Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographical Characteristics of the Vyzhyvka River Basin
2.2. Geological and Structural Features of the Vyzhyvka River Basin
2.3. Selection of Test Sites and Representative Observation Points
2.4. Study of the Seasonal Dynamics of Water Quality Changes in the Vyzhyvka River
2.5. Phytoindication of Water Quality in the Vyzhyvka River
3. Results and Discussion
3.1. Analysis of the Seasonal Dynamics of Water Quality in the Study River
3.2. Taxonomic Diversity, Species Composition and Cover Density of Macrophytes
3.3. Use of Geogenic Minerals to Stimulate the Development of Submerged Macrophytes in the Vyzhyvka River
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bănăduc, D.; Curtean-Bănăduc, A.; Barinova, S.; Lozano, V.; Afanasyev, S.; Leite, T.; Branco, P.; Gomez Isaza, D.; Geist, J.; Tegos, A.; et al. Multi-Interacting Natural and Anthropogenic Stressors on Freshwater Ecosystems: Their Current Status and Future Prospects for 21st Century. Water 2024, 16, 1483. [Google Scholar] [CrossRef]
- Nezbrytska, I.; Bilous, O.; Sereda, T.; Ivanova, N.; Pohorielova, M.; Shevchenko, T.; Dubniak, S.; Lietytska, O.; Zhezherya, V.; Polishchuk, O.; et al. Effects of War-Related Human Activities on Microalgae and Macrophytes in Freshwater Ecosystems: A Case Study of the Irpin River Basin, Ukraine. Water 2024, 16, 3604. [Google Scholar] [CrossRef]
- Sayanthan, S.; Hasan, H.A.; Abdullah, S.R.S. Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water 2024, 16, 870. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, S.; Han, B.; Hua, Z.; Fu, D.; Li, P. Impacts of Water Flow on Epiphytic Microbes and Nutrients Removal in Constructed Wetlands Dominated by Vallisneria Natans with Decreasing Temperature. Bioresour. Technol. 2020, 318, 124058. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, L. Treatment Technology of Microbial Landscape Aquatic Plants for Water Pollution. Adv. Mater. Sci. Eng. 2021, 2021, 4409913. [Google Scholar] [CrossRef]
- Chaurasia, S. Role of Macrophytes: A Review. Adv. Zool. Bot. 2022, 10, 75–81. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H. The Efficient Role of Aquatic Plant (Water Hyacinth) in Treating Domestic Wastewater in Continuous System. Int. J. Phytoremediation 2016, 18, 679–685. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Kuhar, U.; Germ, M.; Gaberščik, A.; Urbanič, G. Development of a River Macrophyte Index (RMI) for Assessing River Ecological Status. Limnologica 2011, 41, 235–243. [Google Scholar] [CrossRef]
- Thomaz, S.M.; Cunha, E.R.D. The Role of Macrophytes in Habitat Structuring in Aquatic Ecosystems: Methods of Measurement, Causes and Consequences on Animal Assemblages’ Composition and Biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Zapata, A.G.F.; Rodrigues, D.F.; Rodriguez, E.S.; Anjos, J.F.P.D.; Olímpio, R.G.; Lima, T.F.A.D.; Hayden, V.S.C.B.; Ferreira, Z.A.R.; Santos, M.D.; Santos, G.F.D.D.; et al. The use of floating macrophytes as a biological alternative for water quality improvement in eutrophic environments. Rev. Acadêmica Online 2025, 11, e1418. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, C.; Yang, J.; Zhou, S.; Du, J.; Zhang, M.; An, S. Mutual Promotion of Submerged Macrophytes and Biofilms on Artificial Macrophytes for Nitrogen and COD Removal Improvement in Eutrophic Water. Environ. Pollut. 2021, 277, 116718. [Google Scholar] [CrossRef] [PubMed]
- Adelodun, A.A.; Hassan, U.O.; Nwachuckwu, V.O. Environmental, Mechanical, and Biochemical Benefits of Water Hyacinth (Eichhornia Crassipes). Environ. Sci. Pollut. Res. 2020, 27, 30210–30221. [Google Scholar] [CrossRef] [PubMed]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Water Hyacinth (Eichhornia Crassipes) for Organic Contaminants Removal in Water—A Review. J. Hazard. Mater. Adv. 2022, 7, 100092. [Google Scholar] [CrossRef]
- Madikizela, L.M. Removal of Organic Pollutants in Water Using Water Hyacinth (Eichhornia Crassipes). J. Environ. Manag. 2021, 295, 113153. [Google Scholar] [CrossRef]
- Marques, R.Z.; Oliveira, P.G.D.; Barbato, M.L.; Kitamura, R.S.A.; Maranho, L.T.; Brito, J.C.M.; Nogueira, K.D.S.; Juneau, P.; Gomes, M.P. Green Solutions for Antibiotic Pollution: Assessing the Phytoremediation Potential of Aquatic Macrophytes in Wastewater Treatment Plants. Environ. Pollut. 2024, 357, 124376. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Said, N.S.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Macrophytes as Wastewater Treatment Agents: Nutrient Uptake and Potential of Produced Biomass Utilization toward Circular Economy Initiatives. Sci. Total Environ. 2021, 790, 148219. [Google Scholar] [CrossRef]
- Akowanou, A.V.O.; Deguenon, H.E.J.; Balogoun, K.C.; Daouda, M.M.A.; Aina, M.P. The Combined Effect of Three Floating Macrophytes in Domestic Wastewater Treatment. Sci. Afr. 2023, 20, e01630. [Google Scholar] [CrossRef]
- Oustriere, N.; Marchand, L.; Roulet, E.; Mench, M. Rhizofiltration of a Bordeaux Mixture Effluent in Pilot-Scale Constructed Wetland Using Arundo Donax L. Coupled with Potential Cu-Ecocatalyst Production. Ecol. Eng. 2017, 105, 296–305. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Anuar, N.; Suja, F.; Mushrifah, I. Phytodegradation of Total Petroleum Hydrocarbon (TPH) in Diesel-Contaminated Water Using Scirpus Grossus. Ecol. Eng. 2015, 74, 463–473. [Google Scholar] [CrossRef]
- Schulz, M.; Kozerski, H.-P.; Pluntke, T.; Rinke, K. The Influence of Macrophytes on Sedimentation and Nutrient Retention in the Lower River Spree (Germany). Water Res. 2003, 37, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Saralegui, A.B.; Willson, V.; Caracciolo, N.; Piol, M.N.; Boeykens, S.P. Macrophyte Biomass Productivity for Heavy Metal Adsorption. J. Environ. Manag. 2021, 289, 112398. [Google Scholar] [CrossRef]
- Ali, F.; Jilani, G.; Fahim, R.; Bai, L.; Wang, C.; Tian, L.; Jiang, H. Functional and Structural Roles of Wiry and Sturdy Rooted Emerged Macrophytes Root Functional Traits in the Abatement of Nutrients and Metals. J. Environ. Manag. 2019, 249, 109330. [Google Scholar] [CrossRef]
- Mesquita, Y.W.; Mengatto, M.F.; Nagai, R.H. Where and How? A Systematic Review of Microplastic Pollution on Beaches in Latin America and the Caribbean (LAC). Environ. Pollut. 2022, 314, 120231. [Google Scholar] [CrossRef] [PubMed]
- Haury, J.; Peltre, M.-C.; Trémolières, M.; Barbe, J.; Thiébaut, G.; Bernez, I.; Daniel, H.; Chatenet, P.; Haan-Archipof, G.; Muller, S.; et al. A New Method to Assess Water Trophy and Organic Pollution—The Macrophyte Biological Index for Rivers (IBMR): Its Application to Different Types of River and Pollution. In Macrophytes in Aquatic Ecosystems: From Biology to Management; Caffrey, J.M., Dutartre, A., Haury, J., Murphy, K.J., Wade, P.M., Eds.; Developments in Hydrobiology; Springer: Dordrecht, The Netherlands, 2006; Volume 190, pp. 153–158. ISBN 978-1-4020-5389-4. [Google Scholar]
- Schneider, S.; Melzer, A. The Trophic Index of Macrophytes (TIM)—A New Tool for Indicating the Trophic State of Running Waters. Int. Rev. Hydrobiol. 2003, 88, 49–67. [Google Scholar] [CrossRef]
- Różańska-Boczula, M.; Sender, J. Exploring the Relationships between Macrophyte Groups and Environmental Conditions in Lake Ecosystems. Sci. Rep. 2025, 15, 11162. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. The Macrophyte Index for Rivers (MIR) as an Advantageous Approach to Running Water Assessment in Local Geographical Conditions. Water 2019, 12, 108. [Google Scholar] [CrossRef]
- Malovanyy, M.S.; Boiaryn, M.; Muzychenko, O.; Tsos, O. Assessment of the environmental state of surface waters of right-bank tributaries of the upper reaches of the Pripet River by macrophyte index MIR. J. Water Land Dev. 2022, No. 55 (X–XII), 97–103. [Google Scholar] [CrossRef]
- Tsos, O.; Radzii, V.; Kocun, L.; Sukhomlin, K.; Melnyk, O. Assessment of the Ecological State of Surface Waters of the Luga River, in the Town of Volodymyr, by Macrophytes. Agron. Sci. 2024, 79, 125–135. [Google Scholar] [CrossRef]
- Babko, R.; Diachenko, T.; Zaburko, J.; Danko, Y.; Kuzmina, T.; Szulżyk-Cieplak, J.; Czarnota, J.; Łagód, G. Macrophyte Communities as Bioindicator of Stormwater Pollution in Rivers: A Quantitative Analysis. PeerJ 2023, 11, e15248. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Xiong, J.; Li, L.; Zhao, B.; Sohail, I.; He, Z. A Constructed Wetland System with Aquatic Macrophytes for Cleaning Contaminated Runoff/Storm Water from Urban Area in Florida. J. Environ. Manag. 2021, 280, 111794. [Google Scholar] [CrossRef] [PubMed]
- Szabó, S.; Koleszár, G.; Zavanyi, G.; Nagy, P.T.; Braun, M.; Hilt, S. Disentangling the Mechanisms Sustaining a Stable State of Submerged Macrophyte Dominance against Free-Floating Competitors. Front. Plant Sci. 2022, 13, 963579. [Google Scholar] [CrossRef] [PubMed]
- Szabó, S.; Csizmár, A.; Koleszár, G.; Oláh, V.; Birk, S.; Peeters, E.T.H.M. Density-Dependent Facilitation and Inhibition between Submerged and Free-Floating Plants. Hydrobiologia 2024, 851, 2749–2760. [Google Scholar] [CrossRef]
- Ciecierska, H.; Kolada, A. ESMI: A Macrophyte Index for Assessing the Ecological Status of Lakes. Environ. Monit. Assess. 2014, 186, 5501–5517. [Google Scholar] [CrossRef]
- Ijoma, G.N.; Lopes, T.; Mannie, T.; Mhlongo, T.N. Exploring Macrophytes’ Microbial Populations Dynamics to Enhance Bioremediation in Constructed Wetlands for Industrial Pollutants Removal in Sustainable Wastewater Treatment. Symbiosis 2024, 92, 323–354. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, Z.; Wang, G.; Liu, Y.; Wang, H.; Xie, J. Optimal Submerged Macrophyte Coverage for Improving Water Quality in a Temperate Lake in China. Ecol. Eng. 2021, 162, 106177. [Google Scholar] [CrossRef]
- Clairmont, L.K.; Stevens, K.J.; Slawson, R.M. Site-Specific Differences in Microbial Community Structure and Function within the Rhizosphere and Rhizoplane of Wetland Plants Is Plant Species Dependent. Rhizosphere 2019, 9, 56–68. [Google Scholar] [CrossRef]
- Toyama, T.; Furukawa, T.; Maeda, N.; Inoue, D.; Sei, K.; Mori, K.; Kikuchi, S.; Ike, M. Accelerated Biodegradation of Pyrene and Benzo[a]Pyrene in the Phragmites Australis Rhizosphere by Bacteria–Root Exudate Interactions. Water Res. 2011, 45, 1629–1638. [Google Scholar] [CrossRef]
- Ofek-Lalzar, M.; Sela, N.; Goldman-Voronov, M.; Green, S.J.; Hadar, Y.; Minz, D. Niche and Host-Associated Functional Signatures of the Root Surface Microbiome. Nat. Commun. 2014, 5, 4950. [Google Scholar] [CrossRef]
- Van Onsem, S.; Triest, L. Turbidity, Waterfowl Herbivory, and Propagule Banks Shape Submerged Aquatic Vegetation in Ponds. Front. Plant Sci. 2018, 9, 1514. [Google Scholar] [CrossRef]
- Nabi, F.; Peng, Y.; Kama, R.; Sajid, S.; Memon, F.U.; Ma, C.; Li, H. Enhanced Nutrient Removal from Aquaculture Wastewater Using Optimized Constructed Wetlands: A Comprehensive Screening of Microbial Complexes, Substrates, and Macrophytes. J. Water Process Eng. 2025, 69, 106634. [Google Scholar] [CrossRef]
- Yan, P.; Peng, Y.; Fan, Y.; Zhang, M.; Chen, J.; Gu, X.; Sun, S.; He, S. Effects of Ferrous Addition to Vallisneria Natans: An Attempt to Apply Ferrous to Submerged Macrophyte Restoration. Environ. Res. 2023, 237, 117022. [Google Scholar] [CrossRef]
- Rodrigo, M.A. Wetland Restoration with Hydrophytes: A Review. Plants 2021, 10, 1035. [Google Scholar] [CrossRef]
- Van Der Cruysse, L.; De Cock, A.; Lock, K.; Boets, P.; Goethals, P.L.M. Introduction of Native Submerged Macrophytes to Restore Biodiversity in Streams. Plants 2024, 13, 1014. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.E. Phenotypic Plasticity for Plant Development, Function and Life History. Trends Plant Sci. 2000, 5, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, X.; Lin, J.; Wang, X.; Sun, S.; Hao, Q.; Wu, L.; Zhou, J.; Xia, S.; Ran, X.; et al. Silicon Promotes Biomass Accumulation in Phragmites Australis under Waterlogged Conditions in Coastal Wetland. Plant Soil 2024, 503, 503–516. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Martinsen, K.T.; Jakobsen, A.L.; Sø, J.S.; Madsen-Østerbye, M.; Kjær, J.E.; Kristensen, E.; Kragh, T. Large Pools and Fluxes of Carbon, Calcium and Phosphorus in Dense Charophyte Stands in Ponds. Sci. Total Environ. 2021, 765, 142792. [Google Scholar] [CrossRef]
- Nekos, A.; Boiaryn, M.; Karpyuk, Z.; Kotsun, L.; Andreyeva, V.; Lugowska, M. Evaluation of the Efficiency of Functioning of the Nature Reserve Fund in the Pripet River Basin in the Volyn Region. Visnyk VN Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol. 2024, 60, 389–398. [Google Scholar] [CrossRef]
- Fesyuk, V.O.; Moroz, I.A.; Kirchuk, R.V.; Polianskyi, S.V.; Fedoniuk, M.A. Soil Degradation in Volyn Region: Current State, Dynamics, Ways of Reduction. J. Geol. Geogr. Geoecology 2021, 30, 239–249. [Google Scholar] [CrossRef]
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the Dynamics of the Relationship between Water pH and Other Water Quality Parameters in Ground and Surface Water Systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.; Mishra, P.; Pandey, G. Application of Student’s t-Test, Analysis of Variance, and Covariance. Ann. Card. Anaesth. 2019, 22, 407. [Google Scholar] [CrossRef] [PubMed]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A Comprehensive Review of Water Quality Indices (WQIs): History, Models, Attempts and Perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Carter, J.B.; Huffaker, R.; Singh, A.; Bean, E. HUM: A Review of Hydrochemical Analysis Using Ultraviolet-Visible Absorption Spectroscopy and Machine Learning. Sci. Total Environ. 2023, 901, 165826. [Google Scholar] [CrossRef]
- Holmes, N.T.H.; Newman, J.R.; Chadd, S. Mean Trophic Rank: A User’s Manual; Environment Agency: Copenhagen, Denmark, 1999; ISBN 978-1-85705-092-9. [Google Scholar]
- Von Raab-Straube, E.; Raus, T. Euro+Med-Checklist Notulae, 15. Willdenowia 2022, 52, 273–299. [Google Scholar] [CrossRef]
- Ciecierska, H.; Dynowska, M. (Eds.) Biologiczne Metody Oceny Stanu Środowiska: Podręcznik Metodyczny. T. 2: Ekosystemy Wodne; Wydawnictwo Mantis: Olsztyn, Poland, 2013; ISBN 978-83-62860-19-7. [Google Scholar]
- Lacoul, P.; Freedman, B. Environmental Influences on Aquatic Plants in Freshwater Ecosystems. Environ. Rev. 2006, 14, 89–136. [Google Scholar] [CrossRef]
- Ljevnaić-Mašić, B.; Džigurski, D.; Nikolić, L.; Brdar-Jokanović, M.; Čabilovski, R.; Ćirić, V.; Petrović, A. Assessment of the Habitat Conditions of a Rare and Endangered Inland Saline Wetland Community with Bolboschoenus Maritimus (L.) Palla Dominance in Southeastern Europe: The Effects of Physical–Chemical Water and Soil Properties. Wetl. Ecol. Manag. 2020, 28, 421–438. [Google Scholar] [CrossRef]
- Svitok, M.; Hrivnák, R.; Kochjarová, J.; Oťaheľová, H.; Paľove-Balang, P. Environmental Thresholds and Predictors of Macrophyte Species Richness in Aquatic Habitats in Central Europe. Folia Geobot. 2016, 51, 227–238. [Google Scholar] [CrossRef]
- Qureshimatva, U.M.; Maurya, R.R.; Gamit, S.B.; Patel, R.D.; Solanki, H.A. Determination of Physico-Chemical Parameters and Water Quality Index (Wqi) of Chandlodia Lake, Ahmedabad, Gujarat, India. J. Environ. Anal. Toxicol. 2015, 5, 288. [Google Scholar] [CrossRef]
- Rameshkumar, S.; Radhakrishnan, K.; Aanand, S.; Rajaram, R. Influence of Physicochemical Water Quality on Aquatic Macrophyte Diversity in Seasonal Wetlands. Appl. Water Sci. 2019, 9, 12. [Google Scholar] [CrossRef]
- Shah, M.; Hashmi, H.N.; Ali, A.; Ghumman, A.R. Performance Assessment of Aquatic Macrophytes for Treatment of Municipal Wastewater. J. Environ. Health Sci. Eng. 2014, 12, 106. [Google Scholar] [CrossRef]
- Veraart, A.J.; De Bruijne, W.J.J.; De Klein, J.J.M.; Peeters, E.T.H.M.; Scheffer, M. Effects of Aquatic Vegetation Type on Denitrification. Biogeochemistry 2011, 104, 267–274. [Google Scholar] [CrossRef]
- Clarke, E.; Baldwin, A.H. Responses of Wetland Plants to Ammonia and Water Level. Ecol. Eng. 2002, 18, 257–264. [Google Scholar] [CrossRef]
- Bytyçi, P.; Shala-Abazi, A.; Zhushi-Etemi, F.; Bonifazi, G.; Hyseni-Spahiu, M.; Fetoshi, O.; Çadraku, H.; Feka, F.; Millaku, F. The Macrophyte Indices for Rivers to Assess the Ecological Conditions in the Klina River in the Republic of Kosovo. Plants 2022, 11, 1469. [Google Scholar] [CrossRef]
- Daldorph, P.W.G.; Thomas, J.D. The Effect of Nutrient Enrichment on a Freshwater Community Dominated by Macrophytes and Molluscs and Its Relevance to Snail Control. J. Appl. Ecol. 1991, 28, 685. [Google Scholar] [CrossRef]
- Germ, M.; Janež, V.; Gaberščik, A.; Zelnik, I. Diversity of Macrophytes and Environmental Assessment of the Ljubljanica River (Slovenia). Diversity 2021, 13, 278. [Google Scholar] [CrossRef]
- Zhu, B.; Ottaviani, C.C.; Naddafi, R.; Dai, Z.; Du, D. Invasive European Frogbit (Hydrocharis Morsus-Ranae L.) in North America: An Updated Review 2003–16. J. Plant Ecol. 2018, 11, 17–25. [Google Scholar] [CrossRef]
- Zehnsdorf, A.; Hussner, A.; Eismann, F.; Rönicke, H.; Melzer, A. Management Options of Invasive Elodea Nuttallii and Elodea Canadensis. Limnologica 2015, 51, 110–117. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A.; Golob, A.; Germ, M. Evaluation of Nuphar Lutea as Bioindicator of Metal Pollution in Freshwater Ecosystems. Ecol. Indic. 2022, 136, 108633. [Google Scholar] [CrossRef]
- Qadri, H.; Uqab, B.; Javeed, O.; Dar, G.H.; Bhat, R.A. Ceratophyllum Demersum-An Accretion Biotool for Heavy Metal Remediation. Sci. Total Environ. 2022, 806, 150548. [Google Scholar] [CrossRef]
- Han, Y.; Jeppesen, E.; Lürling, M.; Zhang, Y.; Ma, T.; Li, W.; Chen, K.; Li, K. Combining Lanthanum-Modified Bentonite (LMB) and Submerged Macrophytes Alleviates Water Quality Deterioration in the Presence of Omni-Benthivorous Fish. J. Environ. Manage. 2022, 314, 115036. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Melnychuk, G.; Mazur, Ł.; Podlasek, A.; Vaverková, M.D.; Koda, E. Using Local Mineral Materials for the Rehabilitation of the Ustya River—A Case Study. Desalination Water Treat. 2021, 232, 346–356. [Google Scholar] [CrossRef]
- Sloey, T.M.; Hester, M.W. Impact of Nitrogen and Importance of Silicon on Mechanical Stem Strength in Schoenoplectus Acutus and Schoenoplectus Californicus: Applications for Restoration. Wetl. Ecol. Manag. 2018, 26, 459–474. [Google Scholar] [CrossRef]
- Frau, D.; Spies, M.E.; Battauz, Y.; Medrano, J.; Sinistro, R. Approaches for Phosphorus Removal with Calcium Hydroxide and Floating Macrophytes in a Mesocosm Experiment: Impacts on Plankton Structure. Hydrobiologia 2019, 828, 287–299. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water. Air. Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Abell, J.M.; Özkundakci, D.; Hamilton, D.P.; Reeves, P. Restoring Shallow Lakes Impaired by Eutrophication: Approaches, Outcomes, and Challenges. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1199–1246. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Gajewska, M. Phosphorus Removal by Application of Natural and Semi-Natural Materials for Possible Recovery According to Assumptions of Circular Economy and Closed Circuit of P. Sci. Total Environ. 2019, 650, 249–256. [Google Scholar] [CrossRef]
- Biliani, I.; Tsavatopoulou, V.; Zacharias, I. Comparative Study of Ammonium and Orthophosphate Removal Efficiency with Natural and Modified Clay-Based Materials, for Sustainable Management of Eutrophic Water Bodies. Sustainability 2024, 16, 10214. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, Y.; Kong, L.; Bai, G.; Luo, F.; Liu, Z.; Wang, C.; Ding, Z.; He, F.; Wu, Z.; et al. Effects of Bentonite on the Growth Process of Submerged Macrophytes and Sediment Microenvironment. J. Environ. Manag. 2021, 287, 112308. [Google Scholar] [CrossRef]
- Burghelea, C.; Zaharescu, D.G.; Dontsova, K.; Maier, R.; Huxman, T.; Chorover, J. Mineral Nutrient Mobilization by Plants from Rock: Influence of Rock Type and Arbuscular Mycorrhiza. Biogeochemistry 2015, 124, 187–203. [Google Scholar] [CrossRef]
- Rodrigues, M.; Bortolini, P.C.; Neto, C.K.; De Andrade, E.A.; Dos Passos, A.I.; Pacheco, F.P.; Nanni, M.R.; De Melo Teixeira, L. Unlocking Higher Yields in Urochloa Brizantha: The Role of Basalt Powder in Enhancing Soil Nutrient Availability. Discov. Soil 2024, 1, 4. [Google Scholar] [CrossRef]
- Frątczak, W.; Michalska-Hejduk, D.; Zalewski, M.; Izydorczyk, K. Effective Phosphorous Reduction by a Riparian Plant Buffer Zone Enhanced with a Limestone-Based Barrier. Ecol. Eng. 2019, 130, 94–100. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Trach, R. Removal of Cationic and Anionic Pollutants from Water Solutions Using Ukrainian Limestones: A Comparative Analysis. Desalination Water Treat. 2022, 275, 24–34. [Google Scholar] [CrossRef]
- Angeler, D.G.; Drakare, S.; Johnson, R.K.; Köhler, S.; Vrede, T. Managing Ecosystems without Prior Knowledge: Pathological Outcomes of Lake Liming. Ecol. Soc. 2017, 22, art44. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Cametti, G.; Vanhecke, D.; Churakov, S.V. The Role of Interfaces in Controlling Pb2+ Removal by Calcium Carbonate Minerals. Cryst. Growth Des. 2020, 20, 6157–6169. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Stadnyk, O.; Trach, R.; Bujakowski, F.; Kiersnowska, A.; Rutkowska, G.; Skakun, L.; Szer, J.; Koda, E. The Possibility of Implementation of West Ukrainian Paleogene Glauconite–Quartz Sands in the Building Industry: A Case Study. Sustainability 2023, 15, 1489. [Google Scholar] [CrossRef]
- Szabó, S.; Fedor, N.; Koleszár, G.; Braun, M.; Korponai, J.; Kočić, A.; Hilt, S.; Oláh, V. Submerged Macrophytes Can Maintain Stable Dominance Over Free-Floating Competitors Through High pH. Freshw. Biol. 2025, 70, e14363. [Google Scholar] [CrossRef]
- Pedersen, O.; Colmer, T.D.; Sand-Jensen, K. Underwater Photosynthesis of Submerged Plants—Recent Advances and Methods. Front. Plant Sci. 2013, 4, 140. [Google Scholar] [CrossRef]
- Vranayova, Z.; Tkachenko, T.; Lis, A.; Savchenko, O.; Vranay, F. Green Buildings in Pursuit of Healthy and Safe Human Living Environment. Syst. Saf. Hum.—Tech. Facil.—Environ. 2023, 5, 204–211. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V.; Konovaliuk, V.; Kravchenko, M.; Satin, I. Biotechnical Approach for a Continuous Simultaneous Increase of Indoor and Outdoor Air Quality. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012074. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V. Capturing Carbon Dioxide from Human-Driven Vehicles by Green Structures for Carbon Neutrality. IOP Conf. Ser. Earth Environ. Sci. 2022, 1111, 012056. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V.; Ujma, A. Field Study of Air Quality Improvement by a “Green Roof” in Kyiv. Syst. Saf. Hum.—Tech. Facil.—Environ. 2019, 1, 419–424. [Google Scholar] [CrossRef]
- Kravchenko, M.; Wrzesiński, G.; Pawluk, K.; Lendo-Siwicka, M.; Markiewicz, A.; Tkachenko, T.; Mileikovskyi, V.; Zhovkva, O.; Szymanek, S.; Piechowicz, K. Improving Urban Stormwater Management Using the Hydrological Model of Water Infiltration by Rain Gardens Considering the Water Column. Water 2024, 16, 2339. [Google Scholar] [CrossRef]
- Kravchenko, M.; Trach, Y.; Trach, R.; Tkachenko, T.; Mileikovskyi, V. Behaviour and Peculiarities of Oil Hydrocarbon Removal from Rain Garden Structures. Water 2024, 16, 1802. [Google Scholar] [CrossRef]
- Kravchenko, M.; Trach, Y.; Trach, R.; Tkachenko, T.; Mileikovskyi, V. Improving the Efficiency and Environmental Friendliness of Urban Stormwater Management by Enhancing the Water Filtration Model in Rain Gardens. Water 2024, 16, 1316. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V.; Ujma, A.; Hajiyev, M. Treatment of Out-of-Context Buildings During the Restoration of Historical Territories Using Green Structures. Int. J. Conserv. Sci. 2024, 15, 129–140. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V.; Dziubenko, V.; Tkachenko, O. Improvement of the Safety of Multi-Floor Housing. IOP Conf. Ser. Mater. Sci. Eng. 2020, 907, 012064. [Google Scholar] [CrossRef]
- Tkachenko, T.; Mileikovskyi, V.; Kravchenko, M.; Konovaliuk, V. Simulation of Illumination and Wind Conditions for Green and Fed Cities Using CFD Software. IOP Conf. Ser. Earth Environ. Sci. 2023, 1275, 012014. [Google Scholar] [CrossRef]
- All-Ukraine NGO “Living Planet”. System for Environmental Certification and Ecolabelling According to DSTU ISO 14024:2018 (ISO 14024:2018, IDT). Public Buildings. Environmental Criteria and Method for Life Cycle Assessment; SOU OEM 08.002.41.032:20XX; Kyiv, 2025. Electronic Resource. Available online: https://livingplanet.org.ua/images/2025/28-02-2025-druga-redakciya.pdf (accessed on 7 July 2025).
Site No | Test Site Name | Coordinates | Distance from the River Mouth, km | River Width, m | Depth, m | Current Velocity, m/s | Representativeness Justification |
---|---|---|---|---|---|---|---|
1 | Village of Komariv | 51°11′08.5″ N 24°15′30.2″ E | 69.98 | 13.1 | 1.35 | 0.15 | Background level, river outlet |
2 | Village of Nova Vyzhva | 51°24′29.8″ N 24°25′23.1″ E | 36.5 | 24.5 | 2.93 | 0.28 | Control level, the middle part of the river bed |
3 | Village of Yakushiv | 51°41′05.7″ N 24°35′31.8″ E | 6.38 | 15.8 | 1.49 | 0.25 | Control level, section of the river bed within the mouth of the river |
No. | Species Name | Trophic Index, Li | Weight Coefficient, Wi | June 2023 | August 2023 | June 2024 | August 2024 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | ||||
1 | Cicuta virosa L. | 5 | 2 | 0.1 | 2 | 0.1 | 2 | 1 | 2 | 1 | 2 |
2 | Sium latifolium L. | 7 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 3 |
3 | Myosotis scorpioides L. | 4 | 1 | 0.1 | 2 | <0.1 | 1 | 2 | 3 | 2 | 3 |
4 | Rorippa amphibia (L.) | 3 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1.3 | 3 |
5 | Ceratophyllum demersum L. | 2 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 |
6 | Veronica beccabunga L. | 3 | 1 | <0.1 | 1 | <0.1 | 1 | <0.1 | 1 | - | - |
7 | Nuphar lutea (L.) Smith. | 4 | 2 | 30 | 6 | 30 | 6 | 30 | 6 | 30 | 6 |
8 | Persicaria amphibia (L.) | 4 | 1 | 2 | 3 | 3 | 4 | 3 | 4 | 3 | 4 |
9 | Lysimachia nummularia L. | - | - | 1 | - | 1 | - | 1 | - | 1 | - |
10 | Ranunculus aquatilis L. | - | - | <0.1 | - | - | - | <0.1 | - | - | - |
11 | Myriophyllum spicatum L. | 3 | 2 | 1 | 2 | - | - | 1 | 2 | 2 | 3 |
12 | Alisma gramineum Lej. | - | - | 1 | 1 | - | 1 | 1 | |||
13 | Sagittaria sagittifolia L. | 4 | 2 | 10 | 5 | 10 | 5 | 10 | 5 | 11 | 6 |
14 | Lemna minor L. | 2 | 2 | 3 | 4 | 4 | 4 | 2 | 3 | 2 | 3 |
15 | Spirodela polyrhiza (L.) Schleid | 2 | 2 | 5 | 5 | 3 | 5 | 2 | 3 | 2 | 3 |
16 | Hydrocharis morsus-ranae L. | 6 | 2 | 5 | 5 | 4 | 4 | 3 | 4 | 3 | 4 |
17 | Elodea canadensis Michx. | 5 | 2 | 10 | 6 | 10 | 6 | 10 | 5 | 10 | 5 |
18 | Vallisneria spiralis L. | - | - | <0.1 | - | <0.1 | - | <0.1 | <0.1 | - | |
19 | Carex riparia Curtis | 4 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
20 | Eleocharis palustris (L.) Roem. & Schult. | 6 | 2 | <0.1 | 1 | <0.1 | 1 | <0.1 | 1 | <0.1 | 1 |
21 | Juncus effusus L. | - | - | 0.5 | - | 0.5 | - | 0.5 | - | - | - |
22 | Glyceria maxima (Hartm.) Holmb. | 3 | 1 | 5 | 4 | 5 | 4 | 5 | 4 | 5 | 5 |
23 | Phragmites australis (Cav.) Steud. | - | - | 4 | - | 4 | - | 4 | - | 4 | - |
Macrophyte index (17 indicator species) | On average 37.9—good | 42.6—good | 38.47—good | 34.5—good | 36.6—good | ||||||
2023—39.9 (good) | 2024—36.0 (good) |
No. | Species Name | Trophic Index, Li | Weight Coefficient, Wi | June 2023 | August 2023 | June 2024 | August 2024 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | ||||
1 | Equisetum palustre L. | 5 | 2 | 1 | 2 | 1 | 2 | 0.1 | 2 | <0.1 | 1 |
2 | Cicuta virosa L. | 6 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | Sium latifolium L. | 7 | 1 | 1 | 2 | 1 | 2 | 1.5 | 2 | 1.5 | 2 |
4 | Myosotis scorpioides L. | 4 | 1 | 1.5 | 3 | 1.5 | 3 | 4 | 4 | 2 | 3 |
5 | Mentha aquatica L. | 5 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 3 | 4 |
6 | Nuphar lutea (L.) Smith. | 4 | 2 | 10 | 5 | 10 | 5 | 12 | 6 | 12 | 6 |
7 | Persicaria amphibia (L.) S.F. Gray | 4 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
8 | Rumex aquaticus Huds. | - | - | 0.2 | - | 0.2 | - | 0.2 | - | 0.2 | - |
9 | Caltha palustris L. | 6 | 1 | 1 | 2 | - | - | 1 | 2 | - | - |
10 | Ranunculus circinatum Spach | 5 | 2 | <0.1 | 1 | - | 0.1 | 2 | - | - | - |
11 | Acorus calamus L. | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
12 | Alisma plantago-aquatica L. | 4 | 2 | 1 | 2 | 1 | 2 | 1.5 | 2 | 1.5 | 2 |
13 | Sagittaria sagittifolia L. | 4 | 2 | 7 | 5 | 7 | 5 | 7 | 5 | 7.5 | 5 |
14 | Lemna minor L. | 2 | 2 | 2 | 3 | 1.5 | 3 | 3 | 4 | 4 | 4 |
15 | Lemna trisulca L. | 4 | 2 | 1.5 | 3 | 1 | 2 | 2 | 3 | 2 | 3 |
16 | Spirodela polyrhiza (L.) Schleid. | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
17 | Hydrocharis morsus-ranae L. | 6 | 2 | 2 | 3 | 2 | 3 | 3 | 4 | 4 | 4 |
18 | Stratiotes aloides L. | 6 | 2 | 5 | 4 | 5 | 4 | 5.5 | 5 | 5.5 | 5 |
19 | Carex acuta L. | 5 | 1 | 1 | 2 | 1 | 2 | 1.5 | 2 | 1.5 | 2 |
20 | Carex acutiformis Ehrh. | 4 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
21 | Scirpus lacustris L. | 4 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
22 | Glyceria maxima (Hartm.) Holmb. | 3 | 1 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 |
Macrophyte index (21 indicator species) | On average 39.6—good | 40.8—good | 36.2—good | 42.4—good | 40.5—good | ||||||
2023—38.3 (good) | 2024—40.9 (good) |
No. | Species Name | Trophic Index, Li | Weight Coefficient, Wi | June 2023 | August 2023 | June 2024 | August 2024 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | Projective Coverage, % | Coverage Factor, Pi | ||||
1 | Cicuta virosa L. | 6 | 2 | <0.1 | 1 | 0.1 | 1 | <0.1 | 1 | <0.1 | 1 |
2 | Sium latifolium L. | 7 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | Myosotis scorpioides L. | 4 | 1 | 1 | 2 | 0.5 | 2 | 2 | 3 | 0.1 | 2 |
4 | Ceratophyllum demersum L. | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 0.7 | 2 |
5 | Nuphar lutea (L.) Smith. | 4 | 2 | 5 | 4 | 5 | 4 | 6 | 5 | 10 | 6 |
6 | Persicaria amphibia (L.) S.F. Gray | 4 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 3 |
7 | Lysimachia nummularia L. | - | - | 1 | - | 1 | - | 1 | - | 1 | - |
8 | Ranunculus circinatum Spach | 5 | 2 | <0.1 | 1 | - | - | <0.1 | 1 | - | - |
9 | Myriophyllum spicatum L. | 3 | 2 | 1 | 2 | 1 | 2 | 0.2 | 2 | 0.2 | 2 |
10 | Alisma plantago-aquatica L. | 4 | 2 | <0.1 | 1 | <0.1 | 1 | 0.1 | 2 | 0.1 | 2 |
11 | Sagittaria sagittifolia L. | 4 | 2 | 2.5 | 3 | 3 | 4 | 4 | 4 | 5 | 4 |
12 | Lemna minor L. | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |
13 | Lemna trisulca L. | 4 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 3 |
14 | Spirodela polyrhiza (L.) Schleid | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 1 | 2 |
15 | Hydrocharis morsus-ranae L. | 6 | 2 | 2 | 3 | 3 | 4 | 2 | 3 | 3 | 4 |
16 | Elodea canadensis Michx. | 5 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
17 | Carex acuta L. | 5 | 1 | 0.5 | 2 | 0.5 | 2 | 2 | 3 | 2 | 3 |
18 | Glyceria maxima (Hartm.) Holmb. | 3 | 1 | 2 | 3 | 3 | 4 | 2 | 3 | 2 | 3 |
19 | Typha latifolia L. | 2 | 2 | 1 | 2 | 1.5 | 2 | 1.5 | 2 | 1.5 | 2 |
Macrophyte index (18 indicator species) | On average 37.7—good | 37.6 —good | 38.2 —good | 37.3 —good | 37.8 —good | ||||||
2023—37.7 (good) | 2024—37.7 (good) |
Class | Family | Number of Species | Participation, % |
---|---|---|---|
Division Equisetophyta | |||
Equisetopsida | Equisetaceae | 1 | 2.78 |
Division Magnoliophyta | |||
Magnoliopsida | Apiaceae | 2 | 5.56 |
Boraginaceae | 1 | 2.78 | |
Brassicaeae | 1 | 2.78 | |
Ceratophyllaceae | 1 | 2.78 | |
Haloragaceae | 1 | 2.78 | |
Lamiaceae | 1 | 2.78 | |
Numphaceae | 1 | 2.78 | |
Plantaginaceae | 1 | 2.78 | |
Polygonaceae | 2 | 5.56 | |
Primulaceae | 2 | 5.56 | |
Ranunculaceae | 2 | 5.56 | |
Liliopsida | Acoraceae | 1 | 2.78 |
Alismataceae | 3 | 8.33 | |
Araceae | 3 | 8.33 | |
Hydrocharitaceae | 4 | 11.11 | |
Cyperaceae | 5 | 13.89 | |
Juncaceae | 1 | 2.78 | |
Poaceae | 2 | 5.56 | |
Typhaceae | 1 | 2.78 | |
Total | 36 | 100 |
Life form Characteristics | Number of Species | Participation, % | |
---|---|---|---|
I | Hydrophytes or true aquatic plants: | 11 | 30.56 |
Free-floating forms | 4 | 11.66 | |
Submerged rooted forms | 4 | 10.56 | |
Species with floating leaves | 2 | 5.56 | |
Submerged non-rooted forms | 1 | 2.78 | |
II | Helophytes or air-water plants: | 8 | 22.22 |
Low-growing helophytes | 5 | 13.89 | |
High-growing helophytes | 3 | 8.33 | |
III | Moisture-loving coastal forms (hygrohelophytes) | 11 | 30.55 |
IV | Hygrophytes (coastal moisture-loving species) | 6 | 16.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trach, Y.; Tkachenko, T.; Kravchenko, M.; Mileikovskyi, V.; Tsos, O.; Boiaryn, M.; Biedunkova, O.; Trach, R.; Statnyk, I. Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine). Environments 2025, 12, 235. https://doi.org/10.3390/environments12070235
Trach Y, Tkachenko T, Kravchenko M, Mileikovskyi V, Tsos O, Boiaryn M, Biedunkova O, Trach R, Statnyk I. Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine). Environments. 2025; 12(7):235. https://doi.org/10.3390/environments12070235
Chicago/Turabian StyleTrach, Yuliia, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach, and Ihor Statnyk. 2025. "Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)" Environments 12, no. 7: 235. https://doi.org/10.3390/environments12070235
APA StyleTrach, Y., Tkachenko, T., Kravchenko, M., Mileikovskyi, V., Tsos, O., Boiaryn, M., Biedunkova, O., Trach, R., & Statnyk, I. (2025). Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine). Environments, 12(7), 235. https://doi.org/10.3390/environments12070235