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Abstract: Regular citizens equipped with smart devices are being increasingly used as “sensors” by
Smart Cities applications. Using contacts among users, data in the form of messages is obtained and
shared. Contact-based messaging applications are based on establishing a short-range communication
directly between mobile devices, and on storing the messages in these devices for subsequent delivery
to cloud-based services. An effective way to increase the number of messages that can be shared is
to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where,
during a contact, the users are aware of the time needed to interchange the messages stored in
their buffers, and they can thus decide to wait more time in order to increase the message sharing
probability. The performance of this approach is anyway closely related to the size of the buffer in
the device. We therefore compare various policies either for the message selection at forwarding
times and for message dropping when the buffer is full. We evaluate our proposal with a modified
version of the Opportunistic Networking Environment (ONE) simulator and using real human
mobility traces.

Keywords: smart cities; human sensors; opportunistic networks; enabling communication technology

1. Introduction

Opportunistic communications [1–5] are increasingly considered a promising Smart City enabling
communication technology. They are applicable to situations when, for example, the cellular
network infrastructure has become inefficient due to too many requests, or when no communication
infrastructure is available at all [6,7] . Due to the intermittent contacts, Vahdat et al. [8] refer to such
networks as Partially Connected Networks. Some authors [9] consider opportunistic networks as
a subclass of Delay Tolerant Networks (DTNs) [10].

Communications in mobile opportunistic networks take place upon the establishment of
ephemeral contacts among mobile nodes using direct communication via Bluetooth or WiFi direct
instead of using the internet infrastructure. Based on this concept, new contact-based messaging
applications have recently been developed, such as Firechat (Open Garden, San Francisco, CA, USA)
or Meshme (Meshme Inc., New Castle, DE, USA). Firechat, for example, a messaging application
initially meant for music festivals, became popular in 2014 in Iraq due to the government restrictions
on internet use, and after that during the Hong Kong protests.

In these kinds of disruptive wireless networks, where the communication between mobile devices
is ephemeral, and links are typically asymmetric and unstable, sending and receiving information
depends on mobility and the opportunity of contacting other devices, as long they are willing to
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collaborate. The duration of the contacts between the nodes is a key factor in the dissemination of
messages; if the contact time is too low, there will not be enough time for nodes to retrieve all pending
messages. Moreover, the management of the internal device resources, basically the buffer occupancy,
is critical to provide an efficient service.

Authors of [11–14] offer a wide taxonomy of the protocols designed for these types of networks.
The most straightforward solution is the Epidemic protocol [8]. This protocol is widely used as
a reference technique, and its operations are based on the store, carry, and forward approach combined
with message flooding.

In this paper, we analyse an opportunistic network solution based on a novel messaging diffusion
approach, called Friendly-Sharing. This approach aims to increase the message delivery probability by
interacting with the user in order to extend the contact duration. We specifically focus on evaluating the
impact on the effectiveness of this approach for: (1) the buffer size; (2) the buffer management strategy;
and (3) the contact duration time. Our objective is to determine the best approach for forwarding
stored messages and which method is optimal when the buffer gets full.

The Friendly-Sharing approach aims to increase the contact duration by notifying the users about
the time needed to interchange the messages when a new contact starts. This way, the users can decide
to wait a little longer, in order to receive (and send) more messages. We implemented this approach in
our testbed messaging application GRChat (Unisersitat Politécnica de Valéncia, Valencia, Spain) [15].

By varying the contact duration time, buffer size and message TTL (Time To Live), we compared
the performance of the basic Epidemic protocol against the Friendly-Sharing solution by using the
ONE (Opportunistic Network Environment) simulator (Helsinki University of Technology, Espoo,
Finland) [16]. This simulator was designed and built to specifically evaluate DTN protocols and
applications, and focuses on the network layer without considering the details of lower layers such
as media access control (MAC) or physical. In order to get realistic results, the movement data is
based on the set of human geotagged traces experimentally obtained at the NCCU campus (National
Chengchi University, Taipei, Taiwan) [17]; the message generation patterns (frequency and size) are
based on statistics related to social networking applications [18]. We also characterise the mobility and
the structure of this trace. From this study, we could determine some social patterns of the trace that
we used in the performance evaluation.

The performance evaluation showed that our proposal clearly improves the message delivery
performance by increasing the delivery success ratio and reducing the delivery time, although
extending the message transmission time and introducing some extra overhead in terms of buffer
utilisation. Regarding the buffer management strategy, the best policy consists in forwarding the
smallest messages first, and in dropping the biggest ones to make room for incoming transmissions.

The outline of the paper is the following: an overview of related works addressing opportunistic
networks and message diffusion is presented in Section 2. The description of the Friendly-Sharing
proposal and its GRChat implementation is provided in Section 3, while experiments and performance
evaluation details are presented in Section 4. Finally, in Section 5, we present our conclusions and
future work.

2. Related Work

Opportunistic ad hoc networks are characterised by typically intermittent contacts of short
duration between pairs of mobile devices. The message delivery probability depends on the contact
duration, which is determined by the mobility of the users. The only way to increase this contact
duration is by promoting interactions between users. However, people can hold back from cooperating
with others for lack of trust or simply to save energy.

In order to improve the delivery ratio, some authors like [19–22] have proposed new collaboration
mechanisms between mobile users. Regarding collaboration or cooperative approaches, we can find
research works that encourage collaboration through credit systems. More specifically, in [23,24],
the authors affirm that, when a cooperative system offers security and reliability, mobile users are more
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stimulated to cooperate, especially when the network includes several unknown users. In [25], we can
find another method to stimulate the collaboration with the simple idea of giving more credits to
those who send more information in a cooperative way. They conclude that a credit-rewarding system
stabilises the network, increasing data traffic and cooperation. In this context, some nodes can refuse
to cooperate because of security reasons. It is also possible that malicious and/or selfish nodes could
cause a negative impact on network performance. Many interesting proposals focused on this topic.
In [26], a novel approach is described to detect and avoid selfish nodes using an improved watchdog
mechanism [27] that detects selfish nodes with greater accuracy and speed than classical watchdog
methods. The authors of [28] considered a decentralised environment and heterogeneous wireless
networks. They proposed a distributed algorithm approach with an analytical basis that enables the
interaction in the opportunist network according to their needs, while pseudo-encouraging collaboration
through punishment to selfish nodes.

Considering that a cooperative system is a social opportunistic network where the message
diffusion level is crucial, in [29,30], the authors examine a utility-based cooperative data dissemination
system where the utility of data is defined based on the social relationships between users. They studied
and validated the performance of this system through an analytical model, allowing characterisation
of the data diffusion process. Furthermore, they analysed the behaviour of the system with respect to
key parameters such as the definition of the data utility function, the initial data allocation on nodes,
the number of users in the system, and the data popularity. In this context, the authors of [31] used
theoretical analysis applied to social networks to classify and study some diffusion schemes based on
the homophily (social networks phenomenon) by combining node relationships and their interests in the
data. They noticed that, in order to improve diffusion performance, a node should first diffuse, when
meeting a friend, the most similar data according to their common interests, while, when meeting a
stranger, it should first diffuse the most dissimilar data according to their common interests. A recent
paper [32] evaluates the impact of human behaviour in the opportunistic forwarding of messages.
Experimental results using the ONE simulator show that, as nodes start to move less (i.e., increasing
pause time), fewer messages are expected to be delivered. Since nodes start to encounter each other
at a less frequent rate, the number of replications is also expected to decrease. Regarding latency,
messages are to experience longer waiting times prior to delivery. An analytical model based on
Delay Differential Equations is proposed for the authors of [33,34] to evaluate through simulations the
diffusion of messages in social groups taking into account the transmission time of messages. The idea
of actively involving users with tasks of minimum impact on their regular activities is also employed
by crowd-based participatory systems [35,36].

As stated before, mobility is another key factor affecting message diffusion effectiveness. There are
several proposals, such as the ones presented in [37–41], which evaluate the message dissemination
behaviour of the Epidemic protocol by focusing on the mobility patterns of the nodes. In these works,
the authors explain the relationship between factors such as speed, mobility model, node density,
and places. In [42], the authors introduce a new forwarding protocol, HURRy (HUman Routines used
for Routing), where the routing decision is based on probabilistic routing techniques like PRoPHET
(Probabilistic Routing Protocol using History of Encounters and Transitivity), although it incorporates
the contact duration of encounters (unlike previous approaches) to estimate the rating probabilities of
all possible paths to a certain destination.

Finally, other studies analyse how the management of mobile device hardware influences the
message delivery probability. In the case of buffer management, some authors [43–45] evaluate the use
of the buffer through priority rules in an attempt to deliver messages without performance loss in the
information transmission process.

The aforementioned studies provide an outlook of the most recent research works focused on the
analysis and performance improvements for the diffusion of messages by improving collaboration
among mobile users. These articles also show the importance of cooperative behaviour in opportunistic
networking, and the trend towards models and applications that exploit the particularities of
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delay-tolerant wireless networks. However, these works do not analyse in an integrated way the
performance of the message diffusion taking into account the duration of contact times, the buffer
management schemes, and the relation between the contact duration time and the message size.

3. The Friendly-Sharing Approach

In this section, we detail the implementation of the Friendly-Sharing scheme that is based on the
Epidemic Protocol. Then, we detail the buffer management policies considering both the forwarding
of the stored messages, and the message dropping when memory for new messages is required.

3.1. Message Diffusion

Message diffusion is based on epidemic dissemination, a concept similar to the spreading of
infectious diseases. Basically, when an infected node (i.e., a node that has a message) contacts another
node, it infects it by transmitting the message. Epidemic dissemination obtains the minimum delivery
delay at the expense of increased buffer usage and increased number of transmissions. The critical
factor affecting diffusion is the duration of the contact, which depends on the mobility patterns of the
user. It can vary from a few seconds (a short contact in the street) to hours (for example, during a class
at school), and it determines the number and size of the messages that can be exchanged.

A way to improve the effectiveness of this diffusion is to increase the number and duration of
contacts. Our proposal, called Friendly-Sharing, has to be integrated into mobile applications that
will therefore ask the user to wait for some more time to extend the exchange window. The basic
assumption is that installing and being interested in using such an application indicates that the
user wants to actively collaborate in the diffusion of the information. Moreover, our proposal
allows the applications to inform the users about how much time is needed for interchanging the
messages, thus providing a friendly way to stop for a short time. We demonstrate our proposal with
a proof-of-concept application, called GRChat [15].

GRChat is an Android app that can establish connections among two or more phones and transmit
data and images using Bluetooth. Moreover, the user can create and subscribe to groups in order to
send/receive messages. GRChat works like any messaging app where the user can watch previous
messages/images and write new ones. When the user pushes the send button, GRChat connects to
any nearby devices and sends the newly created message, as shown in Figure 1a; meanwhile, it also
receives the new messages from the other devices. When a device gets a new message, it also tries to
connect to other devices in order to complete the diffusion of the message. When no messages are sent,
the application is periodically searching for nearby devices.

When the GRChat app detects a new device, it establishes a new pairwise connection and
automatically starts the interchange of messages. The application notifies both users about the new
connection playing a sound or vibrating. This way, the users can decide to wait some extra time in order
to extend the message sharing session. The required time to complete the message interchange is shown
in the application, so both users are aware of the pending time (see Figure 1b). This is an effective way
to increase cooperation as the user knows exactly the time it should wait. Nevertheless, due to the
cooperative approach, users are not forced to wait until all messages are exchanged.

We evaluate three different user behaviours:

• No-wait: The users do not stop any additional time. In this case, the number of messages
exchanged between nodes will depend on how long they remain within the communication range
and clearly on the data rate of the channel. If this contact duration is very small, no messages will
be transmitted.

• Full-wait: The users wait during the time required to exchange all the messages. In this case,
the owner of each mobile device will control this exchange by stopping and waiting until the
message transmission is fully completed.

• Finite-wait: To avoid interfering too much with the user mobility, users wait only for some extra
time to send and receive some of the pending messages.
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(a) (b)

Figure 1. Several screenshots of the GRChat app. (a) a typical chat conversation; and (b) status of
message interchange, showing the remaining time for end the transmission.

3.2. Buffer Management

It is important to select the order of the messages sent when two nodes are sharing their messages,
especially when users decide not to wait until all messages are sent. Furthermore, we must be aware
that both the buffer size and the channel bandwidth are limited. It is, therefore, important to define
mechanisms to optimise the use of these resources in a mobile device. In this subsection, in order
to evaluate the impact of the forwarding methods on the messages delivery probability and latency,
we describe some approaches related to the messages forwarding and messages dropping process
(see Figure 2).
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Figure 2. Message forwarding (a) and dropping (b) policies in the local buffer.
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3.2.1. Message Forwarding

Message forwarding refers to the order for extracting messages from the buffer in order to transmit
them to the connected device. We considered the four methods graphically described in Figure 2a.
More specifically:

1. Random: The messages are selected randomly from those stored in the buffer. This method is
already implemented in the ONE simulator and it is configured by default.

2. FIFO (First-In, First-Out): Messages are selected for forwarding according to their arrival order,
i.e., the first message to be forwarded is the first message arriving at the mobile device (that is the
oldest message, taking into account the reception time). From the figure: message M3 arriving at
time tn will be forwarded first, message M1 arriving at time tn+1 will be the next one to be sent,
M1 will be the following, and so on.

3. Oldest: With this approach, the message with lower TTL value will be forwarded first. In the
example shown in the Figure, M3 will be sent first, the next message will be M1 with TTL value
tn+1, etc. (note, that this approach is different to the FIFO approach, as FIFO considers the arrival
time of the message, while Oldest considers the TTL.)

4. Smallest: This approach aims at first sending the smallest messages. In the figure, we can see
that the sending queue is organized according to the messages size, i.e., M3 with size Sn will be
forwarded first than message M1 with a message size of Sn+1, since Sn < Sn+1.

On the original version, ONE only implements the Random and FIFO policies. The other
two policies were implemented by the authors, as detailed in the following section.

3.2.2. Message Dropping

Message dropping refers to the order followed when making room for a new arriving message.
For this, we need to determine which message or messages have to be dropped in order to make room
for the incoming message. This operation is called only when the buffer is full. Figure 2b shows the
approaches we considered. More specifically:

1. Random: The message or messages to be removed from the buffer are selected randomly.
2. FIFO (First-In, First-Out): The first message to be removed from the buffer is the oldest message

arriving at the mobile device, taking into account the reception time. From the figure: message
M3 that arrived at time tn will be removed first, and message M1 with arrival time tn+1 will be
the next to be deleted.

3. Oldest: With this approach, the message with lower TTL value tn will be removed from the buffer.
In the example in the Figure, M3 will be the first, the next message to be dropped will be M1 by
having TTL value tn+1, etc.

4. Largest: This approach removes the largest messages. In the figure, we can see that the dropping
queue is organised according to the message size, i.e., M3 with size Sn will be deleted first than
message M1 with a message size of Sn+1.

Since only the FIFO method was implemented in the ONE simulator, we implemented the
three other policies.

4. Performance Evaluation

In this section, we evaluate the efficiency of our proposed Friendly-Sharing approach.
As commented previously, the performance of the message diffusion will mainly depend on the
mobility of the users and the number of contacts and their duration between pair of users. The impact
of the dropping and forwarding policies in the local buffer is also evaluated, in order to select the
best policy.

We employed the ONE simulator [16] using a real movement trace of mobile users. This trace
comes from an experiment at the NCCU campus [17], where GPS position data was collected during
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two weeks (336 h) using an Android app installed in the smartphones of 115 students. Figure 3 shows
a snapshot of the ONE running with the corresponding graphical map information from NCCU.

Figure 3. The ONE simulator (Helsinki University of Technology) running with the NCCU (National
Chengchi University) traces.

The workload considered tried to mimic the typical data-flow for a multimedia messaging
application where shorter messages are far more common than larger ones. Three message sizes and
frequencies were considered: (1) a short text message (1 kB) every hour; (2) a photo (1 MB) every 18 h;
and (3) a video or high-resolution picture (10 MB) every 96 h. These frequencies were based on the
statistics of Whatsapp (Facebook, Inc., Menlo Park, CA, USA) message usage from [18], while sizes are
approximations of the content produced by current mobile phone hardware.

The communication range (r) was set to 7.5 m with bandwidth Bw = 2.1 Mb/s. These assumptions
allow taking into consideration the necessary set-up time of connections and the possible impact of
interferences. These values are based on the Bluetooth 2.0 class 2 specifications. Other technologies
such as WiFi Direct are not considered to avoid issues like disconnecting the device from the internet.
WiFi is increasingly being used for data connectivity, especially at large enterprise areas or university
campuses, and it would be a nuisance for users to deal with these disconnection periods.

4.1. ONE Simulator Modifications

The ONE simulator was designed and built specifically to assess protocols for message
dissemination in DTN Networks, namely: Epidemic, Spray and Wait, Prophet, First Contact,
Direct Delivery, and Maxprop. ONE can use real traces or synthetic mobility models like Random
Walk, Random Way Point, Grid and Linear. These mobility models can be combined to model complex
behaviours with different patterns as the day progresses (like office and work days).

The ONE buffer management only includes FIFO and random policies, so we extended it with
the other two criteria considered in this paper: TTL and message size. The Friendly-Sharing approach
was implemented by stopping the nodes that start a transmission. This movement pause lasts for
a maximum time specified in the simulation parameters. After this pause, both nodes continue their
original trajectories following the trace movement. The original ONE message generation interval
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follows a uniform random distribution. In order to obtain a more realistic model, we implemented
an independent Poisson process for each user and message type.

The required modifications are summarised in Figure 4. In order to implement the Forced
Stop approach and the buffer management policies, we modified the ActiveRouter, DTNHost,
MessageRouter and Connection Java classes. We added the ExponentialMessageGenerator to inject
messages using an exponential distributed random interval. We also implemented the function
drop-to-insert in order to implement the dropping police when the buffer is full. Finally, we added
two subclasses of Report to obtain the buffer occupancy and transmission time information.

Modified Code to 
Friendly-Sharing

Modified Code to 
Friendly-Sharing

Figure 4. Modifications to the ONE simulator code (original figure from [16]).

4.2. Trace Characterisation

In order to characterise mobility and determine the structure of the contacts, we analysed the
trace used in the experiments. From this study, we could determine some social patterns of the trace
that are useful to understand the performance of the Friendly-Sharing approach.

Figure 5 shows the contact graph for different time intervals, starting from the first 3 h of the trace
up to 24 h. Each node is labelled by a number and the diameter of each circle is proportional to the
number of contacts. Node groups are represented by different colours and were computed using the
Fruchterman–Reingold algorithm [46]. We can see that the social interrelation given by the dynamics
of the contacts numbers increases according to the simulation time, while the number of communities
decreases: on the first 3 h of simulations, the number of communities are 12, for 6 h and 12 h, we have
eight communities, and, finally, after 24 h, we only have six communities. This means that the number
of “communities” slowly decreases, thus contributing to message diffusion and all nodes eventually
getting connected. This implies increasing the message TTL to 12 h or 24 h in order to produce a better
delivery rate.

Figure 6 presents the average node speed at each hour of the movement trace, clearly showing that
nodes have very dissimilar movement patterns. Some nodes move frequently and with considerable
speed, while other nodes are quite static and move with lower speed. This effect could be explained by
the students place of residence, e.g., some sleep close to the campus (or even inside) while others have
to travel further away to their homes.
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Figure 5. Contact graph for different time intervals of the trace: (a) 3 h; (b) 6 h; (c) 12 h and (d) 24 h.

Figure 6. Average node speed at each hour of the movement trace.

Although nodes without movement in a large period of time could be considered not relevant for
message interchanges, Figure 7 shows exactly the opposite. In this plot, the x-axis shows the average
speed computed as in Figure 6, while the y-axis shows how much time a node is in contact during an
hour. For example, a node that has an average speed of 2 m/s and a total contact duration of 1 h across
all contacts will be plotted in position (2, 1). As a node could be contacted by more than one node at the
same time, the y-axis extends away from 1. This inverse correlation between movements and contacts
is easily explained by the students’ typical behaviour: they stay together in a class for a bounded
amount of time, they move a small distance to the next class, and so on. Even while not attending
classes, they spend time with other students in the cafeteria, library, or other campus services.
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Figure 7. Average speed and number of contacts for all nodes at each hour of the movement trace.

4.3. Buffer Management Evaluation

In this subsection, we evaluate the different buffer management policies for different buffer sizes,
in order to select the best combination. Several simulations were executed for all the 16 possible
combinations using the epidemic protocol. Each forwarding and dropping combination was tested
with a message TTL of 12 or 24 h, and buffer sizes of 50 MB, 100 MB, 200 MB and 1 GB. These simulation
parameters are summarised in Table 1.

Table 1. Simulation parameters varied to evaluate queue management policies.

Parameter Values

Buffer Size 50 MB, 100 MB, 200 MB, 1 GB
Time to Live 12 h, 24 h

Forward policy Random, FIFO, Oldest, Smallest
Discard policy Random, FIFO, Oldest, Largest

Figures 8a,b show the relation between delivery probability and average message latency for each
of the simulations. This plot uses a point for each buffer management policy combination with the same
symbol for a particular buffer size. It shows that there is a clear correlation between delivery probability
and latency and that, as the buffer size increases, the variability of the delivery probability decreases.
This last fact is even more evident when increasing the TTL for the messages, where a minimum of
a 200 MB buffer is required to stabilise this metric.

The main factor for a good delivery probability is how long messages are available in the network
(TTL), for larger times, the probability of arrival increases. The buffer size also plays an important
role, as the buffer size increases the buffer management policies have a smaller impact on the message
delivery. When the buffer size is large enough to keep almost all messages, the dropping policy is no
longer relevant. Tables 2 and 3 show the delivery probability for each policy combination, where the
best values are for the combination of smallest forwarding and largest dropping policies. In this case,
the buffer management policies are giving priority to the small messages, which also have a better
transmission chance in a short contact time.
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Figure 8. Delivery probability versus latency for a 12 and 24 h TTL (Time To Live) with different buffer
sizes and queue policies.

Table 2. Delivery probability for a 12 h TTL (Time to Live) with different buffer sizes and queue policies.

Buffer Size Drop Policy
Forwarding Policy

Random FIFO TTL Smallest

50 MB

Random 0.394 0.386 0.380 0.415
FIFO 0.403 0.398 0.395 0.415
TTL 0.393 0.377 0.366 0.417

Largest 0.433 0.425 0.421 0.440

100 MB

Random 0.426 0.419 0.415 0.439
FIFO 0.427 0.420 0.417 0.438
TTL 0.426 0.418 0.415 0.439

Largest 0.433 0.424 0.420 0.442

200 MB Any 0.434 0.427 0.423 0.444

1 GB Any 0.434 0.427 0.423 0.444

Table 3. Delivery probability for a 24 h TTL (Time to Live) with different buffer sizes and queue policies.

Buffer Size Drop Policy
Forwarding Policy

Random FIFO TTL Smallest

50 MB

Random 0.473 0.449 0.442 0.559
FIFO 0.505 0.496 0.490 0.565
TTL 0.472 0.445 0.440 0.582

Largest 0.625 0.600 0.600 0.638

100 MB

Random 0.538 0.519 0.519 0.607
FIFO 0.557 0.548 0.535 0.618
TTL 0.558 0.544 0.533 0.621

Largest 0.634 0.619 0.610 0.645

200 MB

Random 0.609 0.603 0.604 0.643
FIFO 0.616 0.607 0.604 0.643
TTL 0.619 0.608 0.607 0.647

Largest 0.632 0.616 0.612 0.649

1 GB Any 0.635 0.625 0.625 0.652
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4.4. Friendly-Sharing Diffusion Evaluation

In this section, we study the benefits of the proposed Friendly-Sharing diffusion approach
compared to the standard epidemic protocol. For the sake of brevity, we will focus on the
smallest/largest buffer management policies as the previous subsection demonstrates that they obtain
the best delivery probability. We repeat the same simulation parameters schema with different buffer
sizes and TTL times, summarised in Table 4.

Table 4. Simulation parameters varied to evaluate diffusion approaches.

Parameter Values

Buffer Size 50 MB, 100 MB, 200 MB, 1 GB
Routing Epidemic, Friendly-Sharing

Maximum wait time 2 s, 4 s, 8 s, 16 s, ∞
Time to Live 12 h, 24 h

Figure 9a shows the delivery ratio of opportunistic networks in relation to the Friendly-Sharing
maximum time. A value of 0 in the x-axis represents the epidemic protocol without any additional wait,
and a value of ∞ refers to the full-wait approach, where nodes wait until they transmit all messages in
their buffers. The experiment shows, as expected, that waiting until all messages are interchanged
improves the message diffusion. In this case, the epidemic protocol has a delivery probability less
than 0.45, while increasing the wait time from 2 s to 16 s the delivery probability improves to 0.50.
The best probability appears for the full-wait. As in the previous experiments, the TTL parameter is
the main delivery performance factor, showing that an increase from 12 to 24 h improves the delivery
probability by about 20%. Using a bigger buffer has little impact with a TTL of 12 h and no discernible
improvement when the TTL is configured to 24 h.

Regarding latency, comparing both plots in Figure 9b, it is clear how it decreases as the delivery
probability increases for each TTL value. This validates our previous assumption of an approximate
inverse relation between the two measures. Following this relation, the buffer size does not have much
impact on latency, and the TTL continues to be the main factor.
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Figure 9. Average delivery success ratio and latency.

These experiments show a clear trade-off between delivery probability and latency.
Allowing a large TTL greatly improves the delivery probability, it also increases the latency. Roughly,
doubling the TTL from 12 to 24 h improves the delivery probability by 50%, but the latency is
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also doubled. This limit on the routing performance is due to the movement traces themselves,
which dictates how much time it takes to contact, from one node to another.

Considering protocol overhead, Figure 10a shows the maximum of the average buffer occupancy
from each node. With the simulated workload, a buffer of around 80 and 175 MB seems sufficient for
a TTL of 12 and 24 h, respectively. Bigger buffers are only required when simulating the ideal scenario
with indefinite pauses. It is interesting to note that even small additional waiting times improve the
delivery probability and latency without increasing the buffer overhead.

In epidemic protocols, another overhead measure is the amount of information forwarded per
node. Figure 10b shows the daily average bytes forwarded by each node, which is the sum of all
bytes transmitted divided by the number of nodes and the simulation length in days. The number
of transmissions increases greatly with a large TTL time, basically because more messages stay in
the buffers during more time. A big buffer avoids unnecessary retransmissions; therefore, it also
reduces the time required by nodes to stop waiting to complete the data transfer. This protocol does
not provide any reception acknowledgements; therefore, nodes keep forwarding messages that have
already reached their destination, up to the maximum of TTL time.
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Figure 10. Overhead results: Buffer occupancy and forwarded bytes. (a) maximum of the average
buffer occupancy from each node; and (b) average bytes daily forwarded per node (y-axis in log scale).

Similarly to the previous buffer occupancy analysis, it is interesting to point out that even making
small movement pauses with our Friendly-Sharing improves the delivery probability and latency
without much transmission overhead.

In our previous analysis, a full cooperation is assumed, since, as indicated before, we suppose
that installing the application shows that the users are willing to follow its indications. As reasonable
as this argument could be, there are cases where users may not want to stop or simply cannot
stop. Furthermore, users will stop longer when contacting other related users or depending on past
interactions; that is, stopping probability and duration has a strong social dependence. However,
no social data can be easily extracted from the movement traces. We reflect this situation through
the probability of stopping (ps). This probability ranges from 1, which reflects full cooperation of both
users (as considered in the previous evaluations) to 0, indicating no cooperation (and no waiting
time, which is the basic epidemic protocol). In order to evaluate the impact of this probability, we set
the buffer size to 200 MB considering 16 s maximum stop time for both TTL (which is one of the
experiments represented in Figure 9). We evaluated the delivery success ratio and latency for different
values of the stop probability. This probability is modelled as a uniform distributed random variable
independent for each contact. The results are presented in Figure 11, showing a linear correlation
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between stop probability and delivery success and latency. Moreover, we can see that stopping 16 s
with a stopping probability of 0.5, we obtain a similar delivery and latency performance as with a 8 s
unconditional stop, as displayed in Figure 9. A similar result can be observed for a probability of 0.25,
which corresponds to 4 s, and for a probability of 0.75, that corresponds to 16 s. We can, therefore,
conclude that the effect of the stop probability is equivalent to reducing the waiting time by a factor ps.
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Figure 11. Delivery ratio (a) and latency (b) for different contact stop probabilities (16 s max. stop).

5. Conclusions

Contact-based communications are increasingly considered a promising Smart City enabling
communication technology. In this paper, we introduced a new diffusion approach, Friendly-Sharing,
where users are informed about the remaining time needed to interchange the messages stored in their
buffers. In this way, the user can decide to wait longer in order to increase the number of messages
exchanged, thus increasing the delivery rate.

We used the ONE simulator with real human mobility traces and realistic message generation
patterns based on social networking applications to evaluate the performance of the Friendly-Sharing
diffusion. The behaviour of students produced interesting contact patterns: nodes with low mobility
have more contacts than high mobility ones.

We showed that the greater the number of messages in local buffers, the better the diffusion
(in terms of delivery probability and latency). Thus, a key aspect for efficiency is the buffer management
policy, especially when there is no full message interchange. The experiments show that the best
results were obtained when forwarding the smallest messages first and dropping the biggest ones to
make room for incoming transmissions. Regarding the waiting time for Friendly-Sharing, we also
determined that when nodes wait even an extra two seconds each time they contact, it improves
the delivery performance while not having a relevant impact on the buffer occupancy or on the
protocol overhead.

As a proof-of-concept, we showed that Friendly-Sharing can be easily introduced in messaging
applications and can effectively improve the collaboration, increasing the delivery ratio and reducing
the latency of message delivery with a limited impact on buffer utilisation.
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