Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Facilities
2.3. Experimental Animals and Diet
2.4. Additive and Spraying System
2.5. Slurry
2.6. Gas Emissions, Temperature, and Air Flow
2.7. Statistical Analysis
3. Results
3.1. Ambient Conditions
3.2. Slurry Production and Composition
3.3. Additive Use
3.4. Gas Emissions Results
3.5. Animal Performance Results
4. Discussion
4.1. Gas Emissions
4.2. Spraying System
4.3. Animal Performance
5. Conclusions
- The mixture of organic acidifying compounds applied resulted in a significant reduction in gas emissions.
- It was possible to reduce NH3 and GHG emissions with a lower pH reduction than usually used in other scientific studies and with organic acidifiers.
- In order to prevent the acidification effect from being reversed by the buffering effect of the slurry itself, it was essential to have a dynamic spraying system that allowed minimum and continuous doses of acid to be applied.
- Applying the additive under conditions where peak emissions could occur (high temperatures) would have resulted in a reduction in the amount of additive used.
- Animal performance was not improved using the additive because, although the gas concentrations in rooms were significantly higher in the control treatment, they did not reach levels that could affect animal health.
- It would be advisable to evaluate the efficiency of this acidifier system under lower-temperature conditions (winter period), as well as the economic impact of the implementation of this technique.
- Other combinations of organic acids could be tested with this spraying system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADFI | Average daily feed intake |
ADG | Average daily gain |
CH4 | Methane |
CO2 | Carbon dioxide |
D.W. | Dry weight |
F.W. | Fresh weight |
FAO | Food and Agricultural Organization of the United Nations |
FCR | Feed conversion ratio |
FEDNA | Fundación Española para el Desarrollo de la Nutrición Animal |
GHG | Greenhouse gases |
H2SO4 | Sulfuric acid |
IPCC | Intergovernmental Panel on Climate Change |
IRPP-BREF | Best Available Techniques Reference Document for Intensive Rearing of Poultry/Pigs |
MITECO | Ministerio para la Transición Ecológica y el Reto Demográfico |
N2O | Nitrous oxide |
NH3 | Ammonia |
NH4+ | Ammonium |
NRC | Nutrient Requirements of Swine |
OECD | Organisation for Economic Co-operation Development |
PM | Particulate matter |
SE | Standard error |
TKN | Total Kjeldahl nitrogen |
VERA | Verification of Environmental Technologies for Agricultural Production |
References
- OECD. Market Examinations in Mexico. Case Study of the Pork Meat Market; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2019. [Google Scholar] [CrossRef]
- Anghelescu, I. EU Agricultural Outlook 2024-2035: Projected Trends and Challenges. Ew Nutrition. Available online: https://ew-nutrition.com/eu-agricultural-outlook-2024-2035-projected-trends-and-challenges/ (accessed on 21 April 2025).
- FAO. Livestock’s Long Shadow; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 20 April 2025).
- National Research Council (NRC). Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs; National Academies Press: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Reaka-Kudla, M.L.; Wilson, D.E. Biodiversity II. Understanding and Protecting Our Biological Resources; Joseph Henry Press: Washington, DC, USA, 1997. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Geels, C. The effect of climate and climate change on ammonia emissions in Europe. Atmos. Chem. Phys. 2013, 13, 117–128. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef]
- Malley, C.S.; Hicks, W.K.; Kulyenstierna, I.J.C.; Michalopoulou, E.; Molotoks, A.; Slater, J.; Heaps, C.G.; Ulloa, S.; Veysey, J.; Shindell, D.T.; et al. Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018. Environ. Res. Commun. 2021, 3, 075001. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Franco, B.; Sutton, A.M.; Erisman, J.W.; Kruit, R.W.; van Zanten, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; et al. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 2021, 16, 055017. [Google Scholar] [CrossRef]
- MITECO. Inventario Nacional de Emisiones a la Atmósfera. Emisiones de Contaminantes Atmosféricos. Serie 1990–2023. Informe Resumen. November 2024. Available online: https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/resumen-Inventario-CA-2025.pdf (accessed on 20 April 2025).
- De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C. Chapter 11. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; National Greenhouse Gas Inventories Programme: Hayama, Japan, 2006; Chapter 11; pp. 11.0–11.54. Available online: http://www.ipcc-nggip.iges.or.jp/ (accessed on 20 April 2025).
- Moehn, S.; Price, J.; Zijlstra, R.; Sauer, W.; Clark, O.; Ball, R.; Atakora, J.; Feddes, J.; Zhang, Y.; Leonard, J.; et al. Diet Manipulation to Control Odor and Gas Emissions from Swine Production. In Climate Change and Managed Ecosystems; CRC Press: Boca Raton, FL, USA, 2005; pp. 295–316. [Google Scholar] [CrossRef]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J.; Lovatto, P.A.; Neto, J.R. The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition. J. Anim. Sci. 2014, 92, 3925–3936. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, J.; Sørensen, P.; Elsgaard, L. The Fate of Sulfate in Acidified Pig Slurry during Storage and Following Application to Cropped Soil. J. Environ. Qual. 2008, 37, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Borst, G.H. Acute poisoning of pigs with hydrogen sulfide as a result of acidification of slurry on a pig farm. Tijdschr Diergeneeskd 2001, 126, 104–105. [Google Scholar]
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. J. Clean. Prod. 2016, 131, 296–307. [Google Scholar] [CrossRef]
- Sommer, S.; Zhang, G.; Bannink, A.; Chadwick, D.; Misselbrook, T.; Harrison, R.; Hutchings, N.; Menzi, H.; Monteny, G.; Ni, J.; et al. Algorithms Determining Ammonia Emission from Buildings Housing Cattle and Pigs and from Manure Stores. Adv. Agron. 2006, 89, 261–335. [Google Scholar] [CrossRef]
- Kavolelis, B. Influence Ventilation V Rate on Ammonia Concentration and Emission in Animal House. Pol. J. Environ. Stud. 2003, 12, 709–712. [Google Scholar]
- Cao, Y.; Bai, Z.; Misselbrook, T.; Wang, X.; Ma, L. Ammonia emissions from different pig production scales and their temporal variations in the North China Plain. J. Air Waste Manag. Assoc. 2021, 71, 23–33. [Google Scholar] [CrossRef]
- Babot, D.; Blanco, G.; Sancho, V.; Ferrer, N.; Cartanyà, J. Efecto de dos niveles de ventilación sobre las emisiones de amoniaco y los rendimientos productivos en cerdos de engorde en otoño-invierno. SUIS 2021, 178, 20–23. [Google Scholar]
- Cartanyà, J.; Blanco, G.; Sancho, V.; Ferrer, N.; Babot, D. Efecto de dos niveles de ventilación sobre las emisiones de amoniaco y los rendimientos productivos en cerdos de engorde en primavera-verano. SUIS 2021, 177, 10–15. [Google Scholar]
- Petersen, S.O.; Hutchings, N.J.; Hafner, S.D.; Sommer, S.G.; Hjorth, M.; Jonassen, K.E. Ammonia abatement by slurry acidification: A pilot-scale study of three finishing pig production periods. Agric. Ecosyst. Environ. 2016, 216, 258–268. [Google Scholar] [CrossRef]
- Tengman, C.L.; Gralapp, A.K.; Goodwin, R.N. Laboratory Testing of Commercial Manure Additives for Swine Odor Control; USDA-ARS-National Swine Research and Information Center: Ames, IA, USA, 2001. [Google Scholar]
- Stinson, R.; Lemay, S.P.; Barber, E.M.; Fonstad, T. Effectiveness of Three Manure Pit Additives; Annual Resarch Report 1999; Prairie Swine Centre INC: Saskatoon, SK, Canada, 1999; pp. 30–31. [Google Scholar]
- Andersson, M. Performance of Additives in Reducing Ammonia Emissions from Cow Slurry. Allied Nutrition. 1994. Available online: https://alliednutrition.com/wp-content/uploads/2015/09/Performance-af-Additives-in-Reducing-Ammonia-sept-2004.pdf (accessed on 14 July 2025).
- De Blas, C.y.G.G.M.; García-Rebollar, P.; Gorrachategui, M.; Mateos, G.G. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos para la Fabricación de Piensos Compuestos, 4th ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2019. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 10th ed.; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- BOE. Real Decreto 2257/1994, de 25 de Noviembre, por el que se Aprueba los Métodos Oficiales de Análisis de Piensos o Alimentos para Animales y sus Primeras Materias; BOE-A-1995-5541; Ministerio de la Presidencia: Madrid, Spain, 1995; Available online: https://www.boe.es/eli/es/rd/1994/11/25/2257 (accessed on 10 May 2025).
- BOE. Orden de 30 de Noviembre de 1976 Sobre Métodos de Análisis de Productos Fitosanitarios y Fertilizantes; BOE-A-1977-91; Presidencia del Gobierno: Madrid, Spain, 1977; Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1977-91 (accessed on 10 May 2025).
- Andersson, M. Performance of Bedding Materials in Affecting Ammonia Emissions from Pig Manure. J. Agric. Eng. Res. 1996, 65, 213–222. [Google Scholar] [CrossRef]
- Amon, B.; Sryvoruchko, V.; Amon, T.; Moitzi, G. Can the additive ‘Effective Micro-Organisms (EM)’ reduce ammonia and greenhouse gas emissions from slurry stores? In Proceedings of the 11th International Conference of the FAO ESCO-RENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture (RAMIRAN), Murcia, Spain, 6–9 October 2004; pp. 3181–3327. [Google Scholar]
- Overmeyer, V.; Trimborn, M.; Clemens, J.; Hölscher, R.; Büscher, W. Acidification of slurry to reduce ammonia and methane emissions: Deployment of a retrofittable system in fattening pig barns. J. Environ. Manag. 2023, 331, 117263. [Google Scholar] [CrossRef] [PubMed]
- Kroodsma, W.; Huis in ’t Veld, J.W.H.; Scholtens, R. Ammonia emission and its reduction from cubicle houses by flushing. Livest. Prod. Sci. 1993, 35, 293–302. [Google Scholar] [CrossRef]
- Swierstra, D.; Smits, M.; Kroodsma, W. Ammonia Emission from Cubicle Houses for Cattle with Slatted and Solid Floors. J. Agric. Eng. Res. 1995, 62, 127–132. [Google Scholar] [CrossRef]
- Ogink, N.; Kroodsma, W. Reduction of Ammonia Emission from a Cow Cubicle House by Flushing with Water or a Formalin Solution. J. Agric. Eng. Res. 1996, 63, 197–204. [Google Scholar] [CrossRef]
- Braam, C.; Ketelaars, J.; Smits, M. Effects of floor design and floor cleaning on ammonia emission from cubicle houses for dairy cows. Neth. J. Agric. Sci. 1997, 45, 49–64. [Google Scholar] [CrossRef]
- Ni, J.; Heber, A.J.; Lim, T.T.; Diehl, C.A.; Duggirala, R.K.; Haymore, B.L.; Sutton, A.L. Ammonia Emission from a Large Mechanically-Ventilated Swine Building during Warm Weather. J. Environ. Qual. 2000, 29, 751–758. [Google Scholar] [CrossRef]
- VERA: Verification of Environmental Technologies Agricultural Production. Vera Test Protocol for Livestock Housing and Management Systems. September 2018. Available online: https://www.vera-verification.eu/ (accessed on 21 April 2025).
- SAS Institute Inc. SAS/STAT ® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004; Volume 1. [Google Scholar]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs—Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Van Ransbeeck, N.; Van Langenhove, H.; Demeyer, P. Indoor concentrations and emissions factors of particulate matter, ammonia and greenhouse gases for pig fattening facilities. Biosyst. Eng. 2013, 116, 518–528. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Cong, Q.; Wang, Y.; Wang, W.; Zhang, W.; Zhu, Z.; Dong, H. Responses of CH4, N2O, and NH3 emissions to different slurry pH values of 5.5–10.0: Characteristics and mechanisms. Environ. Res. 2023, 234, 116613. [Google Scholar] [CrossRef]
- Aarnink, A.; Keen, A.; Metz, J.; Speelman, L.; Verstegen, M. Ammonia Emission Patterns during the Growing Periods of Pigs Housed on Partially Slatted Floors. J. Agric. Eng. Res. 1995, 62, 105–116. [Google Scholar] [CrossRef]
- Ngwabie, N.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows. Atmos. Environ. 2011, 45, 6760–6768. [Google Scholar] [CrossRef]
- Calvet, S.; Arrufat, B.; Salaet, I.; Atares, S.; Sobreviela, A.; Herrero, C.; Romero, J.; Estellés, F. A urease inhibitor reduces ammonia emission in fattening pigs reared on slatted floor in summer conditions. Biosyst. Eng. 2022, 221, 43–53. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Kim, H.T.; Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, C.N. Quantification of ammonia and hydrogen sulfide emitted from pig buildings in Korea. J. Environ. Manag. 2008, 88, 195–202. [Google Scholar] [CrossRef]
- Groot Koerkamp, P.W.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Gaseous emissions during the fattening of pigs kept either on fully slatted floors or on straw flow. Animal 2007, 1, 1515–1523. [Google Scholar] [CrossRef]
- Kavanagh, I.; Burchill, W.; Healy, M.; Fenton, O.; Krol, D.; Lanigan, G. Mitigation of ammonia and greenhouse gas emissions from stored cattle slurry using acidifiers and chemical amendments. J. Clean. Prod. 2019, 237, 117822. [Google Scholar] [CrossRef]
- Fuchs, A.; Dalby, F.R.; Liu, D.; Kai, P.; Feilberg, A. Improved effect of manure acidification technology for gas emission mitigation by substituting sulfuric acid with acetic acid. Clean. Eng. Technol. 2021, 4, 100263. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Hansen, M.; Pedersen, S.; Rom, H. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ. 2008, 124, 237–244. [Google Scholar] [CrossRef]
- Quiniou, N.; Dubois, S.; Noblet, J. Voluntary feed intake and feeding behaviour of group-housed growing pigs are affected by ambient temperature and body weight. Livest. Prod. Sci. 2000, 63, 245–253. [Google Scholar] [CrossRef]
- Saha, C.; Ammon, C.; Berg, W.; Fiedler, M.; Loebsin, C.; Sanftleben, P.; Brunsch, R.; Amon, T. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci. Total. Environ. 2014, 468–469, 53–62. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Laitat, M.; Wavreille, J.; Nicks, B.; Cabaraux, J.-F. Effects of a high-fibre diet on ammonia and greenhouse gas emissions from gestating sows and fattening pigs. Atmos. Environ. 2015, 109, 197–204. [Google Scholar] [CrossRef]
- Ni, J.; Heber, A.J.; Lim, T.T.; Tao, P.C.; Schmidt, A.M. Methane and Carbon Dioxide Emission from Two Pig Finishing Barns. J. Environ. Qual. 2008, 37, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Powers, W. Meta-Analysis of Greenhouse Gas Emissions from Swine Operations; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011. [Google Scholar] [CrossRef]
- Ottosen, L.D.; Poulsen, H.V.; Nielsen, D.A.; Finster, K.; Nielsen, L.P.; Revsbech, N.P. Observations on microbial activity in acidified pig slurry. Biosyst. Eng. 2009, 102, 291–297. [Google Scholar] [CrossRef]
- Jungbluth, T.; Hartung, E.; Brose, G. Greenhouse gas emissions from animal houses and manure stores. Nutr. Cycl. Agroecosyst. 2001, 60, 133–145. [Google Scholar] [CrossRef]
- Mosquera, J.; Hol, J.M.G.; Winkel, A.; Lovink, E.; Ogink, N.W.M.; Aarnink, A.J.A. Dust Emission from Animal Houses: Growing and Finishing Pigs; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2010; Available online: https://edepot.wur.nl/135664 (accessed on 20 April 2025).
- Pereira, J.L.S.; Perdigão, A.; Tavares, A.; Silva, M.E.F.; Brás, I.; Wessel, D.F. Effects of the Addition of Different Additives before Mechanical Separation of Pig Slurry on Composition and Gaseous Emissions. Agronomy 2022, 12, 1618. [Google Scholar] [CrossRef]
- Fangueiro, D.; Surgy, S.; Coutinho, J.; Vasconcelos, E. Impact of cattle slurry acidification on carbon and nitrogen dynamics during storage and after soil incorporation. J. Plant Nutr. Soil Sci. 2013, 176, 540–550. [Google Scholar] [CrossRef]
- Chantziaras, I.; De Meyer, D.; Vrielinck, L.; Van Limbergen, T.; Pineiro, C.; Dewulf, J.; Kyriazakis, I.; Maes, D. Environment-, health-, performance- and welfare-related parameters in pig barns with natural and mechanical ventilation. Prev. Vet. Med. 2020, 183, 105150. [Google Scholar] [CrossRef]
- Hinz, T.; Linke, S. A Comprehensive Experimental Study of Aerial Pollutants in and Emissions from Livestock Buildings. Part 1: Methods. J. Agric. Eng. Res. 1998, 70, 111–118. [Google Scholar] [CrossRef]
- Costa, A.; Guarino, M. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry. Atmos. Environ. 2009, 43, 1548–1556. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Overmeyer, V.; Kube, A.; Clemens, J.; Büscher, W.; Trimborn, M. One-time acidification of slurry: What is the most effective acid and treatment strategy? Agronomy 2021, 11, 1319. [Google Scholar] [CrossRef]
- Colina, J.; Lewis, A.; Miller, P.S. A Review of the Ammonia Issue and Pork Production; Nebraska Swine Report; University of Nebraska: Lincoln, NE, USA, 2000; pp. 24–25. [Google Scholar]
- O’Connor, E.A.; Parker, M.O.; McLeman, M.A.; Demmers, T.G.; Lowe, J.C.; Cui, L.; Davey, E.L.; Owen, R.C.; Wathes, C.M.; Abeyesinghe, S.M. The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 1): Stress physiology, production and play behaviour. Animal 2010, 4, 1899–1909. [Google Scholar] [CrossRef]
Treatment | SE 1 | p-Value | ||
---|---|---|---|---|
T1: Control | T2: Acidified | |||
pH | 7.20 | 6.52 | 0.154 | <0.001 |
Dry matter (% of f.w.) | 4.85 | 6.90 | 0.986 | <0.001 |
Ash (% of d.w.) | 27.9 | 25.6 | 2.03 | 0.019 |
Organic matter (% of d.w.) | 71.8 | 73.9 | 1.86 | 0.018 |
TKN 2 (% of f.w.) | 0.543 | 0.707 | 0.047 | <0.001 |
N-NH 3 (% of f.w.) | 0.320 | 0.405 | 0.024 | <0.001 |
Organic nitrogen (% of f.w.) | 0.195 | 0.282 | 0.057 | <0.001 |
Treatment | Moment | SE 1 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
T1: Control | T2: Acidified | Day | Night | Treatment | Moment | Treatment x Moment | ||
NH3 (kg pig−1 year−1) | 2.39 | 1.75 | 2.00 | 2.10 | 0.055 | <0.001 | 0.186 | 0.089 |
CH4 (kg pig−1 year−1) | 4.06 | 3.10 | 3.35 | 3.76 | 0.041 | <0.001 | <0.001 | 0.568 |
N2O (kg pig−1 year−1) | 0.032 | 0.024 | 0.029 | 0.026 | 0.049 | <0.001 | 0.016 | 0.319 |
CO2 (kg pig−1 year−1) | 1321 | 942 | 1122 | 1090 | 0.040 | <0.001 | 0.638 | 0.661 |
Treatment | SE 1 | p-Value | ||
---|---|---|---|---|
T1: Control | T2: Acidified | |||
Growing period | ||||
ADG (kg/day) | 0.929 | 0.897 | 0.051 | 0.177 |
ADFI (kg/day) | 1.80 | 1.82 | 0.111 | 0.605 |
FCR | 2.01 | 2.09 | 0.171 | 0.221 |
Fattening period | ||||
ADG (kg/day) | 0.875 | 0.872 | 0.083 | 0.924 |
ADFI (kg/day) | 2.26 | 2.38 | 0.033 | 0.014 |
FCR | 2.54 | 2.68 | 0.048 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalvo, G.; Rodríguez, M.; Piñeiro, C.; Garcia-Rebollar, P.; Sanz, M.J. Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates. Environments 2025, 12, 243. https://doi.org/10.3390/environments12070243
Montalvo G, Rodríguez M, Piñeiro C, Garcia-Rebollar P, Sanz MJ. Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates. Environments. 2025; 12(7):243. https://doi.org/10.3390/environments12070243
Chicago/Turabian StyleMontalvo, Gema, María Rodríguez, Carlos Piñeiro, Paloma Garcia-Rebollar, and María J. Sanz. 2025. "Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates" Environments 12, no. 7: 243. https://doi.org/10.3390/environments12070243
APA StyleMontalvo, G., Rodríguez, M., Piñeiro, C., Garcia-Rebollar, P., & Sanz, M. J. (2025). Effect of Slurry Acidification In-House by a Dynamic Spraying System on Ammonia and Greenhouse Gas Emissions from Pig-Fattening Farms in Hot Summer Climates. Environments, 12(7), 243. https://doi.org/10.3390/environments12070243