Next Issue
Volume 16, October
Previous Issue
Volume 16, August
sensors-logo

Journal Browser

Journal Browser

Table of Contents

Sensors, Volume 16, Issue 9 (September 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response
Sensors 2016, 16(9), 1553; https://doi.org/10.3390/s16091553 - 21 Sep 2016
Cited by 3 | Viewed by 2695
Abstract
The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and [...] Read more.
The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. Full article
(This article belongs to the collection Modeling, Testing and Reliability Issues in MEMS Engineering)
Show Figures

Figure 1

Open AccessArticle
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sensors 2016, 16(9), 1552; https://doi.org/10.3390/s16091552 - 21 Sep 2016
Cited by 3 | Viewed by 2513
Abstract
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is [...] Read more.
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
A Portable Laser Photoacoustic Methane Sensor Based on FPGA
Sensors 2016, 16(9), 1551; https://doi.org/10.3390/s16091551 - 21 Sep 2016
Cited by 2 | Viewed by 2462
Abstract
A portable laser photoacoustic sensor for methane (CH4) detection based on a field-programmable gate array (FPGA) is reported. A tunable distributed feedback (DFB) diode laser in the 1654 nm wavelength range is used as an excitation source. The photoacoustic signal processing [...] Read more.
A portable laser photoacoustic sensor for methane (CH4) detection based on a field-programmable gate array (FPGA) is reported. A tunable distributed feedback (DFB) diode laser in the 1654 nm wavelength range is used as an excitation source. The photoacoustic signal processing was implemented by a FPGA device. A small resonant photoacoustic cell is designed. The minimum detection limit (1σ) of 10 ppm for methane is demonstrated. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Design and Implementation of Sound Searching Robots in Wireless Sensor Networks
Sensors 2016, 16(9), 1550; https://doi.org/10.3390/s16091550 - 21 Sep 2016
Cited by 5 | Viewed by 2257
Abstract
A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a [...] Read more.
A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well. Full article
(This article belongs to the Special Issue Advanced Robotics and Mechatronics Devices)
Show Figures

Figure 1

Open AccessArticle
Underdetermined DOA Estimation Using MVDR-Weighted LASSO
Sensors 2016, 16(9), 1549; https://doi.org/10.3390/s16091549 - 21 Sep 2016
Cited by 5 | Viewed by 1993
Abstract
The direction of arrival (DOA) estimation problem is formulated in a compressive sensing (CS) framework, and an extended array aperture is presented to increase the number of degrees of freedom of the array. The ordinary least square adaptable least absolute shrinkage and selection [...] Read more.
The direction of arrival (DOA) estimation problem is formulated in a compressive sensing (CS) framework, and an extended array aperture is presented to increase the number of degrees of freedom of the array. The ordinary least square adaptable least absolute shrinkage and selection operator (OLS A-LASSO) is applied for the first time for DOA estimation. Furthermore, a new LASSO algorithm, the minimum variance distortionless response (MVDR) A-LASSO, which solves the DOA problem in the CS framework, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without a priori knowledge of the number of sources. The proposed algorithm can estimate up to ( ( M 2 2 ) / 2 + M 1 ) / 2 sources using M sensors without any constraints or assumptions about the nature of the signal sources. Furthermore, the proposed algorithm exhibits performance that is superior compared to that of the classical DOA estimation methods, especially for low signal to noise ratios (SNR), spatially-closed sources and coherent scenarios. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring
Sensors 2016, 16(9), 1548; https://doi.org/10.3390/s16091548 - 21 Sep 2016
Cited by 25 | Viewed by 2172
Abstract
Despite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is [...] Read more.
Despite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is still very limited. In general, a first step towards large-scale-diffusion of an analysis method, is standardization. The aim of this paper is describing the experimental procedure adopted in order to evaluate electronic nose performances, with the final purpose of establishing minimum performance requirements, which is considered to be a first crucial step towards standardization of the specific case of electronic nose application for environmental odor monitoring at receptors. Based on the experimental results of the performance testing of a commercialized electronic nose type with respect to three criteria (i.e., response invariability to variable atmospheric conditions, instrumental detection limit, and odor classification accuracy), it was possible to hypothesize a logic that could be adopted for the definition of minimum performance requirements, according to the idea that these are technologically achievable. Full article
(This article belongs to the Special Issue E-noses: Sensors and Applications)
Show Figures

Figure 1

Open AccessArticle
Features of a Self-Mixing Laser Diode Operating Near Relaxation Oscillation
Sensors 2016, 16(9), 1546; https://doi.org/10.3390/s16091546 - 21 Sep 2016
Cited by 5 | Viewed by 1982
Abstract
When a fraction of the light reflected by an external cavity re-enters the laser cavity, both the amplitude and the frequency of the lasing field can be modulated. This phenomenon is called the self-mixing effect (SME). A self-mixing laser diode (SM-LD) is a [...] Read more.
When a fraction of the light reflected by an external cavity re-enters the laser cavity, both the amplitude and the frequency of the lasing field can be modulated. This phenomenon is called the self-mixing effect (SME). A self-mixing laser diode (SM-LD) is a sensor using the SME. Usually, such LDs operate below the stability boundary where no relaxation oscillation happens. The boundary is determined by the operation condition including the injection current, optical feedback strength and external cavity length. This paper discovers the features of an SM-LD where the LD operates beyond the stability boundary, that is, near the relaxation oscillation (RO) status. We call the signals from such a SM-LD as RO-SM signals to differentiate them from the conventional SM signals reported in the literature. Firstly, simulations are made based on the well-known Lang and Kobayashi (L-K) equations. Then the experiments are conducted on different LDs to verify the simulation results. It shows that a RO-SM signal exhibits high frequency oscillation with its amplitude modulated by a slow time varying envelop which corresponds to the movement of the external target. The envelope has same fringe structure (half-wavelength displacement resolution) with the conventional SM signals. However, the amplitudes of the RO-SM signals are much higher compared to conventional SM signals. The results presented reveal that an SM-LD operating near the RO has potential for achieving sensing with improved sensitivity. Full article
Show Figures

Figure 1

Open AccessArticle
Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6
Sensors 2016, 16(9), 1544; https://doi.org/10.3390/s16091544 - 21 Sep 2016
Cited by 4 | Viewed by 2726
Abstract
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise [...] Read more.
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Biomimetic Precapillary Flow Patterns for Enhancing Blood Plasma Separation: A Preliminary Study
Sensors 2016, 16(9), 1543; https://doi.org/10.3390/s16091543 - 21 Sep 2016
Cited by 1 | Viewed by 2064
Abstract
In this study, a biomimetic microfluidic plasma separation device is discussed. The design of the device drew inspiration from in vivo observations of enhanced cell-free layer (CFL) formation downstream of vascular bifurcations. The working principle for the plasma separation was based on the [...] Read more.
In this study, a biomimetic microfluidic plasma separation device is discussed. The design of the device drew inspiration from in vivo observations of enhanced cell-free layer (CFL) formation downstream of vascular bifurcations. The working principle for the plasma separation was based on the plasma skimming effect in an arteriolar bifurcation, which is modulated by CFL formation. The enhancement of the CFL width was achieved by a local hematocrit reduction near the collection channel by creating an uneven hematocrit distribution at the bifurcation of the channel. The device demonstrated a high purity of separation (~99.9%) at physiological levels of hematocrit (~40%). Full article
(This article belongs to the Special Issue Biomicrofluidics)
Show Figures

Figure 1

Open AccessArticle
Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems
Sensors 2016, 16(9), 1542; https://doi.org/10.3390/s16091542 - 21 Sep 2016
Cited by 5 | Viewed by 2113
Abstract
In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic [...] Read more.
In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach. Full article
(This article belongs to the Special Issue Real-Time and Cyber-Physical Systems)
Show Figures

Figure 1

Open AccessArticle
Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)
Sensors 2016, 16(9), 1540; https://doi.org/10.3390/s16091540 - 21 Sep 2016
Cited by 10 | Viewed by 2112
Abstract
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry [...] Read more.
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring 2016)
Show Figures

Figure 1

Open AccessArticle
Zwitterionic Surfactant Modified Acetylene Black Paste Electrode for Highly Facile and Sensitive Determination of Tetrabromobisphenol A
Sensors 2016, 16(9), 1539; https://doi.org/10.3390/s16091539 - 21 Sep 2016
Cited by 6 | Viewed by 2100
Abstract
A electrochemical sensor for the highly sensitive detection of tetrabromobisphenol A (TBBPA) was fabricated based on acetylene black paste electrode (ABPE) modified with 3-(N,N-Dimethylpalmitylammonio) propanesulfonate (SB3-16) in this study. The peak current of TBBPA was significantly enhanced at SB3-16/ABPE [...] Read more.
A electrochemical sensor for the highly sensitive detection of tetrabromobisphenol A (TBBPA) was fabricated based on acetylene black paste electrode (ABPE) modified with 3-(N,N-Dimethylpalmitylammonio) propanesulfonate (SB3-16) in this study. The peak current of TBBPA was significantly enhanced at SB3-16/ABPE compared with unmodified electrodes. To further improve the electrochemical performance of the modified electrode, corresponding experimental parameters such as the length of hydrophobic chains of zwitterionic surfactant, the concentration of SB3-16, pH value, and accumulation time were examined. The peak currents of TBBPA were found to be linearly correlated with its concentrations in the range of 1 nM to 1 µM, with a detection limit of 0.4 nM. Besides, a possible mechanism was also discussed, and the hydrophobic interaction between TBBPA and the surfactants was suggested to take a leading role in enhancing the responses. Finally, this sensor was successfully employed to detect TBBPA in water samples. Full article
(This article belongs to the Special Issue Chemiresistive Sensors)
Show Figures

Figure 1

Open AccessArticle
Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios
Sensors 2016, 16(9), 1538; https://doi.org/10.3390/s16091538 - 21 Sep 2016
Cited by 25 | Viewed by 4987
Abstract
Over recent years, we have witnessed the development of mobile and wearable technologies to collect data from human vital signs and activities. Nowadays, wrist wearables including sensors (e.g., heart rate, accelerometer, pedometer) that provide valuable data are common in market. We are working [...] Read more.
Over recent years, we have witnessed the development of mobile and wearable technologies to collect data from human vital signs and activities. Nowadays, wrist wearables including sensors (e.g., heart rate, accelerometer, pedometer) that provide valuable data are common in market. We are working on the analytic exploitation of this kind of data towards the support of learners and teachers in educational contexts. More precisely, sleep and stress indicators are defined to assist teachers and learners on the regulation of their activities. During this development, we have identified interoperability challenges related to the collection and processing of data from wearable devices. Different vendors adopt specific approaches about the way data can be collected from wearables into third-party systems. This hinders such developments as the one that we are carrying out. This paper contributes to identifying key interoperability issues in this kind of scenario and proposes guidelines to solve them. Taking into account these topics, this work is situated in the context of the standardization activities being carried out in the Internet of Things and Machine to Machine domains. Full article
Show Figures

Figure 1

Open AccessArticle
Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion
Sensors 2016, 16(9), 1532; https://doi.org/10.3390/s16091532 - 21 Sep 2016
Cited by 1 | Viewed by 1988
Abstract
To obtain efficient data gathering methods for wireless sensor networks (WSNs), a novel graph based transform regularized (GBTR) matrix completion algorithm is proposed. The graph based transform sparsity of the sensed data is explored, which is also considered as a penalty term in [...] Read more.
To obtain efficient data gathering methods for wireless sensor networks (WSNs), a novel graph based transform regularized (GBTR) matrix completion algorithm is proposed. The graph based transform sparsity of the sensed data is explored, which is also considered as a penalty term in the matrix completion problem. The proposed GBTR-ADMM algorithm utilizes the alternating direction method of multipliers (ADMM) in an iterative procedure to solve the constrained optimization problem. Since the performance of the ADMM method is sensitive to the number of constraints, the GBTR-A2DM2 algorithm obtained to accelerate the convergence of GBTR-ADMM. GBTR-A2DM2 benefits from merging two constraint conditions into one as well as using a restart rule. The theoretical analysis shows the proposed algorithms obtain satisfactory time complexity. Extensive simulation results verify that our proposed algorithms outperform the state of the art algorithms for data collection problems in WSNs in respect to recovery accuracy, convergence rate, and energy consumption. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Information Fusion: Theory and Applications)
Show Figures

Figure 1

Open AccessArticle
Small Moving Vehicle Detection in a Satellite Video of an Urban Area
Sensors 2016, 16(9), 1528; https://doi.org/10.3390/s16091528 - 21 Sep 2016
Cited by 13 | Viewed by 2924
Abstract
Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. [...] Read more.
Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. The achieved work generally focuses on aerial video with moderately-sized objects based on feature extraction. However, the moving vehicles in satellite video imagery range from just a few pixels to dozens of pixels and exhibit low contrast with respect to the background, which makes it hard to get available appearance or shape information. In this paper, we look into the problem of moving vehicle detection in satellite imagery. To the best of our knowledge, it is the first time to deal with moving vehicle detection from satellite videos. Our approach consists of two stages: first, through foreground motion segmentation and trajectory accumulation, the scene motion heat map is dynamically built. Following this, a novel saliency based background model which intensifies moving objects is presented to segment the vehicles in the hot regions. Qualitative and quantitative experiments on sequence from a recent Skybox satellite video dataset demonstrates that our approach achieves a high detection rate and low false alarm simultaneously. Full article
(This article belongs to the Section Remote Sensors, Control, and Telemetry)
Show Figures

Figure 1

Open AccessArticle
A Security Mechanism for Cluster-Based WSN against Selective Forwarding
Sensors 2016, 16(9), 1537; https://doi.org/10.3390/s16091537 - 20 Sep 2016
Cited by 5 | Viewed by 1402
Abstract
A wireless sensor network (WSN) faces a number of outsider and insider attacks, and it is difficult to detect and defend against insider attacks. In particular, an insider selective-forwarding attack, in which the attackers select some of the received packets to drop, most [...] Read more.
A wireless sensor network (WSN) faces a number of outsider and insider attacks, and it is difficult to detect and defend against insider attacks. In particular, an insider selective-forwarding attack, in which the attackers select some of the received packets to drop, most threatens a WSN. Compared to a distributed WSN, a cluster-based WSN will suffer more losses, even the whole network’s destruction, if the cluster head is attacked. In this paper, a scheme solving the above issues is proposed with three types of nodes, the Cluster Head (CH), the Inspector Node (IN) and Member Nodes (MNs). The IN monitors the CH’s transmission to protect the cluster against a selective-forwarding attack; the CH forwards packets from MNs and other CHs, and randomly checks the IN to ascertain if it works properly; and the MNs send the gathered data packets to the CH and evaluate the behaviors of the CH and IN based on their own reputation mechanism. The novelty of our scheme is that in order to take both the safety and the lifespan of a network into consideration, the composite reputation value (CRV) including forwarding rate, detecting malicious nodes, and surplus energy of the node is utilized to select CH and IN under the new suggested network arrangement, and the use of a node’s surplus energy can balance the energy consumption of a node, thereby prolonging the network lifespan. Theoretical analysis and simulation results indicate that the proposed scheme can detect the malicious node accurately and efficiently, so the false alarm rate is lowered by 25.7% compared with Watchdog and the network lifespan is prolonged by 54.84% compared with LEACH (Low Energy Adaptive Clustering Hierarchy). Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Open AccessArticle
Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity
Sensors 2016, 16(9), 1536; https://doi.org/10.3390/s16091536 - 20 Sep 2016
Viewed by 2303
Abstract
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication [...] Read more.
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Open AccessArticle
A Novel Passive Wireless Sensor for Concrete Humidity Monitoring
Sensors 2016, 16(9), 1535; https://doi.org/10.3390/s16091535 - 20 Sep 2016
Cited by 10 | Viewed by 2890
Abstract
This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The [...] Read more.
This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. Full article
Show Figures

Figure 1

Open AccessArticle
A Laser Line Auto-Scanning System for Underwater 3D Reconstruction
Sensors 2016, 16(9), 1534; https://doi.org/10.3390/s16091534 - 20 Sep 2016
Cited by 12 | Viewed by 2284
Abstract
In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D [...] Read more.
In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory. Full article
Show Figures

Figure 1

Open AccessArticle
Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method
Sensors 2016, 16(9), 1533; https://doi.org/10.3390/s16091533 - 20 Sep 2016
Cited by 19 | Viewed by 2793
Abstract
Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au [...] Read more.
Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessReview
Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview
Sensors 2016, 16(9), 1531; https://doi.org/10.3390/s16091531 - 20 Sep 2016
Cited by 33 | Viewed by 3929
Abstract
Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW) networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and [...] Read more.
Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW) networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors. Full article
(This article belongs to the Special Issue Gas Nanosensors)
Show Figures

Figure 1

Open AccessArticle
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
Sensors 2016, 16(9), 1530; https://doi.org/10.3390/s16091530 - 20 Sep 2016
Cited by 21 | Viewed by 2542
Abstract
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, [...] Read more.
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Research on the Lift-off Effect of Receiving Longitudinal Mode Guided Waves in Pipes Based on the Villari Effect
Sensors 2016, 16(9), 1529; https://doi.org/10.3390/s16091529 - 20 Sep 2016
Cited by 4 | Viewed by 2329
Abstract
The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to [...] Read more.
The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to the electromagnetic energy. In the existing magnetomechanical models, the change of the magnetic field in the air gap was ignored since the permeability of the rod is much greater than that of air. The lift-off distance of the receiving coil will not affect the receiving signals based on these models. However, the experimental phenomenon is in contradiction with these models. To solve the contradiction, the lift-off effect of receiving the longitudinal mode guided waves in pipes is investigated based on the Villari effect. A finite element model of receiving longitudinal guided waves in pipes is obtained based on the Villari effect, which takes into account the magnetic field in the pipe wall and the air zone at the same time. The relation between the amplitude of the induced signals and the radius (lift-off distance) of the receiving coil is obtained, which is verified by experiment. The coupling efficiency of the receiver is a monotonic decline with the lift-off distance increasing. The decay rate of the low frequency wave is slower than the high frequency wave. Additionally, the results show that the rate of change of the magnetic flux in the air zone and in the pipe wall is the same order of magnitude, but opposite. However, the experimental results show that the error of the model in the large lift-off distance is obvious due to the diffusion of the magnetic field in the air, especially for the high frequency guided waves. Full article
(This article belongs to the Special Issue Non-Contact Sensing)
Show Figures

Figure 1

Open AccessArticle
Combating QR-Code-Based Compromised Accounts in Mobile Social Networks
Sensors 2016, 16(9), 1522; https://doi.org/10.3390/s16091522 - 20 Sep 2016
Cited by 4 | Viewed by 2111
Abstract
Cyber Physical Social Sensing makes mobile social networks (MSNs) popular with users. However, such attacks are rampant as malicious URLs are spread covertly through quick response (QR) codes to control compromised accounts in MSNs to propagate malicious messages. Currently, there are generally two [...] Read more.
Cyber Physical Social Sensing makes mobile social networks (MSNs) popular with users. However, such attacks are rampant as malicious URLs are spread covertly through quick response (QR) codes to control compromised accounts in MSNs to propagate malicious messages. Currently, there are generally two types of methods to identify compromised accounts in MSNs: one type is to analyze the potential threats on wireless access points and the potential threats on handheld devices’ operation systems so as to stop compromised accounts from spreading malicious messages; the other type is to apply the method of detecting compromised accounts in online social networks to MSNs. The above types of methods above focus neither on the problems of MSNs themselves nor on the interaction of sensors’ messages, which leads to the restrictiveness of platforms and the simplification of methods. In order to stop the spreading of compromised accounts in MSNs effectively, the attacks have to be traced to their sources first. Through sensors, users exchange information in MSNs and acquire information by scanning QR codes. Therefore, analyzing the traces of sensor-related information helps to identify the compromised accounts in MSNs. This paper analyzes the diversity of information sending modes of compromised accounts and normal accounts, analyzes the regularity of GPS (Global Positioning System)-based location information, and introduces the concepts of entropy and conditional entropy so as to construct an entropy-based model based on machine learning strategies. To achieve the goal, about 500,000 accounts of Sina Weibo and about 100 million corresponding messages are collected. Through the validation, the accuracy rate of the model is proved to be as high as 87.6%, and the false positive rate is only 3.7%. Meanwhile, the comparative experiments of the feature sets prove that sensor-based location information can be applied to detect the compromised accounts in MSNs. Full article
(This article belongs to the Special Issue New Paradigms in Cyber-Physical Social Sensing)
Show Figures

Figure 1

Open AccessArticle
Modeling and Implementation of Multi-Position Non-Continuous Rotation Gyroscope North Finder
Sensors 2016, 16(9), 1513; https://doi.org/10.3390/s16091513 - 20 Sep 2016
Cited by 4 | Viewed by 2760
Abstract
Even when the Global Positioning System (GPS) signal is blocked, a rate gyroscope (gyro) north finder is capable of providing the required azimuth reference information to a certain extent. In order to measure the azimuth between the observer and the north direction very [...] Read more.
Even when the Global Positioning System (GPS) signal is blocked, a rate gyroscope (gyro) north finder is capable of providing the required azimuth reference information to a certain extent. In order to measure the azimuth between the observer and the north direction very accurately, we propose a multi-position non-continuous rotation gyro north finding scheme. Our new generalized mathematical model analyzes the elements that affect the azimuth measurement precision and can thus provide high precision azimuth reference information. Based on the gyro’s principle of detecting a projection of the earth rotation rate on its sensitive axis and the proposed north finding scheme, we are able to deduct an accurate mathematical model of the gyro outputs against azimuth with the gyro and shaft misalignments. Combining the gyro outputs model and the theory of propagation of uncertainty, some approaches to optimize north finding are provided, including reducing the gyro bias error, constraining the gyro random error, increasing the number of rotation points, improving rotation angle measurement precision, decreasing the gyro and the shaft misalignment angles. According them, a north finder setup is built and the azimuth uncertainty of 18” is obtained. This paper provides systematic theory for analyzing the details of the gyro north finder scheme from simulation to implementation. The proposed theory can guide both applied researchers in academia and advanced practitioners in industry for designing high precision robust north finder based on different types of rate gyroscopes. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Spatial Ecology of Estuarine Crocodile (Crocodylus porosus) Nesting in a Fragmented Landscape
Sensors 2016, 16(9), 1527; https://doi.org/10.3390/s16091527 - 19 Sep 2016
Cited by 10 | Viewed by 3089
Abstract
The role that oil palm plays in the Lower Kinabatangan region of Eastern Sabah is of considerable scientific and conservation interest, providing a model habitat for many tropical regions as they become increasingly fragmented. Crocodilians, as apex predators, widely distributed throughout the tropics, [...] Read more.
The role that oil palm plays in the Lower Kinabatangan region of Eastern Sabah is of considerable scientific and conservation interest, providing a model habitat for many tropical regions as they become increasingly fragmented. Crocodilians, as apex predators, widely distributed throughout the tropics, are ideal indicator species for ecosystem health. Drones (or unmanned aerial vehicles (UAVs)) were used to identify crocodile nests in a fragmented landscape. Flights were targeted through the use of fuzzy overlay models and nests located primarily in areas indicated as suitable habitat. Nests displayed a number of similarities in terms of habitat characteristics allowing for refined modelling of survey locations. As well as being more cost-effective compared to traditional methods of nesting survey, the use of drones also enabled a larger survey area to be completed albeit with a limited number of flights. The study provides a methodology for targeted nest surveying, as well as a low-cost repeatable flight methodology. This approach has potential for widespread applicability across a range of species and for a variety of study designs. Full article
(This article belongs to the Special Issue UAV-Based Remote Sensing) Printed Edition available
Show Figures

Figure 1

Open AccessArticle
Potential Seasonal Terrestrial Water Storage Monitoring from GPS Vertical Displacements: A Case Study in the Lower Three-Rivers Headwater Region, China
Sensors 2016, 16(9), 1526; https://doi.org/10.3390/s16091526 - 19 Sep 2016
Cited by 3 | Viewed by 2350
Abstract
This study uses the observed vertical displacements of Global Positioning System (GPS) time series obtained from the Crustal Movement Observation Network of China (CMONOC) with careful pre- and post-processing to estimate the seasonal crustal deformation in response to the hydrological loading in lower [...] Read more.
This study uses the observed vertical displacements of Global Positioning System (GPS) time series obtained from the Crustal Movement Observation Network of China (CMONOC) with careful pre- and post-processing to estimate the seasonal crustal deformation in response to the hydrological loading in lower three-rivers headwater region of southwest China, followed by inferring the annual EWH changes through geodetic inversion methods. The Helmert Variance Component Estimation (HVCE) and the Minimum Mean Square Error (MMSE) criterion were successfully employed. The GPS inferred EWH changes agree well qualitatively with the Gravity Recovery and Climate Experiment (GRACE)-inferred and the Global Land Data Assimilation System (GLDAS)-inferred EWH changes, with a discrepancy of 3.2–3.9 cm and 4.8–5.2 cm, respectively. In the research areas, the EWH changes in the Lancang basin is larger than in the other regions, with a maximum of 21.8–24.7 cm and a minimum of 3.1–6.9 cm. Full article
(This article belongs to the Section Remote Sensors, Control, and Telemetry)
Show Figures

Figure 1

Open AccessArticle
FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves
Sensors 2016, 16(9), 1525; https://doi.org/10.3390/s16091525 - 19 Sep 2016
Cited by 5 | Viewed by 1941
Abstract
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on [...] Read more.
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. Full article
Show Figures

Figure 1

Open AccessArticle
A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings
Sensors 2016, 16(9), 1524; https://doi.org/10.3390/s16091524 - 19 Sep 2016
Cited by 12 | Viewed by 1999
Abstract
The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse [...] Read more.
The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse and it is difficult to achieve sparsity using the conventional techniques, which impedes the application of CS theory. Therefore, it is of great significance to promote the sparsity when applying the CS theory to fault diagnosis of roller bearings. To increase the sparsity of vibration signals, a sparsity-promoted method called the tunable Q-factor wavelet transform based on decomposing the analyzed signals into transient impact components and high oscillation components is utilized in this work. The former become sparser than the raw signals with noise eliminated, whereas the latter include noise. Thus, the decomposed transient impact components replace the original signals for analysis. The CS theory is applied to extract the fault features without complete reconstruction, which means that the reconstruction can be completed when the components with interested frequencies are detected and the fault diagnosis can be achieved during the reconstruction procedure. The application cases prove that the CS theory assisted by the tunable Q-factor wavelet transform can successfully extract the fault features from the compressed samples. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Open AccessArticle
Friendly-Sharing: Improving the Performance of City Sensoring through Contact-Based Messaging Applications
Sensors 2016, 16(9), 1523; https://doi.org/10.3390/s16091523 - 18 Sep 2016
Cited by 8 | Viewed by 2100
Abstract
Regular citizens equipped with smart devices are being increasingly used as “sensors” by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile [...] Read more.
Regular citizens equipped with smart devices are being increasingly used as “sensors” by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile devices, and on storing the messages in these devices for subsequent delivery to cloud-based services. An effective way to increase the number of messages that can be shared is to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where, during a contact, the users are aware of the time needed to interchange the messages stored in their buffers, and they can thus decide to wait more time in order to increase the message sharing probability. The performance of this approach is anyway closely related to the size of the buffer in the device. We therefore compare various policies either for the message selection at forwarding times and for message dropping when the buffer is full. We evaluate our proposal with a modified version of the Opportunistic Networking Environment (ONE) simulator and using real human mobility traces. Full article
(This article belongs to the Special Issue Smart City: Vision and Reality)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop