Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6
Abstract
:1. Introduction
2. Intensity Stabilization
3. Performance of the System for Detection of Gas
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59, 2544–2551. [Google Scholar] [CrossRef]
- Romanini, D.; Lehmann, K.K. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys. 1993, 99, 6287–6301. [Google Scholar] [CrossRef]
- Zalicki, P.; Zare, R.N. Cavity ring-down spectroscopy for quantitative absorption measurements. J. Chem. Phys. 1994, 102, 2708–2717. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Romanini, D.; Kachanov, A.A. Diode laser cavity ring down spectroscopy. Chem. Phys. Lett. 1997, 270, 538–545. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Preface. In Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980; p. VII. [Google Scholar]
- Limero, T.; Reese, E.; Cheng, P.; Trowbridge, J. Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. Int. J. Ion Mobil. Spec. 2011, 14, 81–91. [Google Scholar] [CrossRef]
- Chen, J.; Hangauer, A.; Strzoda, R.; Amann, M.C. Tunable diode laser spectroscopy with optimum wavelength scanning. Appl. Phys. B Lasers Opt. 2010, 100, 331–339. [Google Scholar] [CrossRef]
- Li, Z.X.; Ma, W.G.; Fu, X.F.; Tan, W.; Zhao, G.; Dong, L.; Zhang, L.; Yin, W.B.; Jia, S.T. Optimization investigations of continuous wave cavity ringdown spectroscopy. Appl. Phys. Express 2013, 6. [Google Scholar] [CrossRef]
- Silander, I.; Hausmaninger, T.; Ma, W.G.; Ehlers, P.; Axner, O. Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry down to 4 × 10−13 cm−1·Hz−1/2: Implementation of a 50,000 finesse cavity. Opt. Lett. 2015, 40, 2004–2007. [Google Scholar] [CrossRef] [PubMed]
- Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B Lasers Opt. 2005, 80, 1027–1038. [Google Scholar] [CrossRef]
- Li, Z.X.; Ma, W.G.; Fu, X.F.; Tan, W.; Zhao, G.; Dong, L.; Zhang, L.; Yin, W.B.; Jia, S.T. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection. Opt. Express 2013, 21, 17961–17971. [Google Scholar] [CrossRef] [PubMed]
- Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS. Appl. Phys. B Lasers Opt. 2010, 100, 367–376. [Google Scholar] [CrossRef]
- Hobbs, P.C.D. Ultrasensitive laser measurements without tears. Appl. Opt. 1997, 36, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Werle, P. Spectroscopic trace gas analysis using semiconductor diode lasers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1996, 52, 805–822. [Google Scholar] [CrossRef]
- Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Kluczynski, P.; Axner, O. Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 1999, 38, 5803–5815. [Google Scholar] [CrossRef] [PubMed]
- Fried, A.; Richter, D. Infrared Absorption Spectroscopy. In Analytical Techniques for Atmospheric Measurement; Heard, D.E., Ed.; Blackwell Publishing: Oxford, UK, 2007; p. 146. [Google Scholar]
- Zhao, G.; Tan, W.; Hou, J.J.; Qiu, X.D.; Ma, W.G.; Li, Z.X.; Dong, L.; Zhang, L.; Yin, W.B.; Xiao, L.T.; et al. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser. Opt. Express 2016, 24, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Witzel, O.; Ebert, V. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-Spectroscopy. Sensors 2014, 14, 21497–21513. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.A. Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods. Appl. Opt. 1992, 31, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Werle, P. Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers. Appl. Phys. B Lasers Opt. 1995, 60, 499–506. [Google Scholar] [CrossRef]
- Iseki, T.; Tai, H.; Kimura, K. A portable remote methane sensor using a tunable diode laser. Meas. Sci. Technol. 2000, 11, 594–602. [Google Scholar] [CrossRef]
- Hangauer, A.; Chen, J.; Strzoda, R.; Fleischer, M.; Amann, M.C. Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor. Opt. Express 2014, 22, 13680–13690. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K.; Lewicki, R.; Nahle, L.; Fischer, M.; Koeth, J.; Belahsene, S.; Rouillard, Y.; Worschech, L.; Tittel, F.K. Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane. Appl. Phys. B Lasers Opt. 2012, 106, 251–255. [Google Scholar] [CrossRef]
- Sonnenfroh, D.M.; Rawlins, W.T.; Allen, M.G.; Gmachl, C.; Capasso, F.; Hutchinson, A.L.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers. Appl. Opt. 2001, 40, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.G.; Carleton, K.L.; Davis, S.J.; Kessler, W.J.; Otis, C.E.; Palombo, D.A.; Sonnenfroh, D.M. Ultrasensitive dual-beam absorption and gain spectroscopy—Applications for near-infrared and visible diode-laser sensors. Appl. Opt. 1995, 34, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Werle, P.; Mucke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Werle, P.; Mazzinghi, P.; D’Amato, F.; De Rosa, M.; Maurer, K.; Slemr, F. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1685–1705. [Google Scholar] [CrossRef] [PubMed]
- Witzel, O.; Klein, A.; Wagner, S.; Meffert, C.; Schulz, C.; Ebert, V. High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine. Appl. Phys. B Lasers Opt. 2012, 109, 521–532. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; Taubman, M.S.; Ye, J. Laser Stabilization. In Handbook of Optics, 3rd ed.; Bass, M., Ed.; McGraw-Hill: New York, NY, USA, 2010; Volume 2, p. 22.1. [Google Scholar]
- Hunsmann, S.; Wunderle, K.; Wagner, S.; Rascher, U.; Schurr, U.; Ebert, V. Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B Lasers Opt. 2008, 92, 393–401. [Google Scholar] [CrossRef]
- Peterson, K.A.; Daniel, B.O. High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source. Opt. Lett. 1999, 24, 667–669. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Tan, W.; Jia, M.; Hou, J.; Ma, W.; Dong, L.; Zhang, L.; Feng, X.; Wu, X.; Yin, W.; et al. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6. Sensors 2016, 16, 1544. https://doi.org/10.3390/s16091544
Zhao G, Tan W, Jia M, Hou J, Ma W, Dong L, Zhang L, Feng X, Wu X, Yin W, et al. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6. Sensors. 2016; 16(9):1544. https://doi.org/10.3390/s16091544
Chicago/Turabian StyleZhao, Gang, Wei Tan, Mengyuan Jia, Jiajuan Hou, Weiguang Ma, Lei Dong, Lei Zhang, Xiaoxia Feng, Xuechun Wu, Wangbao Yin, and et al. 2016. "Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6" Sensors 16, no. 9: 1544. https://doi.org/10.3390/s16091544
APA StyleZhao, G., Tan, W., Jia, M., Hou, J., Ma, W., Dong, L., Zhang, L., Feng, X., Wu, X., Yin, W., Xiao, L., Axner, O., & Jia, S. (2016). Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6. Sensors, 16(9), 1544. https://doi.org/10.3390/s16091544