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Abstract: Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and
therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce
low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based
MIF method has been proposed in this paper. The proposed method can generate high-quality fused
images using the weighting fusion strategy based on the firing times of the SCM. In the weighting
fusion scheme, the weight is determined by combining the entropy information of pulse outputs of
the SCM with the Weber local descriptor operating on the firing mapping images produced from the
pulse outputs. The extensive experiments on multimodal medical images show that compared with
the numerous state-of-the-art MIF methods, the proposed method can preserve image details very
well and avoid the introduction of artifacts effectively, and thus it significantly improves the quality of
fused images in terms of human vision and objective evaluation criteria such as mutual information,
edge preservation index, structural similarity based metric, fusion quality index, fusion similarity
metric and standard deviation.

Keywords: multimodal medical image fusion; spiking cortical model; weighting fusion; entropy;
Weber local descriptor

1. Introduction

With the development of medical imaging technology, various imaging modals such as ultrasound
(US) imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET) and single-photon emission computed tomography (SPECT) are finding a range
of applications in diagnosis and assessment of medical conditions that affect brain, breast, lungs,
soft tissues, bones and so on [1]. Owing to the difference in imaging mechanism and the high
complexity of human histology, medical images of different modals provide a variety of complementary
information about the human body. For example, CT is well-suited for imaging dense structures like
non-metallic implants and bones with relatively less distortion. Likewise, MRI can visualize the
pathological soft tissues better whereas PET can measure the amount of metabolic activity at a site in
the body. Multimodal medical image fusion (MIF) aims to integrate complementary information from
multimodal images into a single new image to improve the understanding of the clinical information
in a new space. Thus, MIF plays an important role in diagnosis and treatment of diseases and has
found wide clinical applications, such as US-MRI for prostate biopsy [1], PET-CT in lung cancer [2],
MRI-PET in brain disease [3] and SPECT-CT in breast cancer [4].

Numerous image fusion algorithms have been proposed by working at pixel level, feature level
or decision level. Among these methods, the pixel-level fusion scheme has been investigated most
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widely due to its advantage of containing the original measured quantities, easy implementation and
computational efficiency [5]. Existing pixel-level image fusion methods generally include substitution
methods, multi-resolution fusion methods and neural network based methods. The substitution
methods such as intensity hue saturation [6,7], principal component analysis [8] based methods can
be implemented with high efficiency but at the expense of reduced contrast and distortion of the
spectral characteristics. Image fusion methods based on the multi-resolution decomposition techniques
can preserve important image features better than substitution methods via the decomposition
of images at a different scale to several components using pyramid (e.g., contrast pyramid [9]
and gradient pyramid [10]), empirical mode decomposition [11] or various transforms including
wavelet transform [12–14], curvelet transform [15], ripplet transform [16], contourlet transform [17],
non-subsampled contourlet transform (NSCT) [18–22] and shift-invariant shearlet transform [23,24].
However, the transform based fusion methods involve much higher computational complexity than
the substitution methods, and it is challenging to adaptively determine the involved parameters in
these methods for the different medical images.

The various neural networks such as self-generating neural network [25] and pulse coupled
neural network (PCNN) have been used for image fusion. Different from some traditional neural
networks, PCNN, as the third generation artificial neural network, has biological background and it
is derived from the phenomena of synchronous pulse bursts in the visual cortex of mammals [26,27].
The PCNN based MIF method has gained much attention due to its great advantages of being
very generic and requiring no training. The parallel image fusion method using multiple PCNNs
has been proposed by Li et al. [28]. The multi-channel PCNN (m-PCNN) based fusion method
has been proposed by Wang et al. [29], and it has been further improved by Zhao et al. [30].
Recently, PCNN has been combined with multi-resolution decomposition methods such as the
wavelet transform [31], the NSCT [32–36], the shearlet transform [37,38] and the empirical mode
decomposition [39]. These methods involve such disadvantages as high computational complexity,
difficulty in adaptively determining PCNN parameters for various source images and image contrast
reduction or loss of image details. In view of high computational complexity of PCNN, Zhan et al. [40]
have recently proposed a computationally more efficient spiking cortical model (SCM), a single-layer,
local-connected and two-dimensional neural network. Wang et al. [41] have presented a fusion
method based on the firing times of the SCM (SCM-F). Despite the superiority of SCM over PCNN in
computational efficiency, the SCM-F method will lead to loss of image details during fusion because it
only utilizes the firing times of individual neurons in the SCM to establish the fusion rule, and employs
a too simple fusion strategy.

To address the problem of unwanted image degradation during fusion for the above-mentioned
fusion methods, we have proposed a distinctive SCM based weighting fusion method. In the proposed
method, the weight is computed based on the multi-features of pulse outputs produced by SCM
neurons in a neighborhood rather than the individual neurons. The multi-features include the entropy
information of pulse outputs, which can characterize the gray-level information of source images,
and the Weber local descriptor (WLD) feature [42] of firing mapping images produced from pulse
outputs, which can represent the local structural information of source images. Compared with the
PCNN based fusion method, the proposed SCM based method using the multi-features of pulse
outputs (SCM-M) has such advantages as higher computational efficiency, simpler parameter tuning
as well as less contrast reduction and loss of image details. Meanwhile, the proposed SCM-M method
can preserve the details of source images better than the SCM-F method. Extensive experiments on CT
and MR images demonstrate the superiority of the proposed method over numerous state-of-the-art
fusion methods.

The remainder of the paper is structured as follows. Section 2 describes the spiking cortical
model. Section 3 presents the details of the proposed SCM-M method. The experimental results
and discussions are presented in Section 4. Conclusions and future research directions are given in
Section 5.
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2. Spiking Cortical Model

The spiking cortical model (SCM) is derived from several other visual cortex models such as
Eckhorn’s model [26,27]. The SCM has been specially designed for image processing applications.
The structural model of the SCM is presented in Figure 1. As shown in Figure 1, each neuron Ni,j at
(i,j) corresponds to one pixel in an input image, receiving its normalized intensity as feeding input
Oi,j and the local stimuli from its neighboring neurons as the linking input. The feeding input and
the liking input are combined together as the internal activity Fi,j of Ni,j. The neuron Ni,j will fire and
a pulse output Yi,j will be generated if Fi,j exceeds a dynamic threshold Θi,j. The above process can be
expressed by [40]:

Fi,j[n] = f Fi,j[n− 1] + Oi,j + Oi,j∑
k,l

Wi,j,k,lYk,l [n− 1] (1)

Yi,j[n] =

 1 i f Fi,j[n] > Θi,j[n− 1]

0 otherwise
(2)

Θi,j[n] = g Θ
i, j [n− 1] + h Yi,j[n− 1] (3)

where f and g are decay constants less than 1; h is the scalar of large value; n denotes the number of
iterations (1 ≤ n ≤ Nmax, Nmax is the maximum iteration times); and Wi,j,k,l is the synaptic weight
between Ni,j and its linking neuron Nk,l and it is defined as:

Wi,j,k,l =


1√

(i−k)2+(j−l)2
i f (i, j) 6= (k, l)

0 otherwise
(4)
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Figure 1. The structural model illustrating the spiking cortical model (SCM). 

Through iterative computation, the SCM neurons output the temporal series of binary pulse 
images. The temporal series contain much useful information of input images. To explain this point 
better, Figure 2 shows the temporal series produced by the SCM with f = 0.9, g = 0.3, h = 20 and Nmax = 7 
operating on an input MR image shown in Figure 2a. In Figure 2, we can see that during the various 
iterations, the output binary images contain different image information and the outputs of the SCM 
typically represent such important information as the segments and edges of the input image. The 
observation from Figure 2 indicates that the SCM can describe human visual perception. Therefore, 
the pulse outputs of the SCM can be utilized for image fusion. 

Figure 1. The structural model illustrating the spiking cortical model (SCM).

Through iterative computation, the SCM neurons output the temporal series of binary pulse
images. The temporal series contain much useful information of input images. To explain this point
better, Figure 2 shows the temporal series produced by the SCM with f = 0.9, g = 0.3, h = 20 and
Nmax = 7 operating on an input MR image shown in Figure 2a. In Figure 2, we can see that during
the various iterations, the output binary images contain different image information and the outputs
of the SCM typically represent such important information as the segments and edges of the input
image. The observation from Figure 2 indicates that the SCM can describe human visual perception.
Therefore, the pulse outputs of the SCM can be utilized for image fusion.
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Figure 2. Temporal series of pulse outputs generated by the SCM operating on magnetic resonance
(MR) image: (a) MR image; and (b–h) the binary pulse images from the first to the seventh
iteration, respectively.

3. SCM Based Image Fusion

The weighting fusion framework of the proposed SCM-M method is given in Figure 3. The key
components of this method include the fusion rule and the weight computation. In the proposed
method, the fusion rule is established based on the firing times of pulse outputs generated by the SCM.
The weight is computed based on the similarity between the two source images, which is determined
by combining the entropy information of pulse outputs from the SCM with the WLD operating on the
resultant firing mapping image (FMI).
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3.1. Fusion Rule

The two source images, A and B, are normalized and fed into the two SCMs as the external
stimulus. By running the SCMs for Nmax times, we will obtain the firing times TA

i,j and TB
i,j for each

pixel at (i,j) in the source images as:

TA
i,j =

Nmax

∑
k=1

YA
i,j [k] (5)
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TB
i,j =

Nmax

∑
k=1

YB
i,j[k] (6)

Based on the firing times TA
i,j and TB

i,j, two FMIs TA and TB will be produced. From Equations (5)
and (6), we can see that the FMI is actually the sum of temporal series of pulse outputs produced by
the SCM. Figure 4 shows the FMIs generated by the SCM with f = 0.9, g = 0.3, h = 20 and different Nmax

operating on a pair of MR images. It should be noted that here the FMIs have been scaled linearly
to fit the range [0, 255]. In Figure 4, we can see that the FMI provides a means for representing the
information of source images. The representation ability is related to the parameters of the SCM,
especially the parameter Nmax. A too small (e.g., Nmax = 10) or a too large Nmax (e.g., Nmax = 50) tends
to produce the loss of important image details as shown in Figure 4b,d. A proper Nmax for the SCM
can facilitate representing image details in the source images very well, which is of great significance
for medical image fusion.
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images; (b,f) FMIs with Nmax = 10 for (a,e); (c,g) FMIs with Nmax = 30 for (a,e); and (d,h) FMIs with
Nmax = 50 for (a,e).

For each pixel at (i,j) in two FMIs TA and TB, two image patches of size (2Lp + 1) × (2Lp + 1)
centered at this pixel will be considered in order to represent the local statistical characteristics, which
is more advantageous for the effective fusion of source images than the characteristics of individual
pixels. The statistical characteristics of the two image patches will be characterized by the local energy
EA

i,j and EB
i,j defined as:

EA
i,j =

√√√√ Lp

∑
m=−Lp

Lp

∑
n=−Lp

(TA
i+m,j+n)

2 (7)

EB
i,j =

√√√√ Lp

∑
m=−Lp

Lp

∑
n=−Lp

(TB
i+m,j+n)

2 (8)

According to the relationship between EA
i,j and EB

i,j, the following fusion rule will be established
and correspondingly the intensity of the pixel at (i,j) in the fused image U will be expressed as:

Ui,j =

 ωi,j IA
i,j + (1−ωi,j)IB

i,j EA
i,j > EB

i,j

(1−ωi,j)IA
i,j + ωi,j IB

i,j EA
i,j ≤ EB

i,j

(9)
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where IA
i,j and IB

i,j denote the pixel intensity at (i,j) in the source images A and B, respectively; ωi,j denotes
the weight, which has an important influence on the quality of the fused image because it will determine
the contribution of source images to the fused result. To ensure good image fusion effect, ωi,j will
generally take a relatively big value to highlight the contribution of IA

i,j if EA
i,j > EB

i,j, and otherwise it

will take a relatively small value to underscore the contribution of IB
i,j.

3.2. Weight Computation

To obtain the suitable weight ωi,j, the local neighborhood (i.e., image patch) Qi,j of size
(2Lp + 1) × (2Lp + 1) centered at (i,j) in any source image will be considered. It is desirable to compute
this weight based on the similarity between two image patches QA

i,j and QB
i,j. To determine this

similarity effectively, the gray-level information and the saliency of Qi,j will be utilized simultaneously.
Here, the entropy of pulse outputs and the Weber local descriptor proposed in [42] will be adopted to
characterize the gray-level distribution of Qi,j and its saliency, respectively.

3.2.1. Similarity Computation Based on the Entropy Information

For any pixel at (i,j) in each pulse image at the n-th iteration, the image patch Gi,j[n] of size
(2Lp + 1) × (2Lp + 1) centered at this pixel is considered. To describe the information contained
in Gi,j[n], its Shannon entropy Hi,j[n] is utilized. The entropy Hi,j[n] is computed as:

Hi,j[n] = −P1
i,j[n]log

P1
i,j [n]

2 − P0
i,j[n]log

P0
i,j [n]

2 (10)

where P1
i,j[n] and P0

i,j[n] (P0
i,j[n] = 1 − P1

i,j[n]) denote the probability of the 1’s and 0’s in Gi,j[n],
respectively. Here, the probability P1

i,j[n] is defined as:

P1
i,j[n] =

Ki,j[n]
(2Lp + 1)× (2Lp + 1)

(11)

where Ki,j[n] denotes the number of 1’s in Gi,j[n].
The Shannon entropy from the various iterations will form the feature vector Vi,j (Vi,j ={

Hi,j[1], Hi,j[2], . . . , Hi,j[Nmax − 1], Hi,j[Nmax]
}

). From Equation (10), we can see that if the image patch
Qi,j in any source image is a homogenous region, the Shannon entropy Hi,j[n] for all the iterations
will be zero because P1

i,j[n] = 1 or P0
i,j[n] = 1, thereby producing a zero vector Vi,j. Otherwise,

because Hi,j[n] will not be zero for some iteration times, Vi,j will include the nonzero elements,
whose values will depend on the gray-level distribution of Qi,j. The above analysis indicates that the
gray-level information of Qi,j can be characterized by Vi,j. Accordingly, Vi,j can be considered as the
feature extracted from Qi,j.

The difference Di,j between the features of two image patches QA
i,j and QB

i,j is calculated as:

Di,j = ||VA
i,j −VB

i,j||2 (12)

where || · ||2 denotes the Euclidean norm.
Based on the difference Di,j, the similarity SEn

i,j between QA
i,j and QB

i,j based on the entropy
information will be defined as:

SEn
i,j = 1−

Di,j

CS1
(13)

where CS1 is a constant.
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3.2.2. Similarity Computation Based on the WLD

In this paper, the WLD is adopted to extract the salient features of an image patch of interest in
the firing mapping image, which can be utilized to represent the saliency of the image patch Qi,j in
any source image. The WLD is chosen due to its high computational efficiency and excellent ability in
finding local salient patterns within an image to simulate the pattern perception of human beings [42].
Indeed, there are many other sparse and dense descriptors such as the scale invariant feature transform
(SIFT) and the local binary pattern (LBP). Compared with the SIFT the LBP, the WLD is computed
around a relatively small square region and it extracts the local salient patterns by means of the
differential excitation [42]. Therefore, the WLD can capture more local salient patterns than the SIFT
and the LBP.

The computation of the WLD stems from Weber’s Law that the ratio of the increment threshold
(i.e., a just noticeable difference) to the background intensity is a constant. For the current pixel at (i,j)
in the FMI TA or TB, the difference Ri,j between this pixel and its neighbors in an image patch of size
(2Lp + 1) × (2Lp + 1) is given by:

Ri,j =
Lp

∑
m=−Lp

Lp

∑
n=−Lp

(Ti+m,j+n − Ti,j) (14)

It can be seen from Equation (14) that the computation of Ri,j is very similar to the Laplacian
operation. Following the hints in Weber’s Law, the differential excitation ξi,j of the current pixel for the
WLD is computed as [42]:

ξi,j = arctan(
Ri,j

Ti,j
) = arctan

 Lp

∑
m=−Lp

Lp

∑
n=−Lp

(
Ti+m,j+n − Ti,j

Ti,j

) (15)

where the arctangent function is used to prevent the output from increasing or decreasing too quickly
when the input becomes larger or smaller [42].

As discussed in [42], the WLD can indicate the saliency of the local neighborhood very well
because of its powerful representation ability for such important features as edges and textures.
To explain this point better, Figure 5 shows the results of the WLD operating on the FMIs shown in
Figure 4c,d,g,h. The comparisons between Figures 4 and 5 show that both the strong and weak edges
in Figure 4 have become more salient in the results of the WLD than in the FMIs. Therefore, the WLD
operating on the FMIs can bring out the local image structural features of source images very well,
which are highly beneficial for medical diagnosis based on different imaging modalities. It will be
desirable to utilize these extracted salient image features to determine the similarity SWLD

i,j between

QA
i,j and QB

i,j in the source images, i.e.,

SWLD
i,j = 1−

∣∣∣ξA
i,j − ξB

i,j

∣∣∣
CS2

(16)

where CS2 is a constant.
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3.2.3. Weight Determining Based on the Combined Similarity

By combining SEn
i,j with SWLD

i,j , the weight ωi,j in Equation (9) will be presented as:

ωi,j = SEn
i,j · SWLD

i,j (17)

From Equation (17), we can see that if the two image patches centered at (i,j) in the source
images have the same local structure, which means the same WLD, ωi,j will be determined by SEn

i,j
which is related to the intensity distributions of image patches in the source images. Likewise,
ωi,j will depend on SWLD

i,j , which is related to the local image structure if the two image patches have
the same gray-level distributions. The above analysis shows that ωi,j can represent the similarity
between two image patches effectively by combining their gray-level information with their local
structure. It should be noted that ωi,j is also likely to be computed using such non-Euclidean similarity
measures as Cosine distance measure and Pearson correlation, which is scale and translation invariant.
When Pearson correlation is used to measure the similarity between Shannon entropy feature vectors of
two considered image patches, it can address scale and translation changes of feature vectors. However,
this correlation requires that the variables follow a bivariate normal distribution. The possibility of
utilizing non-Euclidean similarity measures for the similarity computation in the weighting fusion
strategy will be explored in-depth in future work.

3.3. Implementation of the SCM-M Method

The implementation of the proposed SCM-M method can be summarized as the following steps:

(1) The two source images A and B are input into two SCMs. After running the SCM for Nmax times,
the series of binary pulse images will be obtained for the source images using Equations (1)–(4).

(2) For each pixel at (i,j) in A and B, the Shannon entropy from the various iterations is computed on
the output pulse images using Equation (10) to generate two feature vectors VA

i,j and VB
i,j. Based on

the difference between the two feature vectors, the similarity SEn
i,j between two image patches QA

i,j

and QB
i,j centered at (i,j) is computed using Equation (13).

(3) The output pulse images are utilized to generate the firing mapping images for two source images.
For any pixel at (i,j) in two FMIs, the local energy EA

i,j and EB
i,j are computed on the considered

two image patches centered at this pixel using Equations (7) and (8), respectively. Meanwhile,
the WLD is computed for the two image patches using Equation (15) to determine the similarity
SWLD

i,j between QA
i,j and QB

i,j using Equation (16).

(4) The weight ωi,j is determined by SEn
i,j and SWLD

i,j using Equation (17).

(5) According to the relationship between EA
i,j and EB

i,j, the fused image is produced by the weighted
sum of two source images using Equation (9).
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4. Experimental Results and Discussions

To demonstrate the effectiveness of the proposed SCM-M method, extensive experiments have
been done on eight groups of CT and MR images shown in Figure 6. All the images are chosen
from the website [43]. Each image is of size 256 × 256. Two images in each image pair include the
complementary information. Here, Groups 1–3 are three pairs of CT and MR images of different
regions in the brain of a patient with acute stroke. Group 4 includes the transaxial MR images of the
normal brain. Groups 5 and 6 are MR images of the brain of patients with vascular dementia and
AIDS dementia, respectively. Groups 7 and 8 are two pairs of CT and MR images of the brain of the
patients with cerebral toxoplasmosis and fatal stroke. Please note that intensity standardization and
inhomogeneity correction have been performed on all MR images by the above website.
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To verify the advantage of the SCM-M method, it has been compared with the discrete wavelet
transform (DWT), the NSCT [21], the combination of NSCT and sparse representation (NSCT-SR) [21],
m-PCNN [29], PCNN-NSCT [32] and SCM-F [41] based fusion methods. The code of the DWT and
PCNN-NSCT methods is available on the websites [44,45], respectively. The code of the NSCT and
NSCT-SR methods can be found on the website [46].
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4.1. Parameter Settings

For the DWT fusion method, the wavelet and the number of decomposition levels are chosen to
be DBSS(2,2) and 4, respectively. For the m-PCNN method and the SCM-F method, all the involved
parameters are chosen as suggested in [29,41], respectively. For the NSCT and NSCT-SR methods,
we have used the “pyrexc” as the pyramid filter and the “vk” as the directional filter. The number
of directions of the four decomposition levels from coarse to fine is selected as 2, 3, 3, 4, respectively.
For the PCNN-NSCT method, we have chosen the decay constant αL = 0.5, the linking strength β = 3
and the amplitude gain Vθ = 0.5 in the PCNN while keeping other parameters to be the same as those
in [32]. As regards the proposed method, we have fixed f = 0.9, g = 0.3, h = 20, Lp = 1, CS1 = 3 × Nmax,
CS2 = 5 × π and chosen Nmax to be close to 20.

4.2. Visual Comparisons of Fused Results

Figures 7–10 show the fused results for the evaluated seven methods operating on such medical
image pairs as Groups 1, 2, 4 and 5 shown in Figure 6, respectively. The observation from
Figures 7, 8 and 10 shows that the DWT, NSCT and NSCT-SR methods introduce artifacts as well
as false information in the fused results as indicated by the red boxes, which will greatly influence
the quality of the fused images. Meanwhile, it is shown in Figures 7 and 9 that the above three fusion
methods cannot preserve image details well in that they produce the obvious distortion of image details
marked by the red boxes in the fused results. The m-PCNN method cannot maintain the luminance
of the fused results and it produces such low-contrast fused images that some important image
details are difficult to identify, which is very disadvantageous for clinical diagnosis. The PCNN-NSCT
method and the SCM-F method lead to loss of some important details in the source images to different
extent. For example, for Groups 4 and 5, although almost all the details in the MR-T1 images can be
transferred to the fused images by the PCNN-NSCT method very well, many details in the MR-T2
images have not been preserved by this method as indicated by the red boxes in the fused images
shown in Figures 9e and 10e. For Groups 1, 2, and 5, some image details have been seriously damaged
by the SCM-F method as shown by the red boxes in Figures 7f, 8f and 10f.
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Figure 7. Fused results of the evaluated methods for the first group of source images shown in
Figure 6a,b: (a) the discrete wavelet transform (DWT) method; (b) the non-subsampled contourlet
transform (NSCT) method; (c) the NSCT-SR method; (d) the multi-channel pulse coupled neural
network (m-PCNN) method; (e) the PCNN-NSCT method; (f) the SCM-F method; and (g) the
SCM-M method.
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By comparison, the SCM-M method not only provides high contrast for the fused images, but also
maintains important information from the various source images in the fused results effectively.
In particular, the proposed method can preserve fine image details very well as shown by the red
boxes in Figures 9g and 10g without introducing artifacts or leading to edge blurring. The above
comparisons demonstrate the superiority of the SCM-M method over other compared methods in that
the fused images obtained by this method are more clear, informative, and have higher contrast.

To further verify the advantage of the proposed SCM-M method in multimodal image fusion,
Figures 11 and 12 show the enlarged views of fused results for all evaluated methods operating on
regions of interest (ROIs) denoted by the red boxes in Groups 1 and 6 in Figure 6, respectively. Figure 13
shows the enlarged views of fused results for the proposed method, the m-PCNN method and the
SCM-F method operating on ROIs denoted by the red boxes in Groups 7 and 8 shown in Figure 6.
In Figures 11 and 12, we can see that the SCM-M method can maintain the salient information in
the source images and provide better visual perception with less loss in luminance or contrast than
other compared methods. To explain this point better, some edges and regions have been chosen from
Figures 11g and 12g. It can be seen from Figure 11 that the SCM-M method can provide better edge
preservation than all other methods as pointed by the three red arrows. Meanwhile, compared with
the DWT, NSCT and NSCT-SR methods, the SCM-M method can maintain the information in the
MR image shown in Figure 6f better without introducing artifacts as indicated by the two red boxes.
In Figure 12, we can see that the proposed method can keep the integrity of the edge marked by
the red arrow best among all evaluated methods. Likewise, as pointed by the green arrow, the edge
can be preserved very well by the proposed method while it has been damaged very seriously by
other methods. Besides, the sharpness of the region shown by the red box can be maintained by the
proposed method better than by the compared method. Furthermore, it can be seen in Figure 13 that
compared with the m-PCNN and SCM-F methods, the SCM-M method can preserve fine image details
and maintain image contrast better.
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Figure 8. Fused results of the evaluated methods for the second group of source images shown in
Figure 6c,d: (a) the DWT method; (b) the NSCT method; (c) the NSCT-SR method; (d) the m-PCNN
method; (e) the PCNN-NSCT method; (f) the SCM-F method; and (g) the SCM-M method.
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discrete probabilities of A, B and U  and are obtained by summing p over a, b, and u, respectively.  

(2) EQ   

The metric EQ  measures the similarity between the edges transferred during the fusion 
process, and it is defined as:  

Figure 12. Enlarged views of fused results of ROIs denoted by the red boxes in Group 6 in Figure 6
for the seven methods: (a) the DWT method; (b) the NSCT method; (c) the NSCT-SR method; (d) the
m-PCNN method; (e) the PCNN-NSCT method; (f) the SCM-F method; and (g) the SCM-M method.
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Figure 13. Enlarged views of fused results of ROIs denoted by the red boxes in Groups 7 and 8 shown
in Figure 6 for the m-PCNN, SCM-F and SCM-M methods: (a) the m-PCNN method for Group 7;
(b) the SCM-F method for Group 7; (c) the SCM-M method for Group 7; (d) the m-PCNN method for
Group 8; (e) the SCM-F method for Group 8; and (f) the SCM-M method for Group 8.

4.3. Quantitative Comparison of Fused Results

The performance of these compared methods is appreciated in terms of quantitative indexes
including mutual information (QM) [47], edge preservation index (QE) [48], structural similarity
(SSIM) [49] based metric (QS) [50], fusion quality index (QL) [51] and the fusion similarity metric
(QT) [52] and standard deviation (STD). Higher values for these indexes indicate better fusion results.

(1) QM

The metric QM reflects the total amount of information that the fused image contains about
two source images, and it is defined as:

QM = MI(A, U) + MI(B, U) (18)

where

MI(A, U) = ∑
a∈A

∑
u∈U

p(a, u)log2
p(a, u)

p(a)p(u)
(19)

MI(B, U) = ∑
b∈B

∑
u∈U

p(b, u)log2
p(b, u)

p(b)p(u)
(20)

where p(a, u) and p(b, u) are the discrete joint probability, p(b) and p(u) are the marginal discrete
probabilities of A, B and U and are obtained by summing p over a, b, and u, respectively.

(2) QE

The metric QE measures the similarity between the edges transferred during the fusion process,
and it is defined as:

QE =

Y
∑

m=1

Z
∑

n=1
QA,U

m,n wA
m,n + QB,U

m,n wB
m,n

Y
∑

m=1

Z
∑

n=1
wA

m,n + wB
m,n

(21)
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where
QA,U

m,n = QA,U
g,m,nQA,U

α,m,n (22)

QB,U
m,n = QB,U

g,m,nQB,U
α,m,n (23)

where Q∗,Ug,m,n and Q∗,Uα,m,n denote the edge strength and orientation preservation values at (m, n) in
the image A or B, respectively; wA

m,n and wB
m,n denotes the weight for QA,U

m,n and QB,U
m,n , respectively;

and Y and Z are the width and the height of U, respectively.

(3) QS

The metric QS employs the local SSIM between the source images as a match measure, according to
which different operations are applied to the evaluations of different local regions [50]. This metric is
defined as:

QS =
1
|Ws| ∑

ws∈Ws

Q (A, B, U |ws ) (24)

where

Q (A, B, U |ws ) =


λ (ws) SSIM (A, U |ws ) + (1− λ (ws)) SSIM (B, U |ws ) SSIM (A, B |ws ) ≥ 0.75

max {SSIM (A, U |ws ) , SSIM (B, U |ws )} SSIM (A, B |ws ) < 0.75
(25)

where ws is a sliding window, λ (ws) is the local weight, Ws is the family of all sliding windows, |Ws| is
the cardinality of Ws, SSIM (A, U |w s) is a measure for the similarity between the sliding window ws

in A and that in U, and a similar definition can be extended to SSIM (B, U |w s) and SSIM (A, B |ws ).
For the computation of QS, all the involved parameters are kept to be same to those in [50] except that
two constants C1 and C2 are chosen to be 2 × 10−6 for the computation of SSIM.

(4) QLs

The fusion quality index QL is computed as:

QL = Q (A, B, U |ws ) ·Q
(

A′, B′, U′ |ws
)

(26)

where A′, B′ and U′ denote the edge images of A, B and U, respectively. Q (A, B, U |ws ) is defined as:

Q (A, B, U |ws ) =
∑ws∈Ws C(ws) (λ (ws) SSIM (A, U |ws ) + (1− λ (ws)) SSIM (B, U |ws ))

∑ws∈Ws C(ws)
(27)

where C(ws) represents the overall saliency of the sliding window ws and it is chosen as
C(ws) = max(s(A|ws) + smax, s(B|ws) + smax) with s(A|ws) , s(B|ws) and smax denoting the variance
of the window ws in the image A and that in the image B, and the difference between the maximum
variance of all sliding windows in A and that in B, respectively.

(5) QT

The fusions similarity index QT is computed as:

QT = ∑
ws∈Ws

sim (A, B, U |ws ) ·Q (A, U |ws ) + (1− sim (A, B, U |ws )) ·Q (B, U |ws ) (28)

where Q (A, U |ws ) and Q (B, U |ws ) are computed based on the universal image quality index [53];
and sim (A, B, U |ws ) is dependent on the similarity in spatial domain between the input images and
the fused image and it is defined as a piecewise function presented in [52].
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(6) STD

The metric STD can measure the contrast of the fused image, and it is defined as:

STD =

√√√√√√
Y
∑

i=1

Z
∑

j=1
(Ui,j −U)

2

(Y · Z− 1)
(29)

where U is the mean intensity of the fused image.
Tables 1–6 list QM, QE, QS, QL, QM and STD of fused results for seven evaluated methods

operating on the six groups of multi-modal medical images, respectively. In these tables, the “bold”
value denotes the highest one for each metric. From these Tables, we can see that among all evaluated
methods, the DWT produces the lowest QM values and the NSCT method provides the smallest QS
and QT for all test images. For the majority of medical image pairs, the m-PCNN method provides
the lowest QE and STD values while the PCNN-NSCT method produces the lowest QL values.
Compared with other evaluated methods, the SCM-M method provides higher six metrics values in all
cases except that it is outperformed by the NSCT and NSCT-SR methods in terms of QE for Groups 7
and 8 and the SCM-F method in terms of QL for Group 6. The above comparisons demonstrate the
superiority of the proposed method over the compared fusion methods in maintaining the information
of source images, preserving the local image structure and image details, and ensuring the contrast of
the fused image.

Table 1. QM for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 2.7762 3.0183 3.3993 3.7837 3.1382 4.0495 5.0609
Group 2 2.7632 3.0260 3.2706 3.9376 3.0969 4.2426 5.1302
Group 3 2.7708 3.0362 3.3459 3.6843 3.2681 3.9568 4.9279
Group 4 2.5753 2.8873 3.1128 3.6600 4.6146 4.6320 5.4548
Group 5 3.0404 3.1078 3.4823 3.8007 3.8178 4.9843 6.1422
Group 6 3.4840 3.7787 3.5974 3.9726 3.9684 4.2431 5.5556
Group 7 2.9382 3.1397 3.2482 3.5257 3.2624 3.9406 5.3860
Group 8 2.8822 3.0045 3.0446 3.7121 3.0854 4.2942 5.0863

Table 2. QE for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 0.5131 0.6044 0.6256 0.3416 0.5750 0.5344 0.6357
Group 2 0.5049 0.5972 0.6127 0.3662 0.5464 0.5378 0.6224
Group 3 0.4753 0.5482 0.5772 0.3173 0.5255 0.4919 0.5867
Group 4 0.4569 0.5704 0.5741 0.3929 0.6579 0.5461 0.6298
Group 5 0.4544 0.5592 0.5606 0.3366 0.4815 0.5193 0.5937
Group 6 0.6584 0.7048 0.7010 0.6974 0.6679 0.6639 0.7045
Group 7 0.4834 0.5676 0.5653 0.4174 0.5030 0.4770 0.5503
Group 8 0.4383 0.5651 0.5634 0.3627 0.4878 0.4587 0.5104
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Table 3. QS for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 0.6369 0.4501 0.5484 0.7877 0.6017 0.9081 0.9671
Group 2 0.6550 0.4551 0.5374 0.7772 0.5432 0.9077 0.9542
Group 3 0.6264 0.4510 0.5316 0.7887 0.5874 0.9089 0.9693
Group 4 0.6515 0.5172 0.6109 0.7586 0.8935 0.9118 0.9467
Group 5 0.6401 0.5221 0.6423 0.6717 0.7193 0.8645 0.9234
Group 6 0.7543 0.6456 0.6612 0.9170 0.6405 0.9347 0.9753
Group 7 0.6426 0.4753 0.6007 0.8028 0.5866 0.8790 0.9500
Group 8 0.6250 0.4473 0.5053 0.7742 0.5958 0.8524 0.9315

Table 4. QL for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 0.3333 0.4217 0.5045 0.4913 0.2817 0.6523 0.7323
Group 2 0.3533 0.4551 0.5098 0.4724 0.2378 0.6271 0.6931
Group 3 0.3138 0.3937 0.4628 0.4834 0.2676 0.6405 0.7156
Group 4 0.3006 0.4366 0.4797 0.4420 0.4479 0.5357 0.5854
Group 5 0.3280 0.5095 0.5723 0.2928 0.3018 0.4922 0.5096
Group 6 0.5355 0.6659 0.7189 0.7681 0.3318 0.7845 0.7719
Group 7 0.3290 0.4314 0.5102 0.5183 0.2677 0.5685 0.5700
Group 8 0.2972 0.3684 0.3935 0.4488 0.2754 0.4622 0.5142

Table 5. QT for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 0.6100 0.4164 0.5159 0.7729 0.5640 0.8734 0.9337
Group 2 0.6254 0.4160 0.5023 0.7590 0.5177 0.8672 0.9163
Group 3 0.5984 0.4199 0.4988 0.7750 0.5645 0.8745 0.9351
Group 4 0.6155 0.4740 0.5689 0.7390 0.8404 0.8628 0.8991
Group 5 0.5935 0.4608 0.5778 0.6417 0.6516 0.7996 0.8515
Group 6 0.7240 0.4541 0.6085 0.9022 0.5810 0.9075 0.9135
Group 7 0.6042 0.4343 0.5587 0.7853 0.5496 0.8355 0.8952
Group 8 0.5928 0.4058 0.4662 0.7575 0.5628 0.7981 0.8773

Table 6. STD for the seven methods operating on the eight groups of medical images.

Image Pairs DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F SCM-M

Group 1 66.6193 66.1906 79.5626 52.5581 74.3848 79.8346 81.0782
Group 2 67.9753 69.5841 82.3969 55.5187 74.2025 82.5708 83.7441
Group 3 64.6307 67.8026 79.8704 49.3479 74.1064 79.7935 80.8798
Group 4 69.9537 70.2955 79.6350 64.9548 82.0193 82.5526 85.1864
Group 5 73.3412 74.7206 85.5797 57.8297 85.0754 86.0308 88.7634
Group 6 72.6172 73.3028 73.2137 64.9728 64.6814 72.4982 80.1262
Group 7 68.7288 70.7589 79.8773 55.9421 74.2269 79.7173 82.8038
Group 8 79.2868 81.8019 88.7306 64.8613 75.6456 93.8168 96.9955

To further demonstrate the superiority of the proposed method over other compared methods,
the paired t-tests have been performed based on the data in Tables 1–6. The test results are listed
in Table 7. The p values in Table 7 indicate that there exists very significant difference between
the proposed method and other evaluated methods in terms of mutual information, structural
similarity based metric, fusion similarity metric and standard deviation. As regards edge preservation
index, there is no significant difference between the proposed method and the NSCT and NSCT-SR
methods, but there still exists the significant difference between the proposed method and the DWT,
PCNN-NSCT, and SCM-F methods. As for fusion quality index, the difference between the SCM-M



Sensors 2016, 16, 1503 17 of 20

method and the NSCT-SR and SCM-F methods is significant while the difference between the proposed
method and the remaining four methods is very significant.

Table 7. Paired t-test results for the compared methods operating on the eight groups of medical images.

Metrics DWT NSCT NSCT-SR m-PCNN PCNN-NSCT SCM-F

QM p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
QE p < 0.01 p > 0.05 p > 0.05 p < 0.01 p < 0.01 p < 0.01
QS p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01
QL p < 0.01 p < 0.01 0.01 < p < 0.05 p < 0.01 p < 0.01 0.01 < p < 0.05
QT p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

STD p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

Here we will make a simple analysis of the reason why the proposed method generally
outperforms the m-PCNN method and the SCM-F method, which are similar to our method because
of the utilization of the third generation neural networks. For the m-PCNN method, the fused image is
produced based on the internal activity, which is only related to the pulse output of the individual
neuron. In other words, only the individual neurons corresponding to the individual pixels in the
two source images are used for image fusion while the characteristics of neighboring neurons of the
considered neuron, which can facilitate representing the local image structure, has not been considered
in this method. The same problem exists for the SCM-F method, in which only the firing times of the
individual neurons is utilized to generate the fused image using the simple choosing and averaging
strategy. By comparison, in the proposed SCM-M method, the characteristics of neurons in a local
neighborhood are considered for the construction of the fusion rule and the determining of the fusion
weight. As regards the fusion rule, the firing times of all the neurons in a neighborhood will be a more
effective metric for the establishment of the fusion rule than that of the individual neuron. For the
fusion weight, the WLD operating on the firing mapping image and the entropy information of pulse
outputs of the SCM are computed in a local neighborhood to produce the weight. The combination of
the WLD with the entropy information can facilitate determining the fusion weight effectively in that
they can describe the local image structure and the gray-level information of source images very well.

5. Conclusions

A novel spiking cortical model based medical image fusion method is presented in this paper.
The proposed method utilizes the pulse outputs of the SCM to realize pixel-level image fusion.
By combining the gray-level image information represented by the entropy of pulse outputs with the
local image structure represented by the Weber local descriptor operating on the firing mapping image,
the proposed method can realize the effective weighted fusion of source images. Extensive experiments
on the various CT and MR images demonstrate that the proposed method can produce clearer,
more informative, higher contrast fused images than numerous existing methods in terms of human
vision. Meanwhile, the objective comparison indicates that the proposed method outperforms the
compared methods in terms of mutual information, edge preservations metric, structural similarity
and standard deviation. Future work will be focused on extending our method to the fusion of
multi-spectral medical images such as PET and SPECT images.
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