, D.C.’s urban landscape revealed the powerful influence of urban morphology on microclimates and air quality. This study investigates the impact of building height-to-width (H/W) ratios on the urban heat island (UHI) effect, using a combination of field measurements and Computational Fluid Dynamics (CFD) simulations to understand the dynamics. Street-level data collected from late August to November 2024 across three sites in Washington, D.C., indicate that high H/W ratios (1.5–2.0) increased temperatures by approximately 2–3 °C and reduced wind speeds to around 0.8 m/s. These conditions led to elevated pollutant concentrations, with ozone (O3) ranging from 1.8 to 7.3 ppb, nitrogen dioxide (NO2) from 0.3 to 0.5 ppm, and carbon monoxide (CO) remaining relatively constant at approximately 2.1 ppm. PM2.5 concentrations fluctuated between 2.8 and 0.4 μg/m3. Meanwhile, lower H/W ratios (less than 1.5) demonstrated better air circulation and lower pollution levels. The CFD simulations are in agreement with the experimental data, yielding an RMSE of 0.75 for temperature, demonstrating its utility for forecasting UHI effects under varying urban layouts. These results demonstrate the potential of Computational Fluid Dynamics in not only modeling but also predicting UHI dynamics. Full article
Show Figures

Figure 1

27 pages, 739 KiB  
Review
The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review
by Gianniantonio Petruzzelli, Beatrice Pezzarossa and Francesca Pedron
Environments 2025, 12(6), 183; https://doi.org/10.3390/environments12060183 - 30 May 2025
Viewed by 434
Abstract
This review reports some aspects of soil contaminant chemistry and its fundamental role in shaping the soil–human health relationship. Exposure to soil contaminants can occur through direct pathways, such as ingestion, inhalation, and dermal contact, as well as indirect pathways, including food chain [...] Read more.
This review reports some aspects of soil contaminant chemistry and its fundamental role in shaping the soil–human health relationship. Exposure to soil contaminants can occur through direct pathways, such as ingestion, inhalation, and dermal contact, as well as indirect pathways, including food chain contamination via plant uptake or groundwater leaching. The mobility and persistence of organic and inorganic pollutants in soil are primarily controlled by sorption–desorption processes, which involve a complex interplay of physical and chemical mechanisms. Soil properties, such as pH, organic matter content, clay minerals, and oxide hydroxides, play a crucial role in regulating these processes and determining contaminant behavior. A high sorption capacity enhances the soil’s ability to mitigate pollutant mobility, thereby reducing their infiltration into groundwater and accumulation in the food chain. Soils rich in organic matter and fine-textured minerals, such as clay, can effectively immobilize contaminants, limiting their bioavailability and potential harm to human health. A deeper understanding of how soil characteristics influence contaminant mobility and bioavailability is critical to addressing the hazards of soil pollution for human health. Beyond merely assessing contaminant concentrations, it is essential to consider the dynamic processes governing pollutant fate in soil, as they ultimately shape exposure pathways and health risks. This knowledge is the key to developing more effective strategies for mitigating soil contamination and protecting public health. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Figure 1

23 pages, 3044 KiB  
Review
The Sustainable Management of Nitrogen Fertilizers for Environmental Impact Mitigation by Biochar Applications to Soils: A Review from the Past Decade
by Yudai Kohira, Desalew Fentie, Mekuanint Lewoyehu, Tassapak Wutisirirattanachai, Ashenafei Gezahegn, Milkiyas Ahmed, Shinichi Akizuki, Solomon Addisu and Shinjiro Sato
Environments 2025, 12(6), 182; https://doi.org/10.3390/environments12060182 - 30 May 2025
Viewed by 342
Abstract
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and [...] Read more.
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and specific surface area (SSA; −23.8% to 39.1%). However, the biochar pH (influencing mitigation from −45.0% to −9.0%) and application rate are key factors, with clayey soils exhibiting the greatest mitigation (−52.2%), potentially due to their high bulk density. High SSA biochar, often from high pyrolysis temperatures, reduces nitrate-N (NO3-N) leaching (up to −26.6%) by improving the soil’s water-holding capacity. A co-application with organic fertilizers shows a pronounced mitigation (up to −39.0%) due to a slower N release coupled with biochar adsorption. A high SSA also plays an important role in mitigating nitrous oxide (N2O) emissions (up to −25.9%). A higher biochar C/N ratio promotes microbial N immobilization, contributing to N2O reductions (+1.5% to −34.2%). Mitigation is greater in sandy/loamy soils (−18.7% to −7.9%) than in clayey soils, where emissions might increase (+18.0%). Overall, biochar applications demonstrate significant potential to mitigate N losses and improve N use efficiency, thereby supporting sustainable agriculture; however, its effectiveness is optimized when biochar properties (e.g., high SSA and appropriate C/N ratio) and application strategies are tailored to specific soil types and N sources. Full article
Show Figures

Graphical abstract

13 pages, 916 KiB  
Article
Environment Friendly Biodegradable Sprayable Shrimp Waste Fertilizer and Low-Cost Crab Waste Carbon Fixer
by Viral Sagar and Joan G. Lynam
Environments 2025, 12(6), 181; https://doi.org/10.3390/environments12060181 - 29 May 2025
Viewed by 290
Abstract
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize [...] Read more.
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize seafood waste were investigated. Hydrothermal carbonization-enriched shrimp shell waste was converted into higher-value products, such as sprayable fertilizer and dry biochar fertilizer pellets. Environment friendly sprayable fertilizer from shrimp and crab shell waste as an inexpensive carbon fixer is a potential solution. An average spray coverage area of 0.12 m2 from only 300 mL of 1:10 shrimp shell waste to water mixture is reported. Characterization using N:P:K ratios from elemental analysis showed crustacean shell waste to comprise long-term organic carbon fixers in the soil with minor mineral enrichment, demonstrating potential for long-term soil care. Additionally, hydrothermally carbonized mineral rich shrimp shell and untreated crab shell waste were pelletized to test their friability and feasibility in transportation. Such a bio-investigation to promote economic goals for sustainability can improve biomass waste handling locally. Full article
(This article belongs to the Special Issue Preparation and Application of Biochar (Second Edition))
Show Figures

Graphical abstract

14 pages, 762 KiB  
Review
Drivers of Mercury Accumulation in Juvenile Antarctic Krill, Epipelagic Fish and Adélie Penguins in Different Regions of the Southern Ocean
by Roberto Bargagli and Emilia Rota
Environments 2025, 12(6), 180; https://doi.org/10.3390/environments12060180 - 29 May 2025
Viewed by 437
Abstract
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern [...] Read more.
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern Ocean, higher concentrations of Hg and MeHg have typically been reported in the coastal waters of the Ross and Amundsen Seas, where katabatic winds can transport Hg from the Antarctic Plateau and create coastal polynyas, which results in spring depletion events of atmospheric Hg. However, some studies on MeHg biomagnification in Antarctic marine food webs have reported higher Hg concentrations in penguins from sub-Antarctic waters and, unexpectedly, higher levels in juvenile krill than those in adult Antarctic krill. In light of recent estimates of the phytoplankton and zooplankton biomass and distribution in the Southern Ocean, this review suggests that although most studies on MeHg biomagnification refer to the short diatom–krill–vertebrate food chain, alternative and more complex pelagic food webs exist in the Southern Ocean. Thus, juvenile krill and micro- and mesozooplankton grazing on very small autotrophs and heterotrophs, which have high surface-to-volume ratios for MeHg ad-/absorption, may accumulate more Hg than consumers of large diatoms, such as adult krill. In addition, the increased availability of Hg and the different diet contribute to a greater metal accumulation in the feathers of Adélie penguins from the Ross Sea than that of those from the sub-Antarctic. Full article
Show Figures

Figure 1

23 pages, 863 KiB  
Article
Evaluation of Standardised (ISO) Leaching Tests for Assessing Leaching and Solid–Solution Partitioning of Perfluoroalkyl Substances (PFAS) in Soils
by Dan B. Kleja, Hugo Campos-Pereira, Johannes Kikuchi-McIntosh, Michael Pettersson, Oksana Golovko and Anja Enell
Environments 2025, 12(6), 179; https://doi.org/10.3390/environments12060179 - 29 May 2025
Viewed by 573
Abstract
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are [...] Read more.
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are valuable tools for assessing the site-specific leaching behaviour of contaminants. Here, we report the results of an evaluation of two standardized leaching tests for PFAS-contaminated soil materials: the batch test (ISO 21268-2:2019) using either demineralized water or 1 mM CaCl2 as leachants (liquid-to-solid (L/S) ratio of 10) and the up-flow percolation test (ISO 21268-3:2019) using 1 mM CaCl2 as leachant. One field-contaminated soil and three spiked (12 PFAS compounds) soils (aged 5 months) were included in the study. Desorption kinetics in the batch test were fast and equilibrium was obtained for all PFAS compounds within 24 h, the prescribed equilibration time. The same solubility was obtained for short-chain PFAS (PFBA, PFHxA, PFHpA, PFBS) in demineralized water and 1 mM CaCl2, whereas significantly lower solubility was often observed for long-chain PFAS in CaCl2 than in water, probably due to decreased charge repulsion between soil surfaces and PFAS compounds. In the up-flow percolation test, concentrations of short-chain PFAS in leachates decreased rapidly with increasing L/S, in contrast to long-chain PFAS, where concentrations decreased gradually or remained constant. Solid–solution partitioning coefficients (Kd), calculated from the data of the batch and percolation tests (1 mM CaCl2), were generally in agreement, although differing by more than three orders of magnitude between different PFAS compounds. Uncertainties and pitfalls when calculating Kd values from leaching test data are also explored. Full article
Show Figures

Figure 1

17 pages, 873 KiB  
Article
Association of PFAS and Metals with Cardiovascular Disease Risk: Exploring the Mediating Effect of Diet
by Augustina Odediran, Kenneth Bollen and Emmanuel Obeng-Gyasi
Environments 2025, 12(6), 178; https://doi.org/10.3390/environments12060178 - 28 May 2025
Viewed by 400
Abstract
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary [...] Read more.
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary inflammation in these associations remains unclear. Objective: This study investigates the relationship between PFAS and metal exposures and CVD risk, focusing on the potential mediating role of diet, operationalized through the Dietary Inflammatory Index (DII). Additionally, this study examines age as an effect modifier in these associations. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 cycle (n = 660), we assessed environmental exposures (lead, cadmium, mercury, perfluorooctanoic acid-PFOA, perfluorooctane sulfonate-PFOS), dietary inflammatory potential (DII), and cardiovascular markers (blood pressure, lipid profile, C-reactive protein). Statistical analyses included linear regression and Bayesian Kernel Machine Regression-Causal Mediation Analysis (BKMR-CMA) to estimate the direct, indirect (through DII), and total effects of exposure on CVD risk biomarkers. Results: Linear regression revealed significant associations between mercury and reduced systolic blood pressure (SBP) (p = 0.017) and cadmium with increased C-reactive protein (CRP) (p = 0.006). Mediation analysis suggested dietary inflammation may play a role, though estimates were imprecise. Conclusions: PFAS and metals may influence CVD risk through inflammatory pathways, with potential age-related differences. Future longitudinal studies are needed to clarify these complex interactions, reduce measurement error, and guide age-specific exposure regulations. Full article
Show Figures

Figure 1

31 pages, 1087 KiB  
Review
Global Trends in Air Pollution Modeling over Cities Under the Influence of Climate Variability: A Review
by William Camilo Enciso-Díaz, Carlos Alfonso Zafra-Mejía and Yolanda Teresa Hernández-Peña
Environments 2025, 12(6), 177; https://doi.org/10.3390/environments12060177 - 28 May 2025
Viewed by 490
Abstract
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, [...] Read more.
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, and Google Scholar. The frequency of citations of the variables of interest in the selected scientific databases was analyzed by means of an index using quartiles (Q). The results showed a hierarchy in the use of models: regional climate models/RCMs (Q3) > statistical models/SMs (Q3) > chemical transport models/CTMs (Q4) > machine learning models/MLMs (Q4) > atmospheric dispersion models/ADMs (Q4). RCMs, such as WRF, were essential for generating high-resolution projections of air pollution, crucial for local impact assessments. SMs, such as GAM, excelled in modeling nonlinear relationships between air pollutants and climate variables. CTMs, such as WRF-Chem, simulated detailed atmospheric chemical processes vital for understanding pollutant formation and transport. MLMs, such as ANNs, improved the accuracy of predictions and uncovered complex patterns. ADMs, such as HYSPLIT, evaluated air pollutant dispersion, informing regulatory strategies. The most studied pollutants globally were O3 (Q3) > PM (Q3) > VOCs (Q4) > NOx (Q4) > SO2 (Q4), with models adapting to their specific characteristics. Temperature emerged as the dominant climate variable, followed by wind, precipitation, humidity, and solar radiation. There was a clear differentiation in the selection of models and variables between high- and low-income countries. CTMs predominated in high-income countries, driven by their ability to simulate complex physicochemical processes, while SMs were preferred in low-income countries, due to their simplicity and lower resource requirements. Temperature was the main climate variable, and precipitation stood out in low-income countries for its impact on PM removal. VOCs were the most studied pollutant in high-income countries, and NOx in low-income countries, reflecting priorities and technical capabilities. The coupling between regional atmospheric models and city-scale air quality models was vital; future efforts should emphasize intra-urban models for finer urban pollution resolution. This study highlights how national resources and priorities influence air pollution research over cities under the influence of CV. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

24 pages, 2342 KiB  
Article
The Influence of Thermal Stress on Cadmium Uptake in Arctic Charr (Salvelinus alpinus) and Its Effects on Indicators of Fish Health and Condition, with Implications for Climate Change
by Mackenzie Anne Clifford Martyniuk, Camille Garnier and Patrice Couture
Environments 2025, 12(6), 176; https://doi.org/10.3390/environments12060176 - 26 May 2025
Viewed by 432
Abstract
Given the implications of heat stress on contaminant uptake and the importance of salmonid fish to Northern Indigenous peoples, investigating temperature-driven patterns in trace metal bioavailability is essential for assessing climate change risks. Here, juvenile Arctic charr were exposed for 8 weeks to [...] Read more.
Given the implications of heat stress on contaminant uptake and the importance of salmonid fish to Northern Indigenous peoples, investigating temperature-driven patterns in trace metal bioavailability is essential for assessing climate change risks. Here, juvenile Arctic charr were exposed for 8 weeks to cadmium (Cd) at a nominal concentration of 3 µg·L−1 (measured Cd: 1.81 ± 0.47 µg·L−1) or controls (measured Cd: 0.03 ± 0.03 µg·L−1) at a low (6 °C) or high (16 °C) temperature. Cd concentrations were measured in dorsal muscle, liver, and kidney tissues, and antioxidant (superoxide dismutase (SOD), catalase (CAT)) and anaerobic (lactate dehydrogenase (LDH)) capacities were assessed in liver tissue. Elevated temperatures significantly increased Cd uptake in analyzed tissues. Log10SOD activity decreased in the 6 °C-Cd treatment, while log10CAT activity declined in high-temperature treatments and log10LDH activity was reduced in Cd-exposed groups. The results highlight the influence of temperature, but also of combined thermal and trace metal stressors on Arctic charr’s antioxidant and anaerobic capacities. Biometric data indicate that temperature exerted a stronger negative influence on growth than Cd, with synergistic effects of temperature and Cd on the hepatosomatic index. Overall, this research highlights the thermal stress impacts on Cd uptake and Arctic charr physiology. Full article
Show Figures

Graphical abstract

15 pages, 1095 KiB  
Article
Virgin and Photoaged Polyethylene Microplastics Have Different Effects on Collembola and Enchytraeids
by Elise Quigley, Ana L. Patrício Silva, Sónia Chelinho, Maria J. I. Briones and Jose P. Sousa
Environments 2025, 12(6), 175; https://doi.org/10.3390/environments12060175 - 25 May 2025
Viewed by 414
Abstract
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids [...] Read more.
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids and collembolans) at environmentally relevant concentrations in a microcosm incubation experiment. Ten individuals of each Enchytraeus crypticus and Folsomia candida and twenty Proisotoma minuta were exposed separately to virgin and photoaged PE MPs (40–48 μm) admixed in agricultural soil (0.2–2000 mg/kg) to evaluate reproduction and survival. After 28 d of exposure to photoaged PE MPs, there was a moderate survival reduction but reproduction promotion of E. crypticus. Contrastingly, F. candida exhibited an opposite trend, with survival enhancement and reproduction depression rates when exposed to both PE MP contaminated soils. However, P. minuta was the only species with significant apical endpoint changes after PE MP exposure; at 20 mg/kg photoaged and 2000 mg/kg virgin PE MP exposure, there was a 34% and 31% decrease in survival, respectively, and at 200 mg/kg photoaged PE MP exposure, an increase of 39% for reproduction. PE MPs had contrasting impacts on soil mesofauna species, which highlights the need to account for these variable results when understanding the repercussions of MP pollution on community assemblage and population dynamics in soils. Full article
(This article belongs to the Special Issue Ecotoxicity of Microplastics)
Show Figures

Figure 1

23 pages, 2972 KiB  
Article
Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa
by Ebrahim Shokoohi and Ngoni Moyo
Environments 2025, 12(6), 174; https://doi.org/10.3390/environments12060174 - 23 May 2025
Viewed by 437
Abstract
The Limpopo Province, situated in the northern part of South Africa, is mainly comprising rural areas that lack adequate facilities for drinking water. Boreholes are the main source of drinking water in rural and urbanized areas of Limpopo Province. Sixty-three water samples, from [...] Read more.
The Limpopo Province, situated in the northern part of South Africa, is mainly comprising rural areas that lack adequate facilities for drinking water. Boreholes are the main source of drinking water in rural and urbanized areas of Limpopo Province. Sixty-three water samples, from three locations in Limpopo Province, namely Mankweng, Dalmada, and Polokwane, plus two samples from a river in Magoebaskloof and still water as controls, were collected and subjected to analysis. The Sodium Absorption Ratio (SAR) analysis ranged from 1.4 to 35.6, revealing that 25% of the samples from Mankweng bear low quality with a high amount of sodium. Piper plot showed that two major water types exist in the samples, 33% and 67% of the water samples were of Na-Cl and Ca-Cl types, respectively. To identify the leading natural and anthropogenic processes causing variation in groundwater chemistry, principal component analysis (PCA) was used. The most detected heavy metal was V (vanadium) with 0.00 to 0.59 (mg/mL). The PCA results grouped all water samples from Dalmada together. However, the water samples from Mankweng were divided into three groups by PCA, with borehole samples showing a correlation with heavy metals. In conclusion, the study revealed that natural and anthropogenic activities cause groundwater variation in the Limpopo Province. All the boreholes sampled showed the presence of total coliform, but no E. coli was detected. In addition, regarding microbial contamination, water samples were suitable for drinking and irrigation purposes. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

14 pages, 1818 KiB  
Article
Pesticide Pollution Provokes Histopathological Alterations in Apis mellifera (Linnaeus, 1758) Drone Gonads
by Stela Stoyanova, Elenka Georgieva, Plamen Petrov, Vesela Yancheva, László Antal, Dóra Somogyi, Krisztián Nyeste and Evgeniya N. Ivanova
Environments 2025, 12(6), 173; https://doi.org/10.3390/environments12060173 - 22 May 2025
Viewed by 390
Abstract
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with [...] Read more.
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with different rates of honey bee colony losses were included in the study—Dimovtsi, Plovdiv, and Krasnovo, Bulgaria. Male individuals (immature and mature) were collected from five colonies for each of the three apiaries and studied for histopathological changes in the gonads. The results concerning the rate of honey bee colony losses in the studied apiaries from 2022 and 2023 showed honey bee losses in the tested colonies due to queen problems, which were reported for Plovdiv, as well as the death of honey bees or a reduction in their number to a few hundred bees in the colony. The chemical analysis showed the presence of different organic substances, such as Coumaphos, DEET (N, N-diethyl-M-toluamide), Fluvalinate, and Piperonyl-butoxide, in the alive and dead honey bee samples and those of food stocks (wax, pollen, and honey) within the hives. Among the sample types, those of the dead honey bees contained the greatest variety of pesticide residues, particularly in Plovdiv and Dimovtsi, reinforcing the link between pesticide exposure and honey bee mortality. The histopathological alterations were mainly associated with the thinning of the covering epithelium of the seminiferous tubules and the detachment of the basement membrane of the seminiferous tubules. The more severe histopathological lesion, necrosis, was observed in a higher degree of expression in the drones from Plovdiv, indicating a higher pollution level in this region. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop