Next Issue
Volume 15, October-2
Previous Issue
Volume 15, September-2
 
 

Buildings, Volume 15, Issue 19 (October-1 2025) – 202 articles

Cover Story (view full-size image): This paper introduces a comprehensive methodology for predicting hourly heat loads in buildings. The approach employs unsupervised learning to identify distinct day types based on daily load profiles. A classification process then assigns each day to one of these day types, followed by the application of various supervised learning techniques to forecast heat loads. The methodology is both simple and robust, facilitating its use in load prediction across a wide range of buildings. The process is validated using data from three distinct building types (Residential, Educational, and Commercial) located in Tartu, Estonia. The results indicate that the day type identification and attribution process significantly reduce model complexity and computational time while achieving high prediction accuracy with minimal computational requirements. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2732 KB  
Article
A Proposal for Electromagnetic Performance in Cementitious Systems: Carbon Fiber and Copper Slag
by Hilal Demirtaş and Mustafa Dayı
Buildings 2025, 15(19), 3634; https://doi.org/10.3390/buildings15193634 - 9 Oct 2025
Viewed by 386
Abstract
Exposure of individuals to electromagnetic fields in a wide area of daily life necessitated making spaces-structures healthier against electromagnetic fields. In this study, waste copper slag and carbon fibers were added to the cement mortar in different proportions with substitutes and additives. Physical, [...] Read more.
Exposure of individuals to electromagnetic fields in a wide area of daily life necessitated making spaces-structures healthier against electromagnetic fields. In this study, waste copper slag and carbon fibers were added to the cement mortar in different proportions with substitutes and additives. Physical, mechanical, electromagnetic shielding and microstructure studies were carried out on the produced composite mortars at different ages. It was determined that the mechanical strengths of composite mortars were superior to those of reference mortar samples. It was observed that electromagnetic shielding effectiveness was more positive with copper slag and especially carbon fiber additions. The highest electromagnetic shielding values were obtained in mortars containing 50% copper slag and 0.5% carbon fiber. Additionally, it was determined that copper slag, stored as an environmental waste, could be suitable for use in cementitious mortar systems. These composites offer promise for sustainable building designs in terms of both environmental performance and structural material stability. Full article
Show Figures

Figure 1

28 pages, 2932 KB  
Article
Mathematical Development for the Minimum Cost of Elliptical Combined Footings
by Griselda Santiago-Hurtado, Arnulfo Luévanos-Rojas, Victor Manuel Moreno-Landeros, Eyran Roberto Diaz-Gurrola, Rajeswari Narayanasamy, Facundo Cortés-Martínez and Luis Daimir López-León
Buildings 2025, 15(19), 3633; https://doi.org/10.3390/buildings15193633 - 9 Oct 2025
Viewed by 198
Abstract
This work shows the mathematical development for the minimum cost of ECF (elliptical combined footings) subjected to biaxial bending due to the two columns, assuming that the distribution of soil pressure below the footing is linear and that the footing rests on elastic [...] Read more.
This work shows the mathematical development for the minimum cost of ECF (elliptical combined footings) subjected to biaxial bending due to the two columns, assuming that the distribution of soil pressure below the footing is linear and that the footing rests on elastic soil. There are no similar contributions on the subject of this article, as it is an innovative contribution in terms of its form. This work is developed in two parts: first, determine the minimum area in contact with the soil below the footing, and then the minimum cost is obtained. The formulation of the development by integration is shown to determine the moments, unidirectional shears, and punching shears acting on the critical sections, according to the ACI (American Concrete Institute) design code, and then the flowchart algorithm is applied to determine the solution using Maple Software, which is the main contribution of this article. Some authors show studies on the combined footings of various shapes such as rectangular, trapezoidal, strap, corner or L, and T, but there are none for ECF. Two numerical studies are shown with different length: the first with free ends in the longitudinal direction and the second with ends limited in the longitudinal direction to estimate the minimum cost of ECF under biaxial bending. A third numerical study is shown, with different allowable bearing capacities of the ground and with free ends in the longitudinal direction. Also, a comparison is developed between ECF and RCF (rectangular combined footings). The model for the design of ECF shows a savings of 7.17% with limited ends and a savings of 1.67% with free ends for the minimum area, and for the minimum cost, it shows a savings of 23.95% with limited ends and a savings of 9.14% with free ends rather than RCF. Therefore, the proposed development will be of great help to structural engineers specializing in foundations, as it represents significant savings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 11873 KB  
Article
Axial Compressive Performance of Wood-Cored GFRP Sandwich Columns
by Yuping Kan, Yixin Feng, Zhongping Xiao, Wei Pan, Zhaoyan Cui and Lingfeng Zhang
Buildings 2025, 15(19), 3632; https://doi.org/10.3390/buildings15193632 - 9 Oct 2025
Viewed by 227
Abstract
Paulownia wood, as a fast-growing natural material, exhibits inherently low axial compressive strength. To improve the axial structural performance of Paulownia wood, wood-cored glass fiber-reinforced polymer (GFRP) sandwich Paulownia wood columns were developed in this study. Nevertheless, the behavior of such columns remained [...] Read more.
Paulownia wood, as a fast-growing natural material, exhibits inherently low axial compressive strength. To improve the axial structural performance of Paulownia wood, wood-cored glass fiber-reinforced polymer (GFRP) sandwich Paulownia wood columns were developed in this study. Nevertheless, the behavior of such columns remained largely unexplored—particularly under elevated temperatures and upon subsequent cooling. Consequently, an experimental program was conducted to characterize the influences of GFRP wrapping layers, steel hoop end confinement, high temperature, post-cooling strength recovery, and chamfer radius on the axial compressive performance of the columns. End crushing occurred in the absence of steel hoops, whereas mid-height fracture dominated when end confinement was provided. As the temperature rose from room temperature to 100 °C and 200 °C, the load-bearing capacity of the columns decreased by 38.26% and 54.05%, respectively, due to the softening of the GFRP composites. After cooling back to room temperature, the post-high-temperature specimens recovered approximately 95% of their original capacity, confirming that no significant thermal decomposition had been initiated. The load-bearing capacity also increased significantly with the number of GFRP layers, as the additional thickness provided both higher axial load capacity and enhanced lateral confinement of the wood core. Relative to a 4.76 mm chamfer, a 9.52 mm radius increased axial capacity by 14.07% by mitigating stress concentration. A theoretical model accounting for lateral confinement was successfully developed to predict the axial load-bearing capacity of the wood-cored GFRP sandwich columns. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

12 pages, 4292 KB  
Article
Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
by Min Qiao, Guofeng Chen, Yajie Fang, Yuxin Li and Mei Shi
Buildings 2025, 15(19), 3631; https://doi.org/10.3390/buildings15193631 - 9 Oct 2025
Viewed by 199
Abstract
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was [...] Read more.
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was also investigated. The results show that a synergy between GO’s hydrophobicity and the air-entraining agent’s hydrophobic chains drove more agent molecules to adsorb onto the GO surface, subsequently spreading and aggregating across the bubbles. GO effectively assisted the air entraining agent to refine the bubble size, improved the bubble stability of aqueous solutions, and had excellent air entraining performance in the fresh cement mortar, as well as the optimum air-void adjustment performance of hardened cement mortars. With the addition of 0.4‰ GO, the loss rate of gas content in the GO mixed mortar was 10.3%, which was 55.8% lower than that when only using AEA. The addition of 0.4‰ of GO effectively increased the volume fraction of the cement mortar system. GO reduced the pore volume in the mortar through the filling effect and nucleation effect to reduce the total porosity and refine the microstructure of the mortar. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 18313 KB  
Article
Research on the Optimization Design of Natural Ventilation in University Dormitories Based on the Healthy Building Concept: A Case Study of Xuzhou Region
by Zhongcheng Duan, Yilun Zi, Leilei Wang and Shichun Dong
Buildings 2025, 15(19), 3630; https://doi.org/10.3390/buildings15193630 - 9 Oct 2025
Viewed by 261
Abstract
As the core space for students’ daily living and learning, the quality of the indoor wind environment and air quality in dormitory buildings is particularly critical. However, existing studies often neglect natural ventilation optimization under local climatic conditions and the multidimensional evaluation of [...] Read more.
As the core space for students’ daily living and learning, the quality of the indoor wind environment and air quality in dormitory buildings is particularly critical. However, existing studies often neglect natural ventilation optimization under local climatic conditions and the multidimensional evaluation of health benefits, leaving notable gaps in dormitory design. Under the Healthy China Initiative, the indoor wind environment in university dormitories directly impacts students’ health and learning efficiency. This study selects dormitory buildings in Xuzhou as the research object and employs ANSYS FLUENT 2020 software for computational fluid dynamics (CFD) simulations, combined with orthogonal experimental design methods, to systematically investigate and optimize the indoor wind environment with a focus on healthy ventilation standards. The evaluation focused on three key metrics—comfortable wind speed ratio, air age, and CO2 concentration—considering the effects of building orientation, corridor width, and window geometry, and identifying the optimal parameter combination. After optimization based on the orthogonal experimental design, the proportion of comfortable wind speed zones increased to 44.6%, the mean air age decreased to 258 s, and CO2 concentration stabilized at 613 ppm. These results demonstrate that the proposed optimization framework can effectively enhance indoor air renewal and pollutant removal, thereby improving both air quality and the health-related performance of dormitory spaces. The novelty of this study lies in integrating regional climate conditions with a coordinated CFD–orthogonal design approach. This enables precise optimization of dormitory ventilation performance and provides locally tailored, actionable evidence for advancing healthy campus design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 1389 KB  
Article
The Transmission Effect of Threshold Experiences: A Study on the Influence of Psychological Cognition and Subjective Experience on the Consumption Intentions of Smart Sports Venues
by Zhenning Yao, Yujie Zhang, Sen Chen, Qian Huang and Tianqi Liu
Buildings 2025, 15(19), 3629; https://doi.org/10.3390/buildings15193629 - 9 Oct 2025
Viewed by 314
Abstract
As a key domain within smart buildings, Smart Sports Venues represent a strategic direction for the future development of the construction industry and hold immense potential to drive the transformation and upgrading of the sports industry. To explore the underlying mechanisms influencing consumer [...] Read more.
As a key domain within smart buildings, Smart Sports Venues represent a strategic direction for the future development of the construction industry and hold immense potential to drive the transformation and upgrading of the sports industry. To explore the underlying mechanisms influencing consumer willingness to use Smart Sports Venues, this study constructs a theoretical model based on cognitive evaluation theory and collects data from 632 spectators in core cities of Western China (a region undergoing rapid urbanization where the sports industry is accelerating its development). As an emerging consumption scenario, Smart Sports Venues demonstrate significant development potential and representativeness in these cities. Empirical testing using structural equation modeling (SEM) combined with mediation and moderation analysis revealed the following results: (1) Perceptions of technology and convenience positively influence consumption intention; (2) Risk perceptions negatively influence consumption intention; (3) Critical experiences mediate the effects of technology perceptions, convenience perceptions, and risk perceptions on consumption intention; (4) Subjective Experience exerts a moderating effect. This study offered a novel theoretical explanation for how smart sports venues enhanced sports consumption willingness by revealing the “cognition-experience-behavior” transmission pathway—the complete journey consumers traversed from forming perceptions and experiencing on-site activities to ultimately making purchase decisions. Compared to existing research, this model innovatively integrated psychological cognition with behavioral response mechanisms, breaking away from traditional studies’ isolated analysis of technical parameters or consumption motivations. From an interdisciplinary perspective of sports consumption psychology and behavioral science, this study not only highlighted the value of smart sports venues as a pivotal link in technological innovation and industrial upgrading but also filled a gap in existing literature regarding how smart technologies influenced consumer behavior through psychological mechanisms. The findings provided theoretical foundations for optimizing smart sports architecture through user behavior data analysis and offered practical insights for the widespread adoption and development of smart building technologies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 6375 KB  
Article
Utilization of Desulfurization Gypsum in Alkali-Activated Mortar: Performance Enhancement and Microstructural Evolution
by Xiaolong Zhou, Xinyan Wang, Wenjing Yu, Yuhui Zhao and Zhonghao Li
Buildings 2025, 15(19), 3628; https://doi.org/10.3390/buildings15193628 - 9 Oct 2025
Viewed by 288
Abstract
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and [...] Read more.
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and mechanical properties were systematically investigated. The test included fluidity, setting time, compressive strength, drying shrinkage, water erosion resistance, and sulfate erosion resistance and was combined with microscopic analysis to reveal its phase composition and micro-morphology. The results show that DG can significantly prolong the setting time and reduce the drying shrinkage. With a DG content of 10%, alkali-activated materials exhibited a setting time similar to that of OPC, and the 56-d drying shrinkage of the AAM was reduced by 20.2%. However, the fluidity, water erosion resistance, and sulfate resistance decreased with an increase in DG content. When the DG content was 10%, the fluidity of the AAM reached 126 mm, and its setting time was equivalent to that of OPC. The mechanical properties showed a trend of increasing first and then decreasing. The optimum was reached when the DG content was 6%. The 28-d compressive strength of AAM-6 was 63.25 MPa, and after 60 days of water erosion and sulfate corrosion its residual strength was still higher than that of OPC in the same environment. Microscopic analysis showed that DG promoted the formation of ettringite, which filled pores with age and formed a dense structure, thereby improving mechanical properties and inhibiting shrinkage. This study enhances the engineering applicability of AAM while enabling high-value utilization of industrial solid waste for sustainable construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 4152 KB  
Article
Analysis of the Geometrical Size Effect on the Fatigue Performance of Welded T-Joints
by Yue Chen, Peiwen Shen, Chang Li and Jianting Zhou
Buildings 2025, 15(19), 3627; https://doi.org/10.3390/buildings15193627 - 9 Oct 2025
Viewed by 226
Abstract
Fatigue fracture is the predominant failure mode in welded joints, where complex stress distributions and stress gradient effects at critical joint regions present major challenges for fatigue design. In civil engineering, the diversity of welded joint configurations, large structural spans, and complex loading [...] Read more.
Fatigue fracture is the predominant failure mode in welded joints, where complex stress distributions and stress gradient effects at critical joint regions present major challenges for fatigue design. In civil engineering, the diversity of welded joint configurations, large structural spans, and complex loading conditions make it essential to investigate the influence of geometrical size effects on fatigue performance to ensure structural safety. This study focuses on welded T-joints and examines how variations in web plate thickness, weld toe size, and welding angle affect their fatigue behavior through experimental testing. The results show that fatigue life curves fitted using the Mises stress amplitude exhibit higher accuracy than those based on the normal stress amplitude used in current design codes. Pearson correlation analysis indicates that the influences of the geometrical parameters on fatigue life are mutually independent. Furthermore, analysis of the coefficient of variation reveals that welding angle has the greatest effect on fatigue life, whereas weld toe size exerts the least influence. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 3165 KB  
Article
The Perception and Performance of Wood in Relation to Tourist Experience—A Pilot Study
by Veronika Kotradyová and Erik Vavrinsky
Buildings 2025, 15(19), 3626; https://doi.org/10.3390/buildings15193626 - 9 Oct 2025
Viewed by 319
Abstract
This article explores how natural wood materials—especially untreated or minimally treated timber—are perceived and experienced during tourist experiences in recreational and tourism-oriented built environments. Drawing on principles of biophilic design and cultural theories of authenticity, the study examines both the psychological and the [...] Read more.
This article explores how natural wood materials—especially untreated or minimally treated timber—are perceived and experienced during tourist experiences in recreational and tourism-oriented built environments. Drawing on principles of biophilic design and cultural theories of authenticity, the study examines both the psychological and the physiological impacts of wood surfaces on users. One of the objectives of this study is to strengthen the theoretical background and to explore the connections between tourists’ experiences and the material environment. Two pilot studies were conducted: a questionnaire administered to visitors of a national design fair (n = 37) and a physiological experiment measuring user responses to three material types (solid oak, chipboard, and white laminate). The results indicate that natural wood evokes significantly more positive emotional responses and is strongly associated with authenticity, sustainability, and comfort, although concerns about hygiene and surface aging persist. A SWOT analysis is used to summarize the strategic opportunities and risks associated with wood in tourism design. The findings support the inclusion of natural wood as a multisensory design element that enhances atmosphere, emotional engagement, and perceived environmental quality—especially when surface maintenance and cultural framing are appropriately addressed. Full article
Show Figures

Figure 1

23 pages, 1718 KB  
Article
Evolutionary Game Analysis of MRV Governance and Third-Party Verification in Building Carbon Markets
by Qiuhu Shao, Junchi Liu and Shiyao Zhu
Buildings 2025, 15(19), 3625; https://doi.org/10.3390/buildings15193625 - 9 Oct 2025
Viewed by 282
Abstract
This study examines the governance of building carbon markets in the context of China’s “dual-carbon strategy”, focusing specifically on the integration of Monitoring, Reporting, and Verification (MRV) systems. The study identifies critical challenges in China’s emissions-trading scheme (ETS), such as weak corporate compliance [...] Read more.
This study examines the governance of building carbon markets in the context of China’s “dual-carbon strategy”, focusing specifically on the integration of Monitoring, Reporting, and Verification (MRV) systems. The study identifies critical challenges in China’s emissions-trading scheme (ETS), such as weak corporate compliance incentives, high regulatory costs, and concerns about third-party verification independence, which hinder the effectiveness of carbon pricing and technology adoption. Using a three-player evolutionary game model involving the government, carbon-emitting firms, and third-party verifiers, the study finds that moderate government supervision, performance-based incentives, and stronger penalties lead to long-term stability and optimal governance. Based on these findings, policy recommendations are made, including tiered penalties, targeted incentives for green technology adoption, and the strengthening of third-party verification mechanisms to enhance market governance and support China’s carbon-reduction goals in the building sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

36 pages, 17639 KB  
Article
Integrating POI-Driven Functional Attractiveness into Cellular Automata for Urban Spatial Modeling: Case Study of Yan’an, China
by Xuan Miao, Na Wei and Dawei Yang
Buildings 2025, 15(19), 3624; https://doi.org/10.3390/buildings15193624 - 9 Oct 2025
Viewed by 365
Abstract
Urban growth models often prioritize environmental and accessibility factors while underestimating behavioral and functional dynamics. This study develops a POI-enhanced Cellular Automata (CA) framework to simulate urban expansion by incorporating three semantic indicators derived from Point-of-Interest (POI) data—density (PD), diversity (PDI), and functional [...] Read more.
Urban growth models often prioritize environmental and accessibility factors while underestimating behavioral and functional dynamics. This study develops a POI-enhanced Cellular Automata (CA) framework to simulate urban expansion by incorporating three semantic indicators derived from Point-of-Interest (POI) data—density (PD), diversity (PDI), and functional centrality (FC). Taking Yan’an, China, as a case, the model integrates these indicators with terrain and infrastructure variables via logistic regression to estimate land-use transition probabilities. To ensure robustness, spatial block cross-validation was adopted to reduce spatial autocorrelation bias. Results show that the POI-based model outperforms the baseline in both Kappa and Figure of Merit metrics. High-density and mixed-function POI zones correspond with compact infill growth, while high-centrality zones predict decentralized expansion beyond administrative cores. These findings highlight how functional semantics sharpen spatial prediction and uncover latent behavioral demand. Policy implications include using POI-informed maps for adaptive zoning, ecological buffer protection, and growth hotspot management. The study contributes a transferable workflow for embedding behavioral logic into spatial simulation. However, limitations remain: the model relies on static POI data, omits vertical (3D) development, and lacks direct comparison with alternative models like Random Forest or SVM. Future research could explore dynamic POI trajectories, integrate 3D building forms, or adopt agent-based modeling for richer institutional representation. Overall, the approach enhances both the accuracy and interpretability of urban growth modeling, providing a flexible tool for planning in functionally evolving and ecologically constrained cities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 3807 KB  
Article
Graph-RWGAN: A Method for Generating House Layouts Based on Multi-Relation Graph Attention Mechanism
by Ziqi Ye, Sirui Liu, Zhen Tian, Yile Chen, Liang Zheng and Junming Chen
Buildings 2025, 15(19), 3623; https://doi.org/10.3390/buildings15193623 - 9 Oct 2025
Viewed by 524
Abstract
We address issues in existing house layout generation methods, including chaotic room layouts, limited iterative refinement, and restricted style diversity. We propose Graph-RWGAN, a generative adversarial network based on a multi-relational graph attention mechanism, to automatically generate reasonable and globally consistent house layouts [...] Read more.
We address issues in existing house layout generation methods, including chaotic room layouts, limited iterative refinement, and restricted style diversity. We propose Graph-RWGAN, a generative adversarial network based on a multi-relational graph attention mechanism, to automatically generate reasonable and globally consistent house layouts under weak constraints. In our framework, rooms are represented as graph nodes with semantic attributes. Their spatial relationships are modeled as edges. Optional room-level objects can be added by augmenting node attributes. This allows for object-aware layout generation when needed. The multi-relational graph attention mechanism captures complex inter-room relationships. Iterative generation enables stepwise layout optimization. Fusion of node features with building boundaries ensures spatial accuracy and structural coherence. A conditional graph discriminator with Wasserstein loss constrains global consistency. Experiments on the RPLAN dataset show strong performance. FID is 92.73, SSIM is 0.828, and layout accuracy is 85.96%. Room topology accuracy reaches 95%, layout quality 90%, and structural coherence 95%, outperforming House-GAN, LayoutGAN, and MR-GAT. Ablation studies confirm the effectiveness of each key component. Graph-RWGAN shows strong adaptability, flexible generation under weak constraints, and multi-style layouts. It provides an efficient and controllable scheme for intelligent building design and automated planning. Full article
Show Figures

Figure 1

30 pages, 21831 KB  
Article
Optimizing University Campus Functional Zones Using Landscape Feature Recognition and Enhanced Decision Tree Algorithms: A Study on Spatial Response Differences Between Students and Visitors
by Xiaowen Zhuang, Yi Cai, Zhenpeng Tang, Zheng Ding and Christopher Gan
Buildings 2025, 15(19), 3622; https://doi.org/10.3390/buildings15193622 - 9 Oct 2025
Viewed by 287
Abstract
As universities become increasingly open, campuses are no longer only places for study and daily life for students and faculty, but also essential spaces for public visits and cultural identity. Traditional perception evaluation methods that rely on manual surveys are limited by sample [...] Read more.
As universities become increasingly open, campuses are no longer only places for study and daily life for students and faculty, but also essential spaces for public visits and cultural identity. Traditional perception evaluation methods that rely on manual surveys are limited by sample size and subjective bias, making it challenging to reveal differences in experiences between groups (students/visitors) and the complex relationships between spatial elements and perceptions. This study uses a comprehensive open university in China as a case study to address this. It proposes a research framework that combines street-view image semantic segmentation, perception survey scores, and interpretable machine learning with sample augmentation. First, full-sample modeling is used to identify key image semantic features influencing perception indicators (nature, culture, aesthetics), and then to compare how students and visitors differ in their perceptions and preferences across campus spaces. To overcome the imbalance in survey data caused by group–space interactions, the study applies the CTGAN method, which expands minority samples through conditional generation while preserving distribution authenticity, thereby improving the robustness and interpretability of the model. Based on this, attribution analysis with an interpretable decision tree algorithm further quantifies semantic features’ contribution, direction, and thresholds to perceptions, uncovering heterogeneity in perception mechanisms across groups. The results provide methodological support for perception evaluation of campus functional zones and offer data-driven, human-centered references for campus planning and design optimization. Full article
Show Figures

Figure 1

16 pages, 4308 KB  
Article
Influence of HPMC and VAE on the Properties of Geopolymer Mortar
by Wenjun Ji, Pengfei Chen, Ying Lu, Zeyang Zhang, Baolong Shan, Sha Li, Mengyan Chi and Haifeng Yu
Buildings 2025, 15(19), 3621; https://doi.org/10.3390/buildings15193621 - 9 Oct 2025
Viewed by 261
Abstract
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains [...] Read more.
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains insufficiently studied. This study examines the effects of hydroxypropyl methylcellulose (HPMC) and vinyl acetate-ethylene (VAE) polymer on the workability, mechanical properties, durability, and microstructure of GP mortar. Results show that an optimal HPMC content (0.4 wt%) improves the fluidity, compressive strength, and adhesive strength of GP mortar, approximately 6%, 16%, and 20%, respectively. These enhancements are attributed to the incorporation of uniformly distributed microbubbles in the mortar matrix. Beyond this optimal content, however, HPMC impairs flowability and adhesion due to its thickening effect. In contrast, VAE addition significantly enhanced adhesive strength by approximately 28%, albeit at the cost of a 17% reduction in compressive strength, resulting from the retardation of the alkali activation process. This gain in adhesion is associated with the formation of a continuous polymer film that establishes both physical interlocking and chemical bonding with the GP matrix. Furthermore, HPMC improved the durability of the GP mortar, while VAE did not contribute to this aspect. These insights offer valuable guidance for designing high-performance GP-based adhesive mortars suitable for building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 13962 KB  
Article
Axial Compression and Uplift Performance of Continuous Helix Screw Piles
by Ahmed Mneina, Mohamed Hesham El Naggar and Osama Drbe
Buildings 2025, 15(19), 3620; https://doi.org/10.3390/buildings15193620 - 9 Oct 2025
Viewed by 322
Abstract
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with [...] Read more.
This study investigates the axial performance of continuous helix screw piles compared to helical piles through full-scale compression and tension load testing in layered soils. Twenty-three piles were installed and tested. The results demonstrate that screw piles can achieve considerable axial capacity with lower installation torque than helical piles, particularly under tensile loading. The capacity-torque relationship for screw piles was more consistent across both compression and tension, likely due to reduced soil disturbance from the smaller helix projection. Strain gauge measurements indicated that screw piles act primarily as friction piles with the threaded shaft carrying most of the load, especially in stiff clay. On the other hand, the smooth portion of the pile shaft contributed only marginally to resistance in compression and none in tension. The calculated capacity based on theoretical equations aligned well with field results in compression, with screw piles best represented by cylindrical shear failure in sand and a combination of cylindrical shear and individual bearing failure in clay. However, there is greater variability between calculated and measured uplift capacity, possibly due to soil disturbance effects. Additionally, the commonly used helix spacing ratio (S/D) was found to be less applicable to screw piles in predicting failure mode due to their smaller shaft-to-helix diameter difference. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

30 pages, 10420 KB  
Article
Mapping Multi-Temporal Heat Risks Within the Local Climate Zone Framework: A Case Study of Jinan’s Main Urban Area, China
by Zhen Ren, Hezhou Chen, Shuo Sheng, Hanyang Wang, Jie Zhang and Meng Lu
Buildings 2025, 15(19), 3619; https://doi.org/10.3390/buildings15193619 - 9 Oct 2025
Viewed by 495
Abstract
Global climate change and rapid urbanization have intensified urban heat risks, particularly in cities such as Jinan that face pronounced heat-related environmental challenges. This study takes Jinan’s main urban area as a case example, integrating the Local Climate Zone (LCZ) framework with the [...] Read more.
Global climate change and rapid urbanization have intensified urban heat risks, particularly in cities such as Jinan that face pronounced heat-related environmental challenges. This study takes Jinan’s main urban area as a case example, integrating the Local Climate Zone (LCZ) framework with the Hazard–Exposure–Vulnerability–Adaptability (HEVA) model to develop multi-temporal heat risk maps. The results indicate the following: (1) High-risk zones are primarily concentrated in the densely built urban core, whereas low-risk areas are mostly located in peripheral green spaces, water bodies, and forested regions. (2) Heat risk shows clear diurnal patterns, peaking between noon and early afternoon and expanding outward from the city center. (3) LCZ6 (open low-rise), despite its theoretical advantage for ventilation, exhibits unexpectedly high levels of heat hazard, exposure, and vulnerability. (4) SHAP-based analysis identifies land surface temperature (LST), floor area ratio (FAR), impervious surface area ratio (ISA), housing value, building coverage ratio (BCR), and the distribution of cooling facilities as the most influential drivers of heat risk. These findings offer a scientific foundation for developing multi-scale, climate-resilient urban planning strategies in Jinan and hold significant practical value for improving urban resilience to extreme heat events. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 4961 KB  
Article
Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings
by Piero A. Cabrera, Gianella M. Medina and Rick M. Delgadillo
Buildings 2025, 15(19), 3618; https://doi.org/10.3390/buildings15193618 - 9 Oct 2025
Viewed by 342
Abstract
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of [...] Read more.
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence. Full article
(This article belongs to the Special Issue Building Safety Assessment and Structural Analysis)
Show Figures

Figure 1

22 pages, 4796 KB  
Article
Evaluating Shear Strength of Reinforced Concrete Elements Containing Macro-Synthetic Fibers and Traditional Steel Reinforcement
by Benedikt Farag, Travis Thonstad and Paolo M. Calvi
Buildings 2025, 15(19), 3617; https://doi.org/10.3390/buildings15193617 - 9 Oct 2025
Viewed by 268
Abstract
This study investigates the shear behavior of concrete elements reinforced with both traditional steel reinforcement and macro-synthetic fibers, with an emphasis on evaluating the predictive capabilities of current shear design provisions. A review of available experimental data, involving 52 beams and 8 panel [...] Read more.
This study investigates the shear behavior of concrete elements reinforced with both traditional steel reinforcement and macro-synthetic fibers, with an emphasis on evaluating the predictive capabilities of current shear design provisions. A review of available experimental data, involving 52 beams and 8 panel specimens, revealed limitations in both quantity and consistency, hindering the formulation of robust design recommendations. To address this, an extensive parametric numerical study was conducted using the VecTor2 nonlinear finite element program, incorporating a recently developed modeling approach for PFRC shear response. A total of 288 simulations were carried out to explore the influence of fiber content, transverse reinforcement ratio, and concrete compressive strength, particularly in ranges not previously captured by experimental programs. The performance of existing design codes, including ACI, CSA, EC2, AASHTO, and the Fib Model Code, was assessed against both experimental data and the enriched parametric dataset. The Fib Model Code demonstrated the most reliable and consistent predictions, maintaining close alignment with reference strengths across all fiber contents, reinforcement ratios, and concrete strengths. AASHTO provisions performed moderately well, showing generally conservative and stable predictions, though some underestimation occurred for beams with higher shear reinforcement. In contrast, ACI and CSA models were consistently conservative, especially at higher concrete strengths, potentially leading to uneconomical designs. EC2 models exhibited the highest variability and least reliability, particularly in the presence of fibers, indicating limited applicability without modification. The results highlight that most conventional codes do not fully account for the synergistic action between fibers and transverse steel reinforcement, and that their reliability deteriorates for high-strength PFRC. These findings have practical implications for the design of PFRC elements, suggesting that the Fib Model Code may be the most suitable for current applications, whereas other provisions may require recalibration or modification. Future research should focus on expanding experimental datasets and developing unified design models that explicitly consider fiber–steel interactions, concrete strength, and fiber distribution. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 3678 KB  
Article
Outdoor Comfort Optimization in Historic Urban Quarters: From Multisensory Approaches to Operational Strategies Under Resource Constraints
by Hua Su, Hui Ma and Kang Liu
Buildings 2025, 15(19), 3616; https://doi.org/10.3390/buildings15193616 - 9 Oct 2025
Viewed by 352
Abstract
During the transition from urban expansion to renewal, optimizing environmental comfort under resource constraints presents critical challenges. While existing research confirms that multisensory interactions critically shape environmental comfort, these insights are rarely operationalized into protocols for resource-constrained contexts. Focusing on historic urban quarters [...] Read more.
During the transition from urban expansion to renewal, optimizing environmental comfort under resource constraints presents critical challenges. While existing research confirms that multisensory interactions critically shape environmental comfort, these insights are rarely operationalized into protocols for resource-constrained contexts. Focusing on historic urban quarters that need to balance modification and preservation, this study quantifies multisensory (acoustic, visual, thermal) interactions and integrations to establish operational resource-optimization strategies. Through laboratory reproduction of 144 field-based experimental conditions (4 sound sources × 3 sound pressure levels × 4 green view indexes × 3 air temperatures), systematic subjective evaluations of acoustic, visual, thermal, and overall comfort were obtained. Key findings demonstrate: (1) Eliminating extreme comfort evaluations (e.g., “very uncomfortable”) within any single sensory domain stabilizes cross-sensory contributions to overall comfort, ensuring predictable cross-domain compensations and safeguarding resource efficacy; (2) Accumulating modest improvements across ≥2 sensory domains reduces per-domain performance threshold for satisfactory overall comfort, enabling constraint resolution (e.g., visual modification limits in historic districts); (3) Cross-domain optimization of environmental factors (e.g., sound source and air temperature) generates mutual enhancement effects, maximizing resource economy, whereas intra-domain optimization (e.g., sound source and sound pressure level) induces competitive inefficiencies. Collectively, these principles establish operational strategies for resource-constrained environmental improvements, advancing sustainable design and governance through evidence-based multisensory approaches. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

3 pages, 140 KB  
Editorial
Editorial on Urban Infrastructure and Resilient, Sustainable Buildings
by Shenghua Zhou, Tiantian Gu and Mun On Wong
Buildings 2025, 15(19), 3615; https://doi.org/10.3390/buildings15193615 - 9 Oct 2025
Viewed by 324
Abstract
Urban infrastructures and buildings today face the intertwined pressures of extreme disasters, cascading effects, carbon constraints, and social uncertainty [...] Full article
(This article belongs to the Special Issue Urban Infrastructure and Resilient, Sustainable Buildings)
21 pages, 11774 KB  
Article
Research on the Mechanical Properties of Mechanically Connected Splices of Prestressing Screw Bars Under Monotonic and Cyclic Loads
by Liangyu Lei, Yue Ma, Bo Xie, Jing Bai, Mei Hu and Zhezhuo Guo
Buildings 2025, 15(19), 3614; https://doi.org/10.3390/buildings15193614 - 9 Oct 2025
Viewed by 268
Abstract
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design [...] Read more.
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design parameters and working conditions to examine the mechanical connection splices of screw-thread steel bars used for prestressing concrete. The splices’ connection performance and their threaded ribs’ bearing mechanism were also examined. Analyzing the force on the threads of the splices under monotonic tensile loading allowed for the theoretical computation of the axial force coefficients for threaded ribs. The validated revised three-dimensional numerical model of splices is based on the findings of the theoretical calculations. Afterwards, rigorous numerical simulations of monotonic tensile loading, repeated tensile and compressive loading with high stress, and repeated tensile and compressive loading with large strain were performed on 45 splices with varying nominal rebar diameters, coupler outer diameters and lengths, and thread rib spacings. The results show that rebar pullout and rebar fracture are the two main ways in which splices might fail. After cyclic loading, the splices’ ultimate bearing capacity changed by 0.83% to 2.81%, and their ductility changed by 2.13% to 4.75% compared to after monotonic tensile loading. Although the splice load-carrying capacity and plastic deformation capacity were reduced by 2.11%~7.48% and 3.98%~25.78%, respectively, when the thread rib spacing was increased from the specified value to 0.6~0.8 times the nominal diameter of the rebar, the splice connection performance was still able to meet the requirements for class I splices. Approximately half of the splices’ load-bearing capability is provided by the 1–2 turns of threads close to the coupler ends; after cyclic loading, their stress rises by between 4.52% and 12.63% relative to monotonic tension. Stresses in all threaded ribs of the splices are increased by 5.49% to 27.76% as the distance between the threaded ribs increases to 1.0 and 1.2 times the nominal diameter of the rebar, which reduces the splice’s load-bearing capacity. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 4379 KB  
Review
Bridging Global Perspectives: A Comparative Review of Agent-Based Modeling for Block-Level Walkability in Chinese and International Research
by Yidan Wang, Renzhang Wang, Xiaowen Xu, Bo Zhang, Marcus White and Xiaoran Huang
Buildings 2025, 15(19), 3613; https://doi.org/10.3390/buildings15193613 - 9 Oct 2025
Viewed by 429
Abstract
As cities strive for human-centered and fine-tuned development, Agent-Based Modeling (ABM) has emerged as a powerful tool for simulating pedestrian behavior and optimizing walkable neighborhood design. This study presents a comparative bibliometric analysis of ABM applications in block-scale walkability research from 2015 to [...] Read more.
As cities strive for human-centered and fine-tuned development, Agent-Based Modeling (ABM) has emerged as a powerful tool for simulating pedestrian behavior and optimizing walkable neighborhood design. This study presents a comparative bibliometric analysis of ABM applications in block-scale walkability research from 2015 to 2024, drawing on both Chinese- and English-language literature. Using visualization tools such as VOSviewer, the analysis reveals divergences in national trajectories, methodological approaches, and institutional logics. Chinese research demonstrates a policy-driven growth pattern, particularly following the introduction of the “15-Minute Community Life Circle” initiative, with an emphasis on neighborhood renewal, age-friendly design, and transit-oriented planning. In contrast, international studies show a steady output driven by technological innovation, integrating methods such as deep learning, semantic segmentation, and behavioral simulation to address climate resilience, equity, and mobility complexity. The study also classifies ABM applications into five key application domains, highlighting how Chinese and international studies differ in focus, data inputs, and implementation strategies. Despite these differences, both research streams recognize the value of ABM in transport planning, public health, and low-carbon urbanism. Key challenges identified include data scarcity, algorithmic limitations, and ethical concerns. The study concludes with future research directions, including multimodal data fusion, integration with extended reality, and the development of privacy-aware, cross-cultural modeling standards. These findings reinforce ABM’s potential as a smart urban simulation tool for advancing adaptive, human-centered, and sustainable neighborhood planning. Full article
(This article belongs to the Special Issue Sustainable Urban and Buildings: Lastest Advances and Prospects)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Viewed by 254
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

25 pages, 5136 KB  
Article
A Data-Driven Battery Energy Storage Regulation Approach Integrating Machine Learning Forecasting Models for Enhancing Building Energy Flexibility—A Case Study of a Net-Zero Carbon Building in China
by Zesheng Yang, Dezhou Kong, Zhexuan Chen, Zhiang Zhang, Dengfeng Du and Ziyue Zhu
Buildings 2025, 15(19), 3611; https://doi.org/10.3390/buildings15193611 - 8 Oct 2025
Viewed by 591
Abstract
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains [...] Read more.
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains lacking. Therefore, this study designs customized energy storage regulation strategies and constructs a comprehensive energy flexibility assessment scheme to address key issues in supply-demand coordination and energy flexibility evaluation. LSTM and Rolling-XGB methods are used to predict building energy consumption and PV generation, respectively. Based on battery safety constraints, a data-driven battery energy storage system (BESS) model simulates battery behavior to evaluate and compare building energy flexibility under two scenarios: (1) uncoordinated PV-BESS, and (2) coordinated PV-BESS with load forecasting. A practical validation was conducted using a net-zero-carbon building as the case study. Simulation results show that the data-driven BESS model improves building energy flexibility and reduces electricity costs through optimized battery sizing, tailored storage strategies, and consideration of local time-of-use tariffs. In the case study, local energy coverage reached 62.75%, surplus time increased to 34.77%, and costs were cut by nearly 40% compared to the PV-only scenario, demonstrating the significant benefits brought by the proposed BESS model that integrates load forecasting and PV generation prediction features. Full article
(This article belongs to the Special Issue Big Data and Machine/Deep Learning in Construction)
Show Figures

Figure 1

25 pages, 9400 KB  
Article
Optimisation and Mechanical Behaviour Analysis of Splice Joints in Prefabricated H-Shaped Steel Beams
by Xin Zhang, Jiahan Lv, Dawei Fan, Shuaike Feng and Shenlu Yu
Buildings 2025, 15(19), 3610; https://doi.org/10.3390/buildings15193610 - 8 Oct 2025
Viewed by 306
Abstract
This study investigated the mechanical behaviour of splice joints in prefabricated H-shaped steel beams assembled using high-strength bolts under four-point bending. Four distinct splice joint configurations were tested through mechanical experiments on prefabricated H-shaped steel beams to examine their failure modes, flexural strength, [...] Read more.
This study investigated the mechanical behaviour of splice joints in prefabricated H-shaped steel beams assembled using high-strength bolts under four-point bending. Four distinct splice joint configurations were tested through mechanical experiments on prefabricated H-shaped steel beams to examine their failure modes, flexural strength, and stress distribution in the sections. Numerical simulations were performed using ANSYS finite element software to validate the experimental results. Findings reveal that specimens with double splice joints exhibit a significant reduction in both flexural bearing capacity and stiffness compared to those with single splice joints. Moreover, the distance between splice joints is a critical factor affecting the bearing capacity of the specimen. The splice joints in both the H-shaped steel and connecting plates are classified as semi-rigid connections. Additionally, the stress distribution at the splice joints deviates from the plane section assumption. A formula for calculating the deflection of spliced specimens in the elastic stage under pure bending was developed and validated with experimental data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 3132 KB  
Review
A Literature Review of Sustainable Building Research: Bibliometric Analysis from 2015–2025
by Yuehong Lu, Yang Zhang, Zhijia Huang, Bo Cheng, Changlong Wang, Yanhong Sun, Hongguang Zhang and Jiao Li
Buildings 2025, 15(19), 3609; https://doi.org/10.3390/buildings15193609 - 8 Oct 2025
Viewed by 810
Abstract
This study presents a novel integrative review of 329 review articles on sustainable buildings from 2015 to 2025, combining quantitative bibliometrics with qualitative insights to map the field’s evolution and pinpoint critical future pathways. Seven core research themes were identified in this study: [...] Read more.
This study presents a novel integrative review of 329 review articles on sustainable buildings from 2015 to 2025, combining quantitative bibliometrics with qualitative insights to map the field’s evolution and pinpoint critical future pathways. Seven core research themes were identified in this study: (1) material and advanced construction technologies, (2) energy efficiency and renewable energy systems, (3) digitalization and smart technologies, (4) policy, standards, and certification, (5) sustainable design and optimization, (6) stakeholder and socio-economic factors, (7) other (cross-cutting) topics. Key findings reveal a surge in publications post-2020, driven by global net-zero commitments, with China, Australia, and Hong Kong leading research output. Innovations in low-carbon materials (e.g., hemp concrete, geopolymers), artificial intelligent (AI)-driven energy optimization, and digital tools (e.g., building information modeling (BIM), internet of things (IoT)) dominate recent advancements. However, challenges persist, including policy fragmentation, scalability barriers for sustainable materials, and socio-economic disparities in green building adoption. The study proposes a unique future research framework emphasizing nanotechnology-enhanced materials, interpretable AI models, harmonized global standards, and inclusive stakeholder engagement. This review provides actionable recommendations to bridge gaps between technological innovation, policy frameworks, and practical implementation in sustainable construction. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

23 pages, 7420 KB  
Article
Horizontal Vibration of the Coupled Rope–Car–Rail System in High-Speed Elevators Under Building Sway Excitation
by Wen Wang, Jiang Qian, Yunyang Wang and Benkun Tan
Buildings 2025, 15(19), 3608; https://doi.org/10.3390/buildings15193608 - 8 Oct 2025
Viewed by 312
Abstract
Horizontal vibrations in high-speed elevators induced by building sway degrade ride comfort and compromise operational safety. Developing an accurate and robust dynamic model is essential for effective vibration control. To address this, this study develops a comprehensive dynamic model of the coupled traction [...] Read more.
Horizontal vibrations in high-speed elevators induced by building sway degrade ride comfort and compromise operational safety. Developing an accurate and robust dynamic model is essential for effective vibration control. To address this, this study develops a comprehensive dynamic model of the coupled traction rope–car–guide shoe–guide rail system under multi-support excitations, incorporating nonlinear contact between the guide shoe and rail, guide rail vibration characteristics, and the time-varying length of traction rope. Using this model, the dynamic responses of the system under stationary and operating conditions are analyzed in detail. The results demonstrate that the proposed model accurately captures the dynamic behavior of the coupled system. In addition, the traction rope’s dynamics are a dominant factor in the system’s response, particularly when the elevator is stationary at a landing, producing a resonant condition with the building sway. Furthermore, a strong coupling between vertical motion and horizontal vibration is identified, which significantly amplifies the system response. By linking elevator dynamics with the sway characteristics of high-rise buildings, this work provides a robust analytical framework for predicting the dynamic response of high-speed elevators due to building sway and contributes to the safety assessment of high-rise reinforced concrete (RC) structures. Full article
Show Figures

Figure 1

18 pages, 2290 KB  
Article
Modified Additive for Soil Stabilization by Deep Cementation
by Rauan Lukpanov, Zhibek Zhantlessova, Duman Dyussembinov, Adiya Zhumagulova and Assel Jexembayeva
Buildings 2025, 15(19), 3607; https://doi.org/10.3390/buildings15193607 - 8 Oct 2025
Viewed by 298
Abstract
The study considers the development of a paraffin-based additive for cement–sand injection mortars intended for deep soil stabilisation under the geological conditions of Central Kazakhstan. The present study investigates the influence of the additive on mobility, water separation, setting time, and strength characteristics [...] Read more.
The study considers the development of a paraffin-based additive for cement–sand injection mortars intended for deep soil stabilisation under the geological conditions of Central Kazakhstan. The present study investigates the influence of the additive on mobility, water separation, setting time, and strength characteristics of mortars, for concentrations ranging from 0.2 to 1.0% by cement mass. The findings demonstrated that the additive enhanced the slump flow area by up to 62%, diminished water separation by 30–32% and extended the setting time by 45–76%. It was demonstrated that compressive and flexural strength were preserved with moderate increases of up to 8–9% in comparison with the reference mixture. The range of 0.6–0.8% was identified as optimal, providing enhanced mobility and stability while maintaining structural integrity. The findings indicate that paraffin-based additives can be effectively applied in deep cementation technologies for enhancing the injectability and performance of soil stabilization mixtures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 9138 KB  
Article
Numerical Investigations of Snowdrift Characteristics on Roofs with Consideration of Snow Crystal Morphological Features
by Guolong Zhang, Qingwen Zhang, Huamei Mo, Yueyue Zhao, Xudong Zhi and Feng Fan
Buildings 2025, 15(19), 3606; https://doi.org/10.3390/buildings15193606 - 8 Oct 2025
Viewed by 298
Abstract
Under extreme snowfall conditions, wind-induced snow drifting can lead to the redistribution of snow accumulation on roofs, resulting in localized overloads that pose a serious threat to building structural safety. Notably, morphological differences in snow particles significantly alter their aerodynamic characteristics, causing variations [...] Read more.
Under extreme snowfall conditions, wind-induced snow drifting can lead to the redistribution of snow accumulation on roofs, resulting in localized overloads that pose a serious threat to building structural safety. Notably, morphological differences in snow particles significantly alter their aerodynamic characteristics, causing variations in their motion trajectories and increasing the uncertainty in determining roof snow loads. Therefore, this study develops a numerical simulation method that accounts for snow morphologies based on the drag coefficients of typical snow crystals, and further investigates the accumulation characteristics of differently shaped snow particles on typical roofs. Analysis results demonstrate that the observed variations in snow particle motion characteristics primarily originate from differences in their respective drag coefficients. The drag coefficient exerts a direct influence on particle settling velocity, which subsequently governs spatial distribution patterns of snow concentration and final accumulation patterns. Under identical inflow snow concentration conditions, particles with higher drag coefficients exhibit reduced depositional accumulation on roof surfaces. Notably, this shape-dependent effect diminishes with increasing roof span and slope. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3767 KB  
Article
Structural and Chemical Stability of TiO2-Doped Basalt Fibers in Alkaline and Seawater Conditions
by Sergey I. Gutnikov, Sergey S. Popov, Timur A. Terentev and Bogdan I. Lazoryak
Buildings 2025, 15(19), 3605; https://doi.org/10.3390/buildings15193605 - 8 Oct 2025
Viewed by 296
Abstract
Alkali resistance is a critical factor for the long-term performance of glass fibers in cementitious composites. While zirconium oxide doping has proven effective in enhancing the durability of basalt fibers, its high cost and limited solubility motivate the search for viable alternatives. This [...] Read more.
Alkali resistance is a critical factor for the long-term performance of glass fibers in cementitious composites. While zirconium oxide doping has proven effective in enhancing the durability of basalt fibers, its high cost and limited solubility motivate the search for viable alternatives. This study presents the first systematic investigation of titanium dioxide (TiO2) doping in basalt-based glasses across a wide compositional range (0–8 mol%). X-ray fluorescence and diffraction analyses confirm complete dissolution of TiO2 within the amorphous silicate network, with no phase segregation. At low concentrations (≤3 mol%), Ti4+ acts as a network modifier in octahedral coordination ([TiO6]), reducing melt viscosity and lowering processing temperatures. As TiO2 content increases, titanium in-corporates into tetrahedral sites ([TiO4]), competing with Fe3+ for network-forming positions and displacing it into octahedral coordination, as revealed by Mössbauer spectroscopy. This structural redistribution promotes phase separation and triggers the crystallization of pseudobrukite (Fe2TiO5) at elevated temperatures. The formation of a protective Ti(OH)4 surface layer upon alkali exposure enhances chemical resistance, with optimal performance observed at 4.6 mol% TiO2—reducing mass loss in NaOH and seawater by 13.3% and 25%, respectively, and improving residual tensile strength. However, higher TiO2 concentrations (≥5 mol%) lead to pseudobrukite crystallization and a narrowed fiber-forming temperature window, rendering continuous fiber drawing unfeasible. The results demonstrate that TiO2 is a promising, cost-effective dopant for basalt fibers, but its benefits are constrained by a critical solubility threshold and structural trade-offs between durability and processability. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop