sensors-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8862 KiB  
Article
Development of Automatic Method for Glucose Detection Based on Platinum Octaethylporphyrin Sol–Gel Film with Long-Term Stability
by Yujie Niu, Yongda Wang, Lu Li, Xiyu Zhang and Ting Liu
Sensors 2025, 25(1), 186; https://doi.org/10.3390/s25010186 - 31 Dec 2024
Viewed by 819
Abstract
In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a [...] Read more.
In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e., Pt/TE-MTS, through a sol–gel process. The optical parameter (OP) was defined as the ratio of phosphorescence in the absence and presence of glucose, and the relationship between OP and glucose concentration (GC) was established in a theoretical way based on the Stern–Volmer equation and further obtained by photoluminescence measurement. OP exhibited a linear relationship with GC in a range of 0–720 μM. The time required by the photoluminescence of the film to reach equilibrium was measured to ensure the completion of the reaction, and it was found that the equilibrium time decreased as the GC increased. The photobleaching behavior and stabilization of the film were monitored, and the result showed that the film exhibited excellent resistance to photobleaching and was quite stable in an aqueous solution. Additionally, a LabVIEW-based GC-detection system was developed to achieve the practical application of the sensing film. In summary, the Pt/TE-MTS film exhibited high sensitivity in detecting the GC with excellent reproducibility, which is of high value in applications. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

37 pages, 2256 KiB  
Review
Internet of Things-Based Automated Solutions Utilizing Machine Learning for Smart and Real-Time Irrigation Management: A Review
by Bryan Nsoh, Abia Katimbo, Hongzhi Guo, Derek M. Heeren, Hope Njuki Nakabuye, Xin Qiao, Yufeng Ge, Daran R. Rudnick, Joshua Wanyama, Erion Bwambale and Shafik Kiraga
Sensors 2024, 24(23), 7480; https://doi.org/10.3390/s24237480 - 23 Nov 2024
Cited by 7 | Viewed by 5890
Abstract
This systematic review critically evaluates the current state and future potential of real-time, end-to-end smart, and automated irrigation management systems, focusing on integrating the Internet of Things (IoTs) and machine learning technologies for enhanced agricultural water use efficiency and crop productivity. In this [...] Read more.
This systematic review critically evaluates the current state and future potential of real-time, end-to-end smart, and automated irrigation management systems, focusing on integrating the Internet of Things (IoTs) and machine learning technologies for enhanced agricultural water use efficiency and crop productivity. In this review, the automation of each component is examined in the irrigation management pipeline from data collection to application while analyzing its effectiveness, efficiency, and integration with various precision agriculture technologies. It also investigates the role of the interoperability, standardization, and cybersecurity of IoT-based automated solutions for irrigation applications. Furthermore, in this review, the existing gaps are identified and solutions are proposed for seamless integration across multiple sensor suites for automated systems, aiming to achieve fully autonomous and scalable irrigation management. The findings highlight the transformative potential of automated irrigation systems to address global food challenges by optimizing water use and maximizing crop yields. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

11 pages, 2010 KiB  
Article
Validation of a 3D Markerless Motion Capture Tool Using Multiple Pose and Depth Estimations for Quantitative Gait Analysis
by Mathis D’Haene, Frédéric Chorin, Serge S. Colson, Olivier Guérin, Raphaël Zory and Elodie Piche
Sensors 2024, 24(22), 7105; https://doi.org/10.3390/s24227105 - 5 Nov 2024
Cited by 3 | Viewed by 2005
Abstract
Gait analysis is essential for evaluating walking patterns and identifying functional limitations. Traditional marker-based motion capture tools are costly, time-consuming, and require skilled operators. This study evaluated a 3D Marker-less Motion Capture (3D MMC) system using pose and depth estimations with the gold-standard [...] Read more.
Gait analysis is essential for evaluating walking patterns and identifying functional limitations. Traditional marker-based motion capture tools are costly, time-consuming, and require skilled operators. This study evaluated a 3D Marker-less Motion Capture (3D MMC) system using pose and depth estimations with the gold-standard Motion Capture (MOCAP) system for measuring hip and knee joint angles during gait at three speeds (0.7, 1.0, 1.3 m/s). Fifteen healthy participants performed gait tasks which were captured by both systems. The 3D MMC system demonstrated good accuracy (LCC > 0.96) and excellent inter-session reliability (RMSE < 3°). However, moderate-to-high accuracy with constant biases was observed during specific gait events, due to differences in sample rates and kinematic methods. Limitations include the use of only healthy participants and limited key points in the pose estimation model. The 3D MMC system shows potential as a reliable tool for gait analysis, offering enhanced usability for clinical and research applications. Full article
(This article belongs to the Special Issue Biomedical Sensors for Diagnosis and Rehabilitation2nd Edition)
Show Figures

Figure 1

19 pages, 10067 KiB  
Article
A Novel Panorama Depth Estimation Framework for Autonomous Driving Scenarios Based on a Vision Transformer
by Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu and Jihao Li
Sensors 2024, 24(21), 7013; https://doi.org/10.3390/s24217013 - 31 Oct 2024
Cited by 1 | Viewed by 1556
Abstract
An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances [...] Read more.
An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps. Full article
(This article belongs to the Special Issue Large AI Models for Positioning and Perception in Autonomous Driving)
Show Figures

Figure 1

32 pages, 15095 KiB  
Article
Multi-Sensor Soil Probe and Machine Learning Modeling for Predicting Soil Properties
by Sabine Grunwald, Mohammad Omar Faruk Murad, Stephen Farrington, Woody Wallace and Daniel Rooney
Sensors 2024, 24(21), 6855; https://doi.org/10.3390/s24216855 - 25 Oct 2024
Cited by 3 | Viewed by 6024
Abstract
We present a data-driven, in situ proximal multi-sensor digital soil mapping approach to develop digital twins for multiple agricultural fields. A novel Digital Soil CoreTM (DSC) Probe was engineered that contains seven sensors, each of a distinct modality, including sleeve friction, tip [...] Read more.
We present a data-driven, in situ proximal multi-sensor digital soil mapping approach to develop digital twins for multiple agricultural fields. A novel Digital Soil CoreTM (DSC) Probe was engineered that contains seven sensors, each of a distinct modality, including sleeve friction, tip force, dielectric permittivity, electrical resistivity, soil imagery, acoustics, and visible and near-infrared spectroscopy. The DSC System integrates the DSC Probe, DSC software (v2023.10), and deployment equipment components to sense soil characteristics at a high vertical spatial resolution (mm scale) along in situ soil profiles up to a depth of 120 cm in about 60 s. The DSC Probe in situ proximal data are harmonized into a data cube providing vertical high-density knowledge associated with physical–chemical–biological soil conditions. In contrast, conventional ex situ soil samples derived from soil cores, soil pits, or surface samples analyzed using laboratory and other methods are bound by a substantially coarser spatial resolution and multiple compounding errors. Our objective was to investigate the effects of the mismatched scale between high-resolution in situ proximal sensor data and coarser-resolution ex situ soil laboratory measurements to develop soil prediction models. Our study was conducted in central California soil in almond orchards. We collected DSC sensor data and spatially co-located soil cores that were sliced into narrow layers for laboratory-based soil measurements. Partial Least Squares Regression (PLSR) cross-validation was used to compare the results of testing four data integration methods. Method A reduced the high-resolution sensor data to discrete values paired with layer-based soil laboratory measurements. Method B used stochastic distributions of sensor data paired with layer-based soil laboratory measurements. Method C allocated the same soil analytical data to each one of the high-resolution multi-sensor data within a soil layer. Method D linked the high-density multi-sensor soil data directly to crop responses (crop performance and behavior metrics), bypassing costly laboratory soil analysis. Overall, the soil models derived from Method C outperformed Methods A and B. Soil predictions derived using Method D were the most cost-effective for directly assessing soil–crop relationships, making this method well suited for industrial-scale precision agriculture applications. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 1654 KiB  
Article
A New Scene Sensing Model Based on Multi-Source Data from Smartphones
by Zhenke Ding, Zhongliang Deng, Enwen Hu, Bingxun Liu, Zhichao Zhang and Mingyang Ma
Sensors 2024, 24(20), 6669; https://doi.org/10.3390/s24206669 - 16 Oct 2024
Viewed by 1086
Abstract
Smartphones with integrated sensors play an important role in people’s lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect [...] Read more.
Smartphones with integrated sensors play an important role in people’s lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect the method and results of multi-source fusion positioning. Based on the multi-source data from smartphone sensors, this study explores five types of information—Global Navigation Satellite System (GNSS), Inertial Measurement Units (IMUs), cellular networks, optical sensors, and Wi-Fi sensors—characterizing the temporal, spatial, and mathematical statistical features of the data, and it constructs a multi-scale, multi-window, and context-connected scene sensing model to accurately detect the environmental scene in indoor, semi-indoor, outdoor, and semi-outdoor spaces, thus providing a good basis for multi-sensor positioning in a multi-sensor navigation system. Detecting environmental scenes provides an environmental positioning basis for multi-sensor fusion localization. This model is divided into four main parts: multi-sensor-based data mining, a multi-scale convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM) network combined with contextual information, and a meta-heuristic optimization algorithm. Full article
(This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

12 pages, 3136 KiB  
Article
Enhancing Time-of-Flight Diffraction (TOFD) Inspection through an Innovative Curved-Sole Probe Design
by Irati Sanchez Duo, Jose Luis Lanzagorta, Iratxe Aizpurua Maestre and Lander Galdos
Sensors 2024, 24(19), 6360; https://doi.org/10.3390/s24196360 - 30 Sep 2024
Viewed by 1621
Abstract
Time-of-Flight Diffraction (TOFD) is a method of ultrasonic testing (UT) that is widely established as a non-destructive technique (NDT) mainly used for the inspection of welds. In contrast to other established UT techniques, TOFD is capable of identifying discontinuities regardless of their orientation. [...] Read more.
Time-of-Flight Diffraction (TOFD) is a method of ultrasonic testing (UT) that is widely established as a non-destructive technique (NDT) mainly used for the inspection of welds. In contrast to other established UT techniques, TOFD is capable of identifying discontinuities regardless of their orientation. This paper proposes a redesign of the typical TOFD transducers, featuring an innovative curved sole aimed at enhancing their defect detection capabilities. This design is particularly beneficial for thick-walled samples, as it allows for deeper inspections without compromising the resolution near the surface area. During this research, an evaluation consisting in simulations of the ultrasonic beam distribution and experimental tests on a component with artificially manufactured defects at varying depths has been performed to validate the new design. The results demonstrate a 30 to 50% higher beam distribution area as well as an improvement in the signal-to-noise ratio (SNR) resulting in a 24% enhancement in the capability of defect detection compared to the traditional approach. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 7421 KiB  
Article
Enhanced Visual SLAM for Collision-Free Driving with Lightweight Autonomous Cars
by Zhihao Lin, Zhen Tian, Qi Zhang, Hanyang Zhuang and Jianglin Lan
Sensors 2024, 24(19), 6258; https://doi.org/10.3390/s24196258 - 27 Sep 2024
Cited by 3 | Viewed by 1874
Abstract
The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced [...] Read more.
The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced with optical flow to estimate the car’s poses and extract rich texture information from the scene. In the path planning phase, the proposed method employs a method combining a control Lyapunov function and control barrier function in the form of a quadratic program (CLF-CBF-QP) together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To validate the performance and robustness of the proposed method, simulation experiments were conducted with a car in various complex indoor environments using the Gazebo simulation environment. The proposed method can effectively avoid obstacles in the scenes. The proposed algorithm outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple simulated scenes. Full article
(This article belongs to the Special Issue Intelligent Control Systems for Autonomous Vehicles)
Show Figures

Figure 1

65 pages, 19918 KiB  
Review
Radiation Detectors and Sensors in Medical Imaging
by Christos Michail, Panagiotis Liaparinos, Nektarios Kalyvas, Ioannis Kandarakis, George Fountos and Ioannis Valais
Sensors 2024, 24(19), 6251; https://doi.org/10.3390/s24196251 - 26 Sep 2024
Cited by 2 | Viewed by 4704
Abstract
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, [...] Read more.
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, how the radiation is measured, how the images are formed, and the medical goals they serve. Related to medical goals, detectors fall into two major areas: (i) anatomical imaging, which mainly concerns the techniques of diagnostic radiology, and (ii) functional-molecular imaging, which mainly concerns nuclear medicine. An important parameter in the evaluation of the detectors is the combination of the quality of the diagnostic result they offer and the burden of the patient with radiation dose. The latter has to be minimized; thus, the input signal (radiation photon flux) must be kept at low levels. For this reason, the detective quantum efficiency (DQE), expressing signal-to-noise ratio transfer through an imaging system, is of primary importance. In diagnostic radiology, image quality is better than in nuclear medicine; however, in most cases, the dose is higher. On the other hand, nuclear medicine focuses on the detection of functional findings and not on the accurate spatial determination of anatomical data. Detectors are integrated into projection or tomographic imaging systems and are based on the use of scintillators with optical sensors, photoconductors, or semiconductors. Analysis and modeling of such systems can be performed employing theoretical models developed in the framework of cascaded linear systems analysis (LCSA), as well as within the signal detection theory (SDT) and information theory. Full article
(This article belongs to the Special Issue Multiple Sensor Signal and Image Processing for Clinical Application)
Show Figures

Figure 1

17 pages, 6457 KiB  
Article
A Cumulant-Based Method for Acquiring GNSS Signals
by He-Sheng Wang, Hou-Yu Wang and Dah-Jing Jwo
Sensors 2024, 24(19), 6234; https://doi.org/10.3390/s24196234 - 26 Sep 2024
Cited by 3 | Viewed by 1083
Abstract
Global Navigation Satellite Systems (GNSS) provide positioning, velocity, and time services for civilian applications. A critical step in the positioning process is the acquisition of visible satellites in the sky. Modern GNSS systems, such as Galileo—developed and maintained by the European Union—utilize a [...] Read more.
Global Navigation Satellite Systems (GNSS) provide positioning, velocity, and time services for civilian applications. A critical step in the positioning process is the acquisition of visible satellites in the sky. Modern GNSS systems, such as Galileo—developed and maintained by the European Union—utilize a new modulation technique known as Binary Offset Carrier (BOC). However, BOC signals introduce multiple side-peaks in their autocorrelation function, which can lead to significant errors during the acquisition process. In this paper, we propose a novel acquisition method based on higher-order cumulants that effectively eliminates these side-peaks. This method is capable of simultaneously acquiring both conventional ranging signals, such as GPS C/A code, and BOC-modulated signals. The effectiveness of the proposed method is demonstrated through the acquisition of simulated signals, with a comparison to traditional methods. Additionally, we apply the proposed method to real satellite signals to further validate its performance. Our results show that the proposed method successfully suppresses side-peaks, improves acquisition accuracy in weak signal environments, and demonstrates potential for indoor GNSS applications. The study concludes that while the method may increase computational load, its performance in challenging conditions makes it a promising approach for future GNSS receiver designs. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

26 pages, 9754 KiB  
Review
Gas Sensing Properties of Indium–Oxide–Based Field–Effect Transistor: A Review
by Chengyao Liang, Zhongyu Cao, Jiongyue Hao, Shili Zhao, Yuanting Yu, Yingchun Dong, Hangyu Liu, Chun Huang, Chao Gao, Yong Zhou and Yong He
Sensors 2024, 24(18), 6150; https://doi.org/10.3390/s24186150 - 23 Sep 2024
Cited by 1 | Viewed by 2391
Abstract
Excellent stability, low cost, high response, and sensitivity of indium oxide (In2O3), a metal oxide semiconductor, have been verified in the field of gas sensing. Conventional In2O3 gas sensors employ simple and easy–to–manufacture resistive components as [...] Read more.
Excellent stability, low cost, high response, and sensitivity of indium oxide (In2O3), a metal oxide semiconductor, have been verified in the field of gas sensing. Conventional In2O3 gas sensors employ simple and easy–to–manufacture resistive components as transducers. However, the swift advancement of the Internet of Things has raised higher requirements for gas sensors based on metal oxides, primarily including lowering operating temperatures, improving selectivity, and realizing integrability. In response to these three main concerns, field–effect transistor (FET) gas sensors have garnered growing interest over the past decade. When compared with other metal oxide semiconductors, In2O3 exhibits greater carrier concentration and mobility. The property is advantageous for manufacturing FETs with exceptional electrical performance, provided that the off–state current is controlled at a sufficiently low level. This review presents the significant progress made in In2O3 FET gas sensors during the last ten years, covering typical device designs, gas sensing performance indicators, optimization techniques, and strategies for the future development based on In2O3 FET gas sensors. Full article
(This article belongs to the Special Issue Inorganic Nanostructure-Based Sensors: Design and Applications)
Show Figures

Figure 1

19 pages, 575 KiB  
Article
Jointly Optimization of Delay and Energy Consumption for Multi-Device FDMA in WPT-MEC System
by Danxia Qiao, Lu Sun, Dianju Li, Huajie Xiong, Rina Liang, Zhenyuan Han and Liangtian Wan
Sensors 2024, 24(18), 6123; https://doi.org/10.3390/s24186123 - 22 Sep 2024
Cited by 2 | Viewed by 1651
Abstract
With the rapid development of mobile edge computing (MEC) and wireless power transfer (WPT) technologies, the MEC-WPT system makes it possible to provide high-quality data processing services for end users. However, in a real-world WPT-MEC system, the channel gain decreases with the transmission [...] Read more.
With the rapid development of mobile edge computing (MEC) and wireless power transfer (WPT) technologies, the MEC-WPT system makes it possible to provide high-quality data processing services for end users. However, in a real-world WPT-MEC system, the channel gain decreases with the transmission distance, leading to “double near and far effect” in the joint transmission of wireless energy and data, which affects the quality of the data processing service for end users. Consequently, it is essential to design a reasonable system model to overcome the “double near and far effect” and make reasonable scheduling of multi-dimensional resources such as energy, communication and computing to guarantee high-quality data processing services. First, this paper designs a relay collaboration WPT-MEC resource scheduling model to improve wireless energy utilization efficiency. The optimization goal is to minimize the normalization of the total communication delay and total energy consumption while meeting multiple resource constraints. Second, this paper imports a BK-means algorithm to complete the end terminals cluster to guarantee effective energy reception and adapts the whale optimization algorithm with adaptive mechanism (AWOA) for mobile vehicle path-planning to reduce energy waste. Third, this paper proposes an immune differential enhanced deep deterministic policy gradient (IDDPG) algorithm to realize efficient resource scheduling of multiple resources and minimize the optimization goal. Finally, simulation experiments are carried out on different data, and the simulation results prove the validity of the designed scheduling model and proposed IDDPG. Full article
Show Figures

Figure 1

25 pages, 12251 KiB  
Article
Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping
by Maria Makuch, Pelagia Gawronek and Bartosz Mitka
Sensors 2024, 24(18), 6045; https://doi.org/10.3390/s24186045 - 18 Sep 2024
Cited by 2 | Viewed by 1261
Abstract
Hyperboloid cooling towers are counted among the largest cast-in-place industrial structures. They are an essential element of cooling systems used in many power plants in service today. Their main structural component, a reinforced-concrete shell in the form of a one-sheet hyperboloid with bidirectional [...] Read more.
Hyperboloid cooling towers are counted among the largest cast-in-place industrial structures. They are an essential element of cooling systems used in many power plants in service today. Their main structural component, a reinforced-concrete shell in the form of a one-sheet hyperboloid with bidirectional curvature continuity, makes them stand out against other towers and poses very high construction and service requirements. The safe service and adequate durability of the hyperboloid structure are guaranteed by the proper geometric parameters of the reinforced-concrete shell and monitoring of their condition over time. This article presents an original concept for employing terrestrial laser scanning to conduct an end-to-end assessment of the geometric condition of a hyperboloid cooling tower as required by industry standards. The novelty of the proposed solution lies in the use of measurements of the interior of the structure to determine the actual thickness of the hyperboloid shell, which is generally disregarded in geometric measurements of such objects. The proposal involves several strategies and procedures for a reliable verification of the structure’s verticality, the detection of signs of ovalisation of the shell, the estimation of the parameters of the structure’s theoretical model, and the analysis of the distribution of the thickness and geometric imperfections of the reinforced-concrete shell. The idea behind the method for determining the actual thickness of the shell (including its variation due to repairs and reinforcement operations), which is generally disregarded when measuring the geometry of such structures, is to estimate the distance between point clouds of the internal and external surfaces of the structure using the M3C2 algorithm principle. As a particularly dangerous geometric anomaly of hyperboloid cooling towers, shell ovalisation is detected with an innovative analysis of the bimodality of the frequency distribution of radial deviations in horizontal cross-sections. The concept of a complete assessment of the geometry of a hyperboloid cooling tower was devised and validated using three measurement series of a structure that has been continuously in service for fifty years. The results are consistent with data found in design and service documents. We identified a permanent tilt of the structure’s axis to the northeast and geometric imperfections of the hyperboloid shell from −0.125 m to +0.136 m. The results also demonstrated no advancing deformation of the hyperboloid shell over a two-year research period, which is vital for its further use. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

14 pages, 4333 KiB  
Article
Eddy Current-Based Delamination Imaging in CFRP Using Erosion and Thresholding Approaches
by Dario J. Pasadas, Mohsen Barzegar, Artur L. Ribeiro and Helena G. Ramos
Sensors 2024, 24(18), 5932; https://doi.org/10.3390/s24185932 - 13 Sep 2024
Cited by 1 | Viewed by 1224
Abstract
Carbon fiber reinforced plastic (CFRP) is a composite material known for its high strength-to-weight ratio, stiffness, and corrosion and fatigue resistance, making it suitable for its use in structural components. However, CFRP can be subject to various types of damage, such as delamination, [...] Read more.
Carbon fiber reinforced plastic (CFRP) is a composite material known for its high strength-to-weight ratio, stiffness, and corrosion and fatigue resistance, making it suitable for its use in structural components. However, CFRP can be subject to various types of damage, such as delamination, matrix cracking, or fiber breakage, requiring nondestructive evaluation to ensure structural integrity. In this context, damage imaging algorithms are important for assessing the condition of this material. This paper presents signal and image processing methods for delamination characterization of thin CFRP plates using eddy current testing (ECT). The measurement system included an inductive ECT probe with three coil elements, which has the characteristic of allowing eddy currents to be induced in the specimen with two different configurations. In this study, the peak amplitude of the induced voltage in the receiver element and the phase shift between the excitation and receiver signals were considered as damage-sensitive features. Using the ECT probe, C-scans were performed in the vicinity of delamination defects of different sizes. The dimensions and shape of the ECT probe were considered by applying the erosion method in the damage imaging process. Different thresholding approaches were also investigated to extract the size of the defective areas. To evaluate the impact of this application, a comparison is made between the results obtained before and after thresholding using histogram analysis. The evaluation of damage imaging for three different delamination sizes is presented for quantitative analysis. Full article
(This article belongs to the Special Issue Sensors in Nondestructive Testing)
Show Figures

Figure 1

22 pages, 5266 KiB  
Article
Self-Supervised Dam Deformation Anomaly Detection Based on Temporal–Spatial Contrast Learning
by Yu Wang and Guohua Liu
Sensors 2024, 24(17), 5858; https://doi.org/10.3390/s24175858 - 9 Sep 2024
Cited by 2 | Viewed by 1546
Abstract
The detection of anomalies in dam deformation is paramount for evaluating structural integrity and facilitating early warnings, representing a critical aspect of dam health monitoring (DHM). Conventional data-driven methods for dam anomaly detection depend extensively on historical data; however, obtaining annotated data is [...] Read more.
The detection of anomalies in dam deformation is paramount for evaluating structural integrity and facilitating early warnings, representing a critical aspect of dam health monitoring (DHM). Conventional data-driven methods for dam anomaly detection depend extensively on historical data; however, obtaining annotated data is both expensive and labor-intensive. Consequently, methodologies that leverage unlabeled or semi-labeled data are increasingly gaining popularity. This paper introduces a spatiotemporal contrastive learning pretraining (STCLP) strategy designed to extract discriminative features from unlabeled datasets of dam deformation. STCLP innovatively combines spatial contrastive learning based on temporal contrastive learning to capture representations embodying both spatial and temporal characteristics. Building upon this, a novel anomaly detection method for dam deformation utilizing STCLP is proposed. This method transfers pretrained parameters to targeted downstream classification tasks and leverages prior knowledge for enhanced fine-tuning. For validation, an arch dam serves as the case study. The results reveal that the proposed method demonstrates excellent performance, surpassing other benchmark models. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 1730 KiB  
Article
Analytical Performance of the FreeStyle Libre 2 Glucose Sensor in Healthy Male Adults
by Eva Fellinger, Tom Brandt, Justin Creutzburg, Tessa Rommerskirchen and Annette Schmidt
Sensors 2024, 24(17), 5769; https://doi.org/10.3390/s24175769 - 5 Sep 2024
Cited by 2 | Viewed by 3989
Abstract
Continuous Glucose Monitoring (CGM) not only can be used for glycemic control in chronic diseases (e.g., diabetes), but is increasingly being utilized by individuals and athletes to monitor fluctuations in training and everyday life. However, it is not clear how accurately CGM reflects [...] Read more.
Continuous Glucose Monitoring (CGM) not only can be used for glycemic control in chronic diseases (e.g., diabetes), but is increasingly being utilized by individuals and athletes to monitor fluctuations in training and everyday life. However, it is not clear how accurately CGM reflects plasma glucose concentration in a healthy population in the absence of chronic diseases. In an oral glucose tolerance test (OGTT) with forty-four healthy male subjects (25.5 ± 4.5 years), the interstitial fluid glucose (ISFG) concentration obtained by a CGM sensor was compared against finger-prick capillary plasma glucose (CPG) concentration at fasting baseline (T0) and 30 (T30), 60 (T60), 90 (T90), and 120 (T120) min post OGTT to investigate differences in measurement accuracy. The overall mean absolute relative difference (MARD) was 12.9% (95%-CI: 11.8–14.0%). Approximately 100% of the ISFG values were within zones A and B in the Consensus Error Grid, indicating clinical accuracy. A paired t-test revealed statistically significant differences between CPG and ISFG at all time points (T0: 97.3 mg/dL vs. 89.7 mg/dL, T30: 159.9 mg/dL vs. 144.3 mg/dL, T60: 134.8 mg/dL vs. 126.2 mg/dL, T90: 113.7 mg/dL vs. 99.3 mg/dL, and T120: 91.8 mg/dL vs. 82.6 mg/dL; p < 0.001) with medium to large effect sizes (d = 0.57–1.02) and with ISFG systematically under-reporting the reference system CPG. CGM sensors provide a convenient and reliable method for monitoring blood glucose in the everyday lives of healthy adults. Nonetheless, their use in clinical settings wherein implications are drawn from CGM readings should be handled carefully. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

19 pages, 1200 KiB  
Article
Optimized Intrusion Detection for IoMT Networks with Tree-Based Machine Learning and Filter-Based Feature Selection
by Ghaida Balhareth and Mohammad Ilyas
Sensors 2024, 24(17), 5712; https://doi.org/10.3390/s24175712 - 2 Sep 2024
Cited by 6 | Viewed by 3645
Abstract
The Internet of Medical Things (IoMTs) is a network of connected medical equipment such as pacemakers, prosthetics, and smartwatches. Utilizing the IoMT-based system, a huge amount of data is generated, offering experts a valuable resource for tasks such as prediction, real-time monitoring, and [...] Read more.
The Internet of Medical Things (IoMTs) is a network of connected medical equipment such as pacemakers, prosthetics, and smartwatches. Utilizing the IoMT-based system, a huge amount of data is generated, offering experts a valuable resource for tasks such as prediction, real-time monitoring, and diagnosis. To do so, the patient’s health data must be transferred to database storage for processing because of the limitations of the storage and computation capabilities of IoMT devices. Consequently, concerns regarding security and privacy can arise due to the limited control over the transmitted information and reliance on wireless transmission, which leaves the network vulnerable to several kinds of attacks. Motivated by this, in this study, we aim to build and improve an efficient intrusion detection system (IDS) for IoMT networks. The proposed IDS leverages tree-based machine learning classifiers combined with filter-based feature selection techniques to enhance detection accuracy and efficiency. The proposed model is used for monitoring and identifying unauthorized or malicious activities within medical devices and networks. To optimize performance and minimize computation costs, we utilize Mutual Information (MI) and XGBoost as filter-based feature selection methods. Then, to reduce the number of the chosen features selected, we apply a mathematical set (intersection) to extract the common features. The proposed method can detect intruders while data are being transferred, allowing for the accurate and efficient analysis of healthcare data at the network’s edge. The system’s performance is assessed using the CICIDS2017 dataset. We evaluate the proposed model in terms of accuracy, F1 score, recall, precision, true positive rate, and false positive rate. The proposed model achieves 98.79% accuracy and a low false alarm rate 0.007 FAR on the CICIDS2017 dataset according to the experimental results. While this study focuses on binary classification for intrusion detection, we are planning to build a multi-classification approach for future work which will be able to not only detect the attacks but also categorize them. Additionally, we will consider using our proposed feature selection technique for different ML classifiers and evaluate the model’s performance empirically in real-world IoMT scenarios. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

20 pages, 22057 KiB  
Article
Design and Evaluation of a Novel Venturi-Based Spirometer for Home Respiratory Monitoring
by Mariana Ferreira Nunes, Hugo Plácido da Silva, Liliana Raposo and Fátima Rodrigues
Sensors 2024, 24(17), 5622; https://doi.org/10.3390/s24175622 - 30 Aug 2024
Cited by 2 | Viewed by 2408
Abstract
The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device features a [...] Read more.
The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device features a 3D-printed Venturi tube that narrows to create a pressure differential, which is measured by a differential pressure sensor and converted into airflow rate. The airflow is then integrated over time to calculate parameters such as the Forced Vital Capacity (FVC) and Forced Expiratory Volume in one second (FEV1). The system also includes a bacterial filter for hygienic use and a circuit board for data acquisition and streaming. Evaluation with eight healthy individuals demonstrated excellent test-retest reliability, with intraclass correlation coefficients (ICCs) of 0.955 for FVC and 0.853 for FEV1. Furthermore, when compared to standard Pulmonary Function Test (PFT) equipment, the spirometer exhibited strong correlation, with Pearson correlation coefficients of 0.992 for FVC and 0.968 for FEV1, and high reliability, with ICCs of 0.987 for FVC and 0.907 for FEV1. These findings suggest that the Venturi-based spirometer could significantly enhance access to spirometry at home. However, further large-scale validation and reliability studies are necessary to confirm its efficacy and reliability for widespread use. Full article
Show Figures

Figure 1

14 pages, 3226 KiB  
Article
Identification of Beef Odors under Different Storage Day and Processing Temperature Conditions Using an Odor Sensing System
by Yuanchang Liu, Nan Peng, Jinlong Kang, Takeshi Onodera and Rui Yatabe
Sensors 2024, 24(17), 5590; https://doi.org/10.3390/s24175590 - 29 Aug 2024
Cited by 3 | Viewed by 4072
Abstract
This study used an odor sensing system with a 16-channel electrochemical sensor array to measure beef odors, aiming to distinguish odors under different storage days and processing temperatures for quality monitoring. Six storage days ranged from purchase (D0) to eight days (D8), with [...] Read more.
This study used an odor sensing system with a 16-channel electrochemical sensor array to measure beef odors, aiming to distinguish odors under different storage days and processing temperatures for quality monitoring. Six storage days ranged from purchase (D0) to eight days (D8), with three temperature conditions: no heat (RT), boiling (100 °C), and frying (180 °C). Gas chromatography–mass spectrometry (GC-MS) analysis showed that odorants in the beef varied under different conditions. Compounds like acetoin and 1-hexanol changed significantly with the storage days, while pyrazines and furans were more detectable at higher temperatures. The odor sensing system data were visualized using principal component analysis (PCA) and uniform manifold approximation and projection (UMAP). PCA and unsupervised UMAP clustered beef odors by storage days but struggled with the processing temperatures. Supervised UMAP accurately clustered different temperatures and dates. Machine learning analysis using six classifiers, including support vector machine, achieved 57% accuracy for PCA-reduced data, while unsupervised UMAP reached 49.1% accuracy. Supervised UMAP significantly enhanced the classification accuracy, achieving over 99.5% with the dimensionality reduced to three or above. Results suggest that the odor sensing system can sufficiently enhance non-destructive beef quality and safety monitoring. This research advances electronic nose applications and explores data downscaling techniques, providing valuable insights for future studies. Full article
(This article belongs to the Special Issue Electronic Nose and Artificial Olfaction)
Show Figures

Figure 1

23 pages, 5271 KiB  
Article
Robotic Valve Turning with a Wheeled Mobile Manipulator via Hybrid Passive/Active Compliance
by Hongjun Xing, Liang Ding, Jinbao Chen, Haibo Gao and Zongquan Deng
Sensors 2024, 24(17), 5559; https://doi.org/10.3390/s24175559 - 28 Aug 2024
Cited by 2 | Viewed by 1201
Abstract
This paper addresses the problems of valve-turning operation in rescue environments where a wheeled mobile manipulator (WMM) is employed, including the possible occurrence of large internal forces. Rather than attempting to obtain the exact position of the valve, this paper presents a solution [...] Read more.
This paper addresses the problems of valve-turning operation in rescue environments where a wheeled mobile manipulator (WMM) is employed, including the possible occurrence of large internal forces. Rather than attempting to obtain the exact position of the valve, this paper presents a solution to two main problems in robotic valve-turning operations: the radial position deviation between the rotation axes of the tool and the valve handle, which may cause large radial forces, and the possible axial displacement of the valve handle as the valve turns, which may lead to large axial forces. For the former problem, we designed a compliant end-effector with a tolerance of approximately 3.5° (angle) and 9.7 mm (position), and provided a hybrid passive/active compliance method. For the latter problem, a passivity-based force tracking algorithm was employed. Combining the custom-built compliant end-effector and the passivity-based control method can significantly reduce both the radial and the axial forces. Additionally, for valves with different installation types and WMMs with different configurations, we analyzed the minimum required number of actuators for valve turning. Simulation and experimental results are presented to show the effectiveness of the proposed approach. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

17 pages, 3505 KiB  
Article
Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment
by Soree Hwang, Jongman Kim, Sumin Yang, Hyuk-June Moon, Kyung-Hee Cho, Inchan Youn, Joon-Kyung Sung and Sungmin Han
Sensors 2024, 24(17), 5571; https://doi.org/10.3390/s24175571 - 28 Aug 2024
Cited by 5 | Viewed by 2658
Abstract
Gait analysis systems are critical for assessing motor function in rehabilitation and elderly care. This study aimed to develop and optimize an abnormal gait classification algorithm considering joint impairments using inertial measurement units (IMUs) and walkway systems. Ten healthy male participants simulated normal [...] Read more.
Gait analysis systems are critical for assessing motor function in rehabilitation and elderly care. This study aimed to develop and optimize an abnormal gait classification algorithm considering joint impairments using inertial measurement units (IMUs) and walkway systems. Ten healthy male participants simulated normal walking, walking with knee impairment, and walking with ankle impairment under three conditions: without joint braces, with a knee brace, and with an ankle brace. Based on these simulated gaits, we developed classification models: distinguishing abnormal gait due to joint impairments, identifying specific joint disorders, and a combined model for both tasks. Recursive Feature Elimination with Cross-Validation (RFECV) was used for feature extraction, and models were fine-tuned using support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB). The IMU-based system achieved over 91% accuracy in classifying the three types of gait. In contrast, the walkway system achieved less than 77% accuracy in classifying the three types of gait, primarily due to high misclassification rates between knee and ankle joint impairments. The IMU-based system shows promise for accurate gait assessment in patients with joint impairments, suggesting future research for clinical application improvements in rehabilitation and patient management. Full article
(This article belongs to the Special Issue Sensors and Wearable Technologies in Sport Biomechanics)
Show Figures

Figure 1

14 pages, 1843 KiB  
Article
Three-Dimensional Posture Estimation of Vehicle Occupants Using Depth and Infrared Images
by Anuj Tambwekar, Byoung-Keon D. Park, Arpan Kusari and Wenbo Sun
Sensors 2024, 24(17), 5530; https://doi.org/10.3390/s24175530 - 27 Aug 2024
Cited by 2 | Viewed by 1344
Abstract
Pose estimation is crucial for ensuring passenger safety and better user experiences in semi- and fully autonomous vehicles. Traditional methods relying on pose estimation from regular color images face significant challenges due to a lack of three-dimensional (3D) information and the sensitivity to [...] Read more.
Pose estimation is crucial for ensuring passenger safety and better user experiences in semi- and fully autonomous vehicles. Traditional methods relying on pose estimation from regular color images face significant challenges due to a lack of three-dimensional (3D) information and the sensitivity to occlusion and lighting conditions. Depth images, which are invariant to lighting issues and provide 3D information about the scene, offer a promising alternative. However, there is a lack of strong work in 3D pose estimation from such images due to the time-consuming process of annotating depth images with 3D postures. In this paper, we present a novel approach to 3D human posture estimation using depth and infrared (IR) images. Our method leverages a three-stage fine-tuning process involving simulation data, approximated data, and a limited set of manually annotated samples. This approach allows us to effectively train a model capable of accurate 3D pose estimation with a median error of under 10 cm across all joints, using fewer than 100 manually annotated samples. To the best of our knowledge, this is the first work focusing on vehicle occupant posture detection utilizing only depth and IR data. Our results demonstrate the feasibility and efficacy of this approach, paving the way for enhanced passenger safety in autonomous vehicle systems. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 11573 KiB  
Article
Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation
by Kahlin Wacker, Changhyeon Kim, Marc W. van Iersel, Benjamin Sidore, Tony Pham, Mark Haidekker, Lynne Seymour and Rhuanito Soranz Ferrarezi
Sensors 2024, 24(17), 5515; https://doi.org/10.3390/s24175515 - 26 Aug 2024
Cited by 1 | Viewed by 2026
Abstract
Canopy imaging offers a non-destructive, efficient way to objectively measure canopy size, detect stress symptoms, and assess pigment concentrations. While it is faster and easier than traditional destructive methods, manual image analysis, including segmentation and evaluation, can be time-consuming. To make imaging more [...] Read more.
Canopy imaging offers a non-destructive, efficient way to objectively measure canopy size, detect stress symptoms, and assess pigment concentrations. While it is faster and easier than traditional destructive methods, manual image analysis, including segmentation and evaluation, can be time-consuming. To make imaging more widely accessible, it’s essential to reduce the cost of imaging systems and automate the analysis process. We developed a low-cost imaging system with automated analysis using an embedded microcomputer equipped with a monochrome camera and a filter for a total hardware cost of ~USD 500. Our imaging system takes images under blue, green, red, and infrared light, as well as chlorophyll fluorescence. The system uses a Python-based program to collect and analyze images automatically. The multi-spectral imaging system separates plants from the background using a chlorophyll fluorescence image, which is also used to quantify canopy size. The system then generates normalized difference vegetation index (NDVI, “greenness”) images and histograms, providing quantitative, spatially resolved information. We verified that these indices correlate with leaf chlorophyll content and can easily add other indices by installing light sources with the desired spectrums. The low cost of the system can make this imaging technology widely available. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

12 pages, 2983 KiB  
Article
Precise Positioning in Nitrogen Fertility Sensing in Maize (Zea mays L.)
by Tri Setiyono
Sensors 2024, 24(16), 5322; https://doi.org/10.3390/s24165322 - 17 Aug 2024
Cited by 2 | Viewed by 1381
Abstract
This study documented the contribution of precise positioning involving a global navigation satellite system (GNSS) and a real-time kinematic (RTK) system in unmanned aerial vehicle (UAV) photogrammetry, particularly for establishing the coordinate data of ground control points (GCPs). Without augmentation, GNSS positioning solutions [...] Read more.
This study documented the contribution of precise positioning involving a global navigation satellite system (GNSS) and a real-time kinematic (RTK) system in unmanned aerial vehicle (UAV) photogrammetry, particularly for establishing the coordinate data of ground control points (GCPs). Without augmentation, GNSS positioning solutions are inaccurate and pose a high degree of uncertainty if such data are used in UAV data processing for mapping. The evaluation included a comparative assessment of sample coordinates involving RTK and an ordinary GPS device and the application of precise GCP data for UAV photogrammetry in field crop research, monitoring nitrogen deficiency stress in maize. This study confirmed the superior performance of the RTK system in providing positional data, with 4 cm bias as compared to 311 cm with the non-augmented GNSS technique, making it suitable for use in agronomic research involving row crops. Precise GCP data in this study allow the UAV-based Normalized Difference Red-Edge Index (NDRE) data to effectively characterize maize crop responses to N nutrition during the growing season, with detailed analyses revealing the causal relationship in that a compromised optimum canopy chlorophyll content under limiting nitrogen environment was the reason for reduced canopy cover under an N-deficiency environment. Without RTK-based GCPs, different and, to some degree, misleading results were evident, and therefore, this study warrants the requirement of precise GCP data for scientific research investigations attempting to use UAV photogrammetry for agronomic field crop study. Full article
(This article belongs to the Special Issue Sensor-Based Crop and Soil Monitoring in Precise Agriculture)
Show Figures

Figure 1

27 pages, 56161 KiB  
Article
Locating Insulation Defects in HV Substations Using HFCT Sensors and AI Diagnostic Tools
by Javier Ortego, Fernando Garnacho, Fernando Álvarez, Eduardo Arcones and Abderrahim Khamlichi
Sensors 2024, 24(16), 5312; https://doi.org/10.3390/s24165312 - 16 Aug 2024
Cited by 1 | Viewed by 1642
Abstract
In general, a high voltage (HV) substation can be made up of multiple insulation subsystems: an air insulation subsystem (AIS), gas insulation subsystem (GIS), liquid insulation subsystem (power transformers), and solid insulation subsystem (power cables), all of them with their grounding structures interconnected [...] Read more.
In general, a high voltage (HV) substation can be made up of multiple insulation subsystems: an air insulation subsystem (AIS), gas insulation subsystem (GIS), liquid insulation subsystem (power transformers), and solid insulation subsystem (power cables), all of them with their grounding structures interconnected and linked to the substation earth. Partial discharge (PD) pulses, which are generated in a HV apparatus belonging to a subsystem, travel through the grounding structures of the others. PD analyzers using high-frequency current transformer (HFCT) sensors, which are installed at the connections between the grounding structures, are sensitive to these traveling pulses. In a substation made up of an AIS, several non-critical PD sources can be detected, such as possible corona, air surface, or floating discharges. To perform the correct diagnosis, non-critical PD sources must be separated from critical PD sources related to insulation defects, such as a cavity in a solid dielectric material, mobile particles in SF6, or surface discharges in oil. Powerful diagnostic tools using PD clustering and phase-resolved PD (PRPD) pattern recognition have been developed to check the insulation condition of HV substations. However, a common issue is how to determine the subsystem in which a critical PD source is located when there are several PD sources, and a critical one is near the boundary between two HV subsystems, e.g., a cavity defect located between a cable end and a GIS. The traveling direction of the detected PD is valuable information to determine the subsystem in which the insulation defect is located. However, incorrect diagnostics are usually due to the constraints of PD measuring systems and inadequate PD diagnostic procedures. This paper presents a diagnostic procedure using an appropriate PD analyzer with multiple HFCT sensors to carry out efficient insulation condition diagnoses. This PD procedure has been developed on the basis of laboratory tests, transient signal modeling, and validation tests. The validation tests were carried out in a special test bench developed for the characterization of PD analyzers. To demonstrate the effectiveness of the procedure, a real case is also presented, where satisfactory results are shown. Full article
Show Figures

Figure 1

30 pages, 1213 KiB  
Article
Secure PUF-Based Authentication Systems
by Naing Win Tun and Masahiro Mambo
Sensors 2024, 24(16), 5295; https://doi.org/10.3390/s24165295 - 15 Aug 2024
Cited by 6 | Viewed by 4094
Abstract
The Internet of Things faces significant security challenges, particularly in device authentication. Traditional methods of PUF-based authentication protocols do not fully address IoT’s unique security needs and resource constraints. Existing solutions like Identity-Based Encryption with Physically Unclonable Functions enhance security but still struggle [...] Read more.
The Internet of Things faces significant security challenges, particularly in device authentication. Traditional methods of PUF-based authentication protocols do not fully address IoT’s unique security needs and resource constraints. Existing solutions like Identity-Based Encryption with Physically Unclonable Functions enhance security but still struggle with protecting data during transmission. We show a new protocol that leverages PUFs for device authentication by utilizing Paillier homomorphic encryption or the plaintext equality test to enhance security. Our approach involves encrypting both the challenge–response pairs (CRPs) using Paillier homomorphic encryption scheme or ElGamal encryption for plaintext equality testing scheme. The verifier does not need access to the plaintext CRPs to ensure that sensitive data remain encrypted at all times and our approach reduces the computational load on IoT devices. The encryption ensures that neither the challenge nor the response can be deciphered by potential adversaries who obtain them during the transmission. The homomorphic property of the Paillier scheme or plaintext equality testing scheme allows a verifier to verify device authenticity without decrypting the CRPs, preserving privacy and reducing the computational load on IoT devices. Such an approach to encrypting both elements of the CRP provides resistance against CRP disclosure, machine learning attacks, and impersonation attacks. We validate the scheme through security analysis against various attacks and evaluate its performance by analyzing the computational overhead and the communication overhead. Comparison of average computational and communication time demonstrates Paillier scheme achieves approximately 99% reduction while the plaintext equality test achieves approximately 94% reduction between them. Full article
(This article belongs to the Special Issue Communication, Security, and Privacy in IoT)
Show Figures

Figure 1

17 pages, 8202 KiB  
Article
Using Dynamic Laser Speckle Imaging for Plant Breeding: A Case Study of Water Stress in Sunflowers
by Sherif Bouzaouia, Maxime Ryckewaert, Daphné Héran, Arnaud Ducanchez and Ryad Bendoula
Sensors 2024, 24(16), 5260; https://doi.org/10.3390/s24165260 - 14 Aug 2024
Cited by 2 | Viewed by 1570
Abstract
This study focuses on the promising use of biospeckle technology to detect water stress in plants, a complex physiological mechanism. This involves monitoring the temporal activity of biospeckle pattern to study the occurrence of stress within the leaf. The effects of water stress [...] Read more.
This study focuses on the promising use of biospeckle technology to detect water stress in plants, a complex physiological mechanism. This involves monitoring the temporal activity of biospeckle pattern to study the occurrence of stress within the leaf. The effects of water stress in plants can involve physical and biochemical changes. Some of these changes may alter the optical scattering properties of leaves. The present study therefore proposes to test the potential of a biospeckle measurement to observe the temporal evolution in different varieties of sunflower plants under water stress. An experiment applying controlled water stress with osmotic shock using polyethylene glycol 6000 (PEG) was conducted on two sunflower varieties: one sensitive, and the other more tolerant to water stress. Temporal monitoring of biospeckle activity in these plants was performed using the average value of difference (AVD) indicator. Results indicate that AVD highlights the difference in biospeckle activity between day and night, with lower activity at night for both varieties. The addition of PEG entailed a gradual decrease in values throughout the experiment, particularly for the sensitive variety. The results obtained are consistent with the behaviour of the varieties submitted to water stress. Indeed, a few days after the introduction of PEG, a stronger decrease in AVD indicator values was observed for the sensitive variety than for the resistant variety. This study highlights the dynamics of biospeckle activity for different sunflower varieties undergoing water stress and can be considered as a promising phenotyping tool. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

15 pages, 547 KiB  
Article
An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements
by Martin Karl Moser, Maximilian Ehrhart and Bernd Resch
Sensors 2024, 24(16), 5085; https://doi.org/10.3390/s24165085 - 6 Aug 2024
Cited by 3 | Viewed by 3744
Abstract
Stress has various impacts on the health of human beings. Recent success in wearable sensor development, combined with advancements in deep learning to automatically detect features from raw data, opens several interesting applications related to detecting emotional states. Being able to accurately detect [...] Read more.
Stress has various impacts on the health of human beings. Recent success in wearable sensor development, combined with advancements in deep learning to automatically detect features from raw data, opens several interesting applications related to detecting emotional states. Being able to accurately detect stress-related emotional arousal in an acute setting can positively impact the imminent health status of humans, i.e., through avoiding dangerous locations in an urban traffic setting. This work proposes an explainable deep learning methodology for the automatic detection of stress in physiological sensor data, recorded through a non-invasive wearable sensor device, the Empatica E4 wristband. We propose a Long-Short Term-Memory (LSTM) network, extended through a Deep Generative Ensemble of conditional GANs (LSTM DGE), to deal with the low data regime of sparsely labeled sensor measurements. As explainability is often a main concern of deep learning models, we leverage Integrated Gradients (IG) to highlight the most essential features used by the model for prediction and to compare the results to state-of-the-art expert-based stress-detection methodologies in terms of precision, recall, and interpretability. The results show that our LSTM DGE outperforms the state-of-the-art algorithm by 3 percentage points in terms of recall, and 7.18 percentage points in terms of precision. More importantly, through the use of Integrated Gradients as a layer of explainability, we show that there is a strong overlap between model-derived stress features for electrodermal activity and existing literature, which current state-of-the-art stress detection systems in medical research and psychology are based on. Full article
Show Figures

Figure 1

23 pages, 9502 KiB  
Article
Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons
by Shibo Li, Liang Chu, Pengyu Fu, Shilin Pu, Yilin Wang, Jinwei Li and Zhiqi Guo
Sensors 2024, 24(15), 5065; https://doi.org/10.3390/s24155065 - 5 Aug 2024
Cited by 2 | Viewed by 1572
Abstract
Given the complex powertrain of fuel cell electric vehicles (FCEVs) and diversified vehicle platooning synergy constraints, a control strategy that simultaneously considers inter-vehicle synergy control and energy economy is one of the key technologies to improve transportation efficiency and release the energy-saving potential [...] Read more.
Given the complex powertrain of fuel cell electric vehicles (FCEVs) and diversified vehicle platooning synergy constraints, a control strategy that simultaneously considers inter-vehicle synergy control and energy economy is one of the key technologies to improve transportation efficiency and release the energy-saving potential of platooning vehicles. In this paper, an energy-oriented hybrid cooperative adaptive cruise control (eHCACC) strategy is proposed for an FCEV platoon, aiming to enhance energy-saving potential while ensuring stable car-following performance. The eHCACC employs a hybrid cooperative control architecture, consisting of a top-level centralized controller (TCC) and bottom-level distributed controllers (BDCs). The TCC integrates an eco-driving CACC (eCACC) strategy based on the minimum principle and random forest, which generates optimal reference velocity datasets by aligning the comprehensive control objectives of the platoon and addressing the car-following performance and economic efficiency of the platoon. Concurrently, to further unleash energy-saving potential, the BDCs utilize the equivalent consumption minimization strategy (ECMS) to determine optimal powertrain control inputs by combining the reference datasets with detailed optimization information and system states of the powertrain components. A series of simulation evaluations highlight the improved car-following stability and energy efficiency of the FCEV platoon. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

22 pages, 10859 KiB  
Article
Low-Cost, Low-Power Edge Computing System for Structural Health Monitoring in an IoT Framework
by Eduardo Hidalgo-Fort, Pedro Blanco-Carmona, Fernando Muñoz-Chavero, Antonio Torralba and Rafael Castro-Triguero
Sensors 2024, 24(15), 5078; https://doi.org/10.3390/s24155078 - 5 Aug 2024
Cited by 2 | Viewed by 2065
Abstract
A complete low-power, low-cost and wireless solution for bridge structural health monitoring is presented. This work includes monitoring nodes with modular hardware design and low power consumption based on a control and resource management board called CoreBoard, and a specific board for sensorization [...] Read more.
A complete low-power, low-cost and wireless solution for bridge structural health monitoring is presented. This work includes monitoring nodes with modular hardware design and low power consumption based on a control and resource management board called CoreBoard, and a specific board for sensorization called SensorBoard is presented. The firmware is presented as a design of FreeRTOS parallelised tasks that carry out the management of the hardware resources and implement the Random Decrement Technique to minimize the amount of data to be transmitted over the NB-IoT network in a secure way. The presented solution is validated through the characterization of its energy consumption, which guarantees an autonomy higher than 10 years with a daily 8 min monitoring periodicity, and two deployments in a pilot laboratory structure and the Eduardo Torroja bridge in Posadas (Córdoba, Spain). The results are compared with two different calibrated commercial systems, obtaining an error lower than 1.72% in modal analysis frequencies. The architecture and the results obtained place the presented design as a new solution in the state of the art and, thanks to its autonomy, low cost and the graphical device management interface presented, allow its deployment and integration in the current IoT paradigm. Full article
Show Figures

Figure 1

17 pages, 15935 KiB  
Article
Automatic Weight Redistribution Ensemble Model Based on Transfer Learning to Use in Leak Detection for the Power Industry
by Sungsoo Kwon, Seoyoung Jeon, Tae-Jin Park and Ji-Hoon Bae
Sensors 2024, 24(15), 4999; https://doi.org/10.3390/s24154999 - 2 Aug 2024
Cited by 1 | Viewed by 1368
Abstract
Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in [...] Read more.
Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 7336 KiB  
Article
Spectral Features Analysis for Print Quality Prediction in Additive Manufacturing: An Acoustics-Based Approach
by Michael Olowe, Michael Ogunsanya, Brian Best, Yousef Hanif, Saurabh Bajaj, Varalakshmi Vakkalagadda, Olukayode Fatoki and Salil Desai
Sensors 2024, 24(15), 4864; https://doi.org/10.3390/s24154864 - 26 Jul 2024
Cited by 8 | Viewed by 1450
Abstract
Quality prediction in additive manufacturing (AM) processes is crucial, particularly in high-risk manufacturing sectors like aerospace, biomedicals, and automotive. Acoustic sensors have emerged as valuable tools for detecting variations in print patterns by analyzing signatures and extracting distinctive features. This study focuses on [...] Read more.
Quality prediction in additive manufacturing (AM) processes is crucial, particularly in high-risk manufacturing sectors like aerospace, biomedicals, and automotive. Acoustic sensors have emerged as valuable tools for detecting variations in print patterns by analyzing signatures and extracting distinctive features. This study focuses on the collection, preprocessing, and analysis of acoustic data streams from a Fused Deposition Modeling (FDM) 3D-printed sample cube (10 mm × 10 mm × 5 mm). Time and frequency-domain features were extracted at 10-s intervals at varying layer thicknesses. The audio samples were preprocessed using the Harmonic–Percussive Source Separation (HPSS) method, and the analysis of time and frequency features was performed using the Librosa module. Feature importance analysis was conducted, and machine learning (ML) prediction was implemented using eight different classifier algorithms (K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Trees (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM)) for the classification of print quality based on the labeled datasets. Three-dimensional-printed samples with varying layer thicknesses, representing two print quality levels, were used to generate audio samples. The extracted spectral features from these audio samples served as input variables for the supervised ML algorithms to predict print quality. The investigation revealed that the mean of the spectral flatness, spectral centroid, power spectral density, and RMS energy were the most critical acoustic features. Prediction metrics, including accuracy scores, F-1 scores, recall, precision, and ROC/AUC, were utilized to evaluate the models. The extreme gradient boosting algorithm stood out as the top model, attaining a prediction accuracy of 91.3%, precision of 88.8%, recall of 92.9%, F-1 score of 90.8%, and AUC of 96.3%. This research lays the foundation for acoustic based quality prediction and control of 3D printed parts using Fused Deposition Modeling and can be extended to other additive manufacturing techniques. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
Show Figures

Figure 1

24 pages, 5922 KiB  
Article
Close-Range Coordination to Enhance Constant Distance Spacing Policies in Oversaturated Traffic Systems
by Kay Massow, Niko Pfeifer, Fabian Ketzler and Ilja Radusch
Sensors 2024, 24(15), 4865; https://doi.org/10.3390/s24154865 - 26 Jul 2024
Cited by 1 | Viewed by 803
Abstract
In the pursuit of string stability within CACC (cooperative adaptive cruise control) platoons, prevalent research has favored constant time gap (CTG) spacing policies; namely, vehicle interspacing increases linearly with the speed. Although constant distance gap (CDG) spacing policies have greater potential to enhance [...] Read more.
In the pursuit of string stability within CACC (cooperative adaptive cruise control) platoons, prevalent research has favored constant time gap (CTG) spacing policies; namely, vehicle interspacing increases linearly with the speed. Although constant distance gap (CDG) spacing policies have greater potential to enhance traffic capacity, they suffer from notable limitations regarding string stability and diminished safety margins at high velocities. In our previous work, we proposed applying CDG in specific scenarios, such as starting platoons at signalized intersections, where traffic throughput is critical and safety requirements can be met due to relatively low speeds. We demonstrated the substantial potential of CDG to increase the capacity of signalized intersections under oversaturated conditions. However, our study also revealed potential performance drops of CDG in dense traffic networks. To address these issues, we propose close-range coordination between vehicles to (1) limit platoon length, (2) create gaps for merging, and (3) avoid entering intersections when there is a high likelihood of stopping within the intersection area. In this paper, we extend our previous work by implementing these three measures. We successfully evaluate their positive impact on CDG’s performance in entire traffic systems through large-scale traffic simulations involving several thousand vehicles, thereby affirming our earlier hypothesis Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

13 pages, 3500 KiB  
Article
Electrochemical Detection of Ammonia in Water Using NiCu Carbonate Hydroxide-Modified Carbon Cloth Electrodes: A Simple Sensing Method
by Guangfeng Zhou, Guanda Wang, Xing Zhao, Dong He, Chun Zhao and Hui Suo
Sensors 2024, 24(15), 4824; https://doi.org/10.3390/s24154824 - 25 Jul 2024
Cited by 3 | Viewed by 1586
Abstract
Excessive ammonia nitrogen can potentially compromise the safety of drinking water. Therefore, developing a rapid and simple detection method for ammonia nitrogen in drinking water is of great importance. Nickel–copper hydroxides exhibit strong catalytic capabilities and are widely applied in ammonia nitrogen oxidation. [...] Read more.
Excessive ammonia nitrogen can potentially compromise the safety of drinking water. Therefore, developing a rapid and simple detection method for ammonia nitrogen in drinking water is of great importance. Nickel–copper hydroxides exhibit strong catalytic capabilities and are widely applied in ammonia nitrogen oxidation. In this study, a self-supported electrode made of nickel–copper carbonate hydroxide was synthesized on a carbon cloth collector via a straightforward one-step hydrothermal method for rapid ammonia nitrogen detection in water. It exhibits sensitivities of 3.9 μA μM−1 cm−2 and 3.13 μA μM−1 cm−2 within linear ranges of 1 μM to 100 μM and 100 μM to 400 μM, respectively, using a simple and rapid i-t method. The detection limit is as low as 0.62 μM, highlighting its excellent anti-interference properties against various anions and cations. The methodology’s simplicity and effectiveness suggest broad applicability in water quality monitoring and environmental protection, particularly due to its significant cost-effectiveness. Full article
(This article belongs to the Special Issue Electrochemical Sensors for Detection and Analysis)
Show Figures

Figure 1

14 pages, 6763 KiB  
Article
Mo-Doped LaFeO3 Gas Sensors with Enhanced Sensing Performance for Triethylamine Gas
by Chenyu Shen, Hongjian Liang, Ziyue Zhao, Suyi Guo, Yuxiang Chen, Zhenquan Tan, Xue-Zhi Song and Xiaofeng Wang
Sensors 2024, 24(15), 4851; https://doi.org/10.3390/s24154851 - 25 Jul 2024
Cited by 5 | Viewed by 1675
Abstract
Triethylamine is a common volatile organic compound (VOC) that plays an important role in areas such as organic solvents, chemical industries, dyestuffs, and leather treatments. However, exposure to triethylamine atmosphere can pose a serious threat to human health. In this study, gas-sensing semiconductor [...] Read more.
Triethylamine is a common volatile organic compound (VOC) that plays an important role in areas such as organic solvents, chemical industries, dyestuffs, and leather treatments. However, exposure to triethylamine atmosphere can pose a serious threat to human health. In this study, gas-sensing semiconductor materials of LaFeO3 nano materials with different Mo-doping ratios were synthesized by the sol–gel method. The crystal structures, micro morphologies, and surface states of the prepared samples were characterized by XRD, SEM, and XPS, respectively. The gas-sensing tests showed that the Mo doping enhanced the gas-sensing performance of LaFeO3. Especially, the 4% Mo-doped LaFeO3 exhibited the highest response towards triethylamine (TEA) gas, a value approximately 11 times greater than that of pure LaFeO3. Meantime, the 4% Mo-doped LaFeO3 sensor showed a remarkably robust linear correlation between the response and the concentration (R2 = 0.99736). In addition, the selectivity, stability, response/recovery time, and moisture-proof properties were evaluated. Finally, the gas-sensing mechanism is discussed. This study provides an idea for exploring a new type of efficient and low-cost metal-doped LaFeO3 sensor to monitor the concentration of triethylamine gas for the purpose of safeguarding human health and safety. Full article
(This article belongs to the Special Issue Recent Advancements in Olfaction and Electronic Nose)
Show Figures

Figure 1

18 pages, 1535 KiB  
Article
Acquisition and Analysis of Facial Electromyographic Signals for Emotion Recognition
by Marcin Kołodziej, Andrzej Majkowski and Marcin Jurczak
Sensors 2024, 24(15), 4785; https://doi.org/10.3390/s24154785 - 24 Jul 2024
Cited by 2 | Viewed by 2196
Abstract
The objective of the article is to recognize users’ emotions by classifying facial electromyographic (EMG) signals. A biomedical signal amplifier, equipped with eight active electrodes positioned in accordance with the Facial Action Coding System, was used to record the EMG signals. These signals [...] Read more.
The objective of the article is to recognize users’ emotions by classifying facial electromyographic (EMG) signals. A biomedical signal amplifier, equipped with eight active electrodes positioned in accordance with the Facial Action Coding System, was used to record the EMG signals. These signals were registered during a procedure where users acted out various emotions: joy, sadness, surprise, disgust, anger, fear, and neutral. Recordings were made for 16 users. The mean power of the EMG signals formed the feature set. We utilized these features to train and evaluate various classifiers. In the subject-dependent model, the average classification accuracies were 96.3% for KNN, 94.9% for SVM with a linear kernel, 94.6% for SVM with a cubic kernel, and 93.8% for LDA. In the subject-independent model, the classification results varied depending on the tested user, ranging from 91.4% to 48.6% for the KNN classifier, with an average accuracy of 67.5%. The SVM with a cubic kernel performed slightly worse, achieving an average accuracy of 59.1%, followed by the SVM with a linear kernel at 53.9%, and the LDA classifier at 41.2%. Additionally, the study identified the most effective electrodes for distinguishing between pairs of emotions. Full article
Show Figures

Figure 1

21 pages, 8219 KiB  
Article
An Improved Fire and Smoke Detection Method Based on YOLOv8n for Smart Factories
by Ziyang Zhang, Lingye Tan and Tiong Lee Kong Robert
Sensors 2024, 24(15), 4786; https://doi.org/10.3390/s24154786 - 24 Jul 2024
Cited by 5 | Viewed by 2225
Abstract
Factories play a crucial role in economic and social development. However, fire disasters in factories greatly threaten both human lives and properties. Previous studies about fire detection using deep learning mostly focused on wildfire detection and ignored the fires that happened in factories. [...] Read more.
Factories play a crucial role in economic and social development. However, fire disasters in factories greatly threaten both human lives and properties. Previous studies about fire detection using deep learning mostly focused on wildfire detection and ignored the fires that happened in factories. In addition, lots of studies focus on fire detection, while smoke, the important derivative of a fire disaster, is not detected by such algorithms. To better help smart factories monitor fire disasters, this paper proposes an improved fire and smoke detection method based on YOLOv8n. To ensure the quality of the algorithm and training process, a self-made dataset including more than 5000 images and their corresponding labels is created. Then, nine advanced algorithms are selected and tested on the dataset. YOLOv8n exhibits the best detection results in terms of accuracy and detection speed. ConNeXtV2 is then inserted into the backbone to enhance inter-channel feature competition. RepBlock and SimConv are selected to replace the original Conv and improve computational ability and memory bandwidth. For the loss function, CIoU is replaced by MPDIoU to ensure an efficient and accurate bounding box. Ablation tests show that our improved algorithm achieves better performance in all four metrics reflecting accuracy: precision, recall, F1, and mAP@50. Compared with the original model, whose four metrics are approximately 90%, the modified algorithm achieves above 95%. mAP@50 in particular reaches 95.6%, exhibiting an improvement of approximately 4.5%. Although complexity improves, the requirements of real-time fire and smoke monitoring are satisfied. Full article
(This article belongs to the Collection 3D Human-Computer Interaction Imaging and Sensing)
Show Figures

Figure 1

31 pages, 766 KiB  
Review
A Review of Patient Bed Sensors for Monitoring of Vital Signs
by Michaela Recmanik, Radek Martinek, Jan Nedoma, Rene Jaros, Mariusz Pelc, Radovan Hajovsky, Jan Velicka, Martin Pies, Marta Sevcakova and Aleksandra Kawala-Sterniuk
Sensors 2024, 24(15), 4767; https://doi.org/10.3390/s24154767 - 23 Jul 2024
Cited by 2 | Viewed by 5577
Abstract
The analysis of biomedical signals is a very challenging task. This review paper is focused on the presentation of various methods where biomedical data, in particular vital signs, could be monitored using sensors mounted to beds. The presented methods to monitor vital signs [...] Read more.
The analysis of biomedical signals is a very challenging task. This review paper is focused on the presentation of various methods where biomedical data, in particular vital signs, could be monitored using sensors mounted to beds. The presented methods to monitor vital signs include those combined with optical fibers, camera systems, pressure sensors, or other sensors, which may provide more efficient patient bed monitoring results. This work also covers the aspects of interference occurrence in the above-mentioned signals and sleep quality monitoring, which play a very important role in the analysis of biomedical signals and the choice of appropriate signal-processing methods. The provided information will help various researchers to understand the importance of vital sign monitoring and will be a thorough and up-to-date summary of these methods. It will also be a foundation for further enhancement of these methods. Full article
Show Figures

Figure 1

20 pages, 5427 KiB  
Article
Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing
by Hironaru Murakami, Taiga Fukuda, Hiroshi Otera, Hiroyuki Kamo and Akito Miyoshi
Sensors 2024, 24(15), 4781; https://doi.org/10.3390/s24154781 - 23 Jul 2024
Viewed by 2353
Abstract
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is [...] Read more.
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is desirable to develop a remote, non-contact, non-destructive inspection method that can inspect cracks as small as 0.1 mm on the surface of a structure and damage inside and on the surface of the structure that cannot be seen by the human eye with high sensitivity, while ensuring the safety of the engineers inspecting the structure. Based on this perspective, we developed a radar module (absolute gain of the transmitting antenna: 13.5 dB; absolute gain of the receiving antenna: 14.5 dB) with very high directivity and minimal loss in the signal transmission path between the radar chip and the array antenna, using our previously developed technology. A single-input, multiple-output (SIMO) synthetic aperture radar (SAR) imaging system was developed using this module. As a result of various performance evaluations using this system, we were able to demonstrate that this system has a performance that fully satisfies the abovementioned indices. First, the SNR in millimeter-wave (MM-wave) imaging was improved by 5.4 dB compared to the previously constructed imaging system using the IWR1443BOOST EVM, even though the measured distance was 2.66 times longer. As a specific example of the results of measurements on infrastructure facilities, the system successfully observed cracks as small as 0.1 mm in concrete materials hidden under glass fiber-reinforced tape and black acrylic paint. In this case, measurements were also made from a distance of about 3 m to meet the remote observation requirements, but the radar module with its high-directivity and high-gain antenna proved to be more sensitive in detecting crack structures than measurements made from a distance of 780 mm. In order to estimate the penetration length of MM waves into concrete, an experiment was conducted to measure the penetration of MM waves through a thin concrete slab with a thickness of 3.7 mm. As a result, Λexp = 6.0 mm was obtained as the attenuation distance of MM waves in the concrete slab used. In addition, transmission measurement experiments using a composite material consisting of ceramic tiles and fireproof board, which is a component of a house, and experiments using composite plywood, which is used as a general housing construction material in Japan, succeeded in making perspective observations of defects in the internal structure, etc., which are invisible to the human eye. Full article
(This article belongs to the Special Issue Radar Imaging, Communications and Sensing)
Show Figures

Figure 1

29 pages, 5115 KiB  
Article
Open-Vocabulary Predictive World Models from Sensor Observations
by Robin Karlsson, Ruslan Asfandiyarov, Alexander Carballo, Keisuke Fujii, Kento Ohtani and Kazuya Takeda
Sensors 2024, 24(14), 4735; https://doi.org/10.3390/s24144735 - 21 Jul 2024
Viewed by 1359
Abstract
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from [...] Read more.
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from sensor observations. The model is implemented through a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully observed environments from accumulated partial observations. We show that the OV-PWM can model high-dimensional embedding maps of latent compositional embeddings representing sets of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA simulator experiments show that the OV-PWM can learn compact latent representations and generate diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities to future general-purpose mobile robots. Full article
(This article belongs to the Collection Robotics and 3D Computer Vision)
Show Figures

Figure 1

23 pages, 15975 KiB  
Article
Integrating the Capsule-like Smart Aggregate-Based EMI Technique with Deep Learning for Stress Assessment in Concrete
by Quoc-Bao Ta, Quang-Quang Pham, Ngoc-Lan Pham and Jeong-Tae Kim
Sensors 2024, 24(14), 4738; https://doi.org/10.3390/s24144738 - 21 Jul 2024
Cited by 5 | Viewed by 1727
Abstract
This study presents a concrete stress monitoring method utilizing 1D CNN deep learning of raw electromechanical impedance (EMI) signals measured with a capsule-like smart aggregate (CSA) sensor. Firstly, the CSA-based EMI measurement technique is presented by depicting a prototype of the CSA sensor [...] Read more.
This study presents a concrete stress monitoring method utilizing 1D CNN deep learning of raw electromechanical impedance (EMI) signals measured with a capsule-like smart aggregate (CSA) sensor. Firstly, the CSA-based EMI measurement technique is presented by depicting a prototype of the CSA sensor and a 2 degrees of freedom (2 DOFs) EMI model for the CSA sensor embedded in a concrete cylinder. Secondly, the 1D CNN deep regression model is designed to adapt raw EMI responses from the CSA sensor for estimating concrete stresses. Thirdly, a CSA-embedded cylindrical concrete structure is experimented with to acquire EMI responses under various compressive loading levels. Finally, the feasibility and robustness of the 1D CNN model are evaluated for noise-contaminated EMI data and untrained stress EMI cases. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2024)
Show Figures

Figure 1

31 pages, 61407 KiB  
Article
Deformation Estimation of Textureless Objects from a Single Image
by Sahand Eivazi Adli, Joshua K. Pickard, Ganyun Sun and Rickey Dubay
Sensors 2024, 24(14), 4707; https://doi.org/10.3390/s24144707 - 20 Jul 2024
Viewed by 1063
Abstract
Deformations introduced during the production of plastic components degrade the accuracy of their 3D geometric information, a critical aspect of object inspection processes. This phenomenon is prevalent among primary plastic products from manufacturers. This work proposes a solution for the deformation estimation of [...] Read more.
Deformations introduced during the production of plastic components degrade the accuracy of their 3D geometric information, a critical aspect of object inspection processes. This phenomenon is prevalent among primary plastic products from manufacturers. This work proposes a solution for the deformation estimation of textureless plastic objects using only a single RGB image. This solution encompasses a unique image dataset of five deformed parts, a novel method for generating mesh labels, sequential deformation, and a training model based on graph convolution. The proposed sequential deformation method outperforms the prevalent chamfer distance algorithm in generating precise mesh labels. The training model projects object vertices into features extracted from the input image, and then, predicts vertex location offsets based on the projected features. The predicted meshes using these offsets achieve a sub-millimeter accuracy on synthetic images and approximately 2.0 mm on real images. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

29 pages, 22874 KiB  
Article
Integrating sEMG and IMU Sensors in an e-Textile Smart Vest for Forward Posture Monitoring: First Steps
by João Martins, Sara M. Cerqueira, André Whiteman Catarino, Alexandre Ferreira da Silva, Ana M. Rocha, Jorge Vale, Miguel Ângelo and Cristina P. Santos
Sensors 2024, 24(14), 4717; https://doi.org/10.3390/s24144717 - 20 Jul 2024
Cited by 3 | Viewed by 2895
Abstract
Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head [...] Read more.
Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head posture (FHP). This paper proposes a wearable device that combines the acquisition of electromyographic signals from the cervical region with inertial data from inertial measurement units (IMUs) to assess the occurrence of FHP. To improve electronics integration and wearability, e-textiles are explored for the development of surface electrodes and conductive tracks that connect the different electronic modules. Tensile strength and abrasion tests of 22 samples consisting of textile electrodes and conductive tracks produced with three fiber types (two from Shieldex and one from Imbut) were conducted. Imbut’s Elitex fiber outperformed Shieldex’s fibers in both tests. The developed surface electromyography (sEMG) acquisition hardware and textile electrodes were also tested and benchmarked against an electromyography (EMG) gold standard in dynamic and isometric conditions, with results showing slightly better root mean square error (RMSE) values (for 4 × 2 textile electrodes (10.02%) in comparison to commercial Ag/AgCl electrodes (11.11%). The posture monitoring module was also validated in terms of joint angle estimation and presented an overall error of 4.77° for a controlled angular velocity of 40°/s as benchmarked against a UR10 robotic arm. Full article
Show Figures

Figure 1

20 pages, 560 KiB  
Article
Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation
by Fernando Nunes and Fernando Sousa
Sensors 2024, 24(14), 4663; https://doi.org/10.3390/s24144663 - 18 Jul 2024
Cited by 2 | Viewed by 2246
Abstract
A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of [...] Read more.
A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement with the various scenarios encompassed by the adopted multipath model. It was found that pre-processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform (frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the equation of navigation: either remove the disturbed signal from the equation (hard decision) or process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting matrix are computed using the analog outputs of the neural network (soft decision). Full article
Show Figures

Figure 1

13 pages, 1665 KiB  
Article
Advanced Techniques for Liver Fibrosis Detection: Spectral Photoacoustic Imaging and Superpixel Photoacoustic Unmixing Analysis for Collagen Tracking
by Laith R. Sultan, Valeria Grasso, Jithin Jose, Maryam Al-Hasani, Mrigendra B. Karmacharya and Chandra M. Sehgal
Sensors 2024, 24(14), 4617; https://doi.org/10.3390/s24144617 - 17 Jul 2024
Cited by 1 | Viewed by 1799
Abstract
Liver fibrosis, a major global health issue, is marked by excessive collagen deposition that impairs liver function. Noninvasive methods for the direct visualization of collagen content are crucial for the early detection and monitoring of fibrosis progression. This study investigates the potential of [...] Read more.
Liver fibrosis, a major global health issue, is marked by excessive collagen deposition that impairs liver function. Noninvasive methods for the direct visualization of collagen content are crucial for the early detection and monitoring of fibrosis progression. This study investigates the potential of spectral photoacoustic imaging (sPAI) to monitor collagen development in liver fibrosis. Utilizing a novel data-driven superpixel photoacoustic unmixing (SPAX) framework, we aimed to distinguish collagen presence and evaluate its correlation with fibrosis progression. We employed an established diethylnitrosamine (DEN) model in rats to study liver fibrosis over various time points. Our results revealed a significant correlation between increased collagen photoacoustic signal intensity and advanced fibrosis stages. Collagen abundance maps displayed dynamic changes throughout fibrosis progression. These findings underscore the potential of sPAI for the noninvasive monitoring of collagen dynamics and fibrosis severity assessment. This research advances the development of noninvasive diagnostic tools and personalized management strategies for liver fibrosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 5203 KiB  
Article
How Do We Calibrate a Battery Electric Vehicle Model Based on Controller Area Network Bus Data?
by Dávid Tollner, Ádám Nyerges, Mahmoud Said Jneid, Attila Geleta and Máté Zöldy
Sensors 2024, 24(14), 4637; https://doi.org/10.3390/s24144637 - 17 Jul 2024
Cited by 3 | Viewed by 1912
Abstract
Transforming an up-to-date vehicle into a measurement system is a rewarding task due to the large number of different sensors in the onboard control and diagnostic systems. These procedures are not performed by a single control unit; it is necessary to share the [...] Read more.
Transforming an up-to-date vehicle into a measurement system is a rewarding task due to the large number of different sensors in the onboard control and diagnostic systems. These procedures are not performed by a single control unit; it is necessary to share the signal values over a communication network, to which an external device can be connected to record the real traffic. The paper aims to use these recorded data for 1 DOF longitudinal vehicle and powertrain model validation. For repeatability, three city routes are selected: plain road, smaller road grade, and higher road grade in both directions. Therefore, the drivetrain system is tested in a high load range, even with long-term recuperation. The altitude changes are recorded with a DGPS system. By the recorded measurements, the vehicle and the drivetrain model can be calibrated, such as the air drag parameters, the rolling resistances, and the efficiencies of the drivetrain. The validation criteria are defined for speed tracking, and the relative tolerance of the cumulated energy should be below 10%. At the end of the day, a developed model is ready for energetic analysis or control strategy design. The energy balance of the applied cycles is also presented to prove that. Full article
(This article belongs to the Special Issue Intelligent Sensors for Smart and Autonomous Vehicles)
Show Figures

Figure 1

12 pages, 2311 KiB  
Article
Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring
by Marilyne Philibert and Kui Yao
Sensors 2024, 24(14), 4595; https://doi.org/10.3390/s24144595 - 16 Jul 2024
Viewed by 1992
Abstract
Ultrasonic guided waves, which are often generated and detected by piezoelectric transducers, are well established to monitor engineering structures. Wireless solutions are sought to eliminate cumbersome wire installation. This work proposes a method for remote ultrasonic-based structural health monitoring (SHM) using mechanoluminescence (ML). [...] Read more.
Ultrasonic guided waves, which are often generated and detected by piezoelectric transducers, are well established to monitor engineering structures. Wireless solutions are sought to eliminate cumbersome wire installation. This work proposes a method for remote ultrasonic-based structural health monitoring (SHM) using mechanoluminescence (ML). Propagating guided waves transmitted by a piezoelectric transducer attached to a structure induce elastic deformation that can be captured by elastico-ML. An ML coating composed of copper-doped zinc sulfide (ZnS:Cu) particles embedded in PVDF on a thin aluminium plate can be used to achieve the elastico-ML for the remote sensing of propagating guided waves. The simulation and experimental results indicated that a very high voltage would be required to reach the threshold pressure applied to the ML particles, which is about 1.5 MPa for ZnS particles. The high voltage was estimated to be 214 Vpp for surface waves and 750 Vpp for Lamb waves for the studied configuration. Several possible technical solutions are suggested for achieving ultrasonic-induced ML for future remote SHM systems. Full article
(This article belongs to the Special Issue Sensors in Civil Structural Health Monitoring)
Show Figures

Figure 1

28 pages, 3061 KiB  
Article
BFLIDS: Blockchain-Driven Federated Learning for Intrusion Detection in IoMT Networks
by Khadija Begum, Md Ariful Islam Mozumder, Moon-Il Joo and Hee-Cheol Kim
Sensors 2024, 24(14), 4591; https://doi.org/10.3390/s24144591 - 15 Jul 2024
Cited by 12 | Viewed by 3678
Abstract
The Internet of Medical Things (IoMT) has significantly advanced healthcare, but it has also brought about critical security challenges. Traditional security solutions struggle to keep pace with the dynamic and interconnected nature of IoMT systems. Machine learning (ML)-based Intrusion Detection Systems (IDS) have [...] Read more.
The Internet of Medical Things (IoMT) has significantly advanced healthcare, but it has also brought about critical security challenges. Traditional security solutions struggle to keep pace with the dynamic and interconnected nature of IoMT systems. Machine learning (ML)-based Intrusion Detection Systems (IDS) have been increasingly adopted to counter cyberattacks, but centralized ML approaches pose privacy risks due to the single points of failure (SPoFs). Federated Learning (FL) emerges as a promising solution, enabling model updates directly on end devices without sharing private data with a central server. This study introduces the BFLIDS, a Blockchain-empowered Federated Learning-based IDS designed to enhance security and intrusion detection in IoMT networks. Our approach leverages blockchain to secure transaction records, FL to maintain data privacy by training models locally, IPFS for decentralized storage, and MongoDB for efficient data management. Ethereum smart contracts (SCs) oversee and secure all interactions and transactions within the system. We modified the FedAvg algorithm with the Kullback–Leibler divergence estimation and adaptive weight calculation to boost model accuracy and robustness against adversarial attacks. For classification, we implemented an Adaptive Max Pooling-based Convolutional Neural Network (CNN) and a modified Bidirectional Long Short-Term Memory (BiLSTM) with attention and residual connections on Edge-IIoTSet and TON-IoT datasets. We achieved accuracies of 97.43% (for CNNs and Edge-IIoTSet), 96.02% (for BiLSTM and Edge-IIoTSet), 98.21% (for CNNs and TON-IoT), and 97.42% (for BiLSTM and TON-IoT) in FL scenarios, which are competitive with centralized methods. The proposed BFLIDS effectively detects intrusions, enhancing the security and privacy of IoMT networks. Full article
(This article belongs to the Special Issue Intelligent Solutions for Cybersecurity)
Show Figures

Figure 1

25 pages, 1870 KiB  
Review
Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring
by Ziqiang Cui, Xinyan Liu, Hantao Qu and Huaxiang Wang
Sensors 2024, 24(14), 4539; https://doi.org/10.3390/s24144539 - 13 Jul 2024
Cited by 3 | Viewed by 2693
Abstract
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and [...] Read more.
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 3815 KiB  
Article
Site-Independent Mapping of Clay Content in Vineyard Soils via Mobile Proximal Gamma-Ray Spectrometry and Machine Learning Calibrations
by Ralf Wehrle and Stefan Pätzold
Sensors 2024, 24(14), 4528; https://doi.org/10.3390/s24144528 - 12 Jul 2024
Cited by 2 | Viewed by 1082
Abstract
Vineyards hold considerable soil variability between regions and plots, and there is frequently large soil heterogeneity within plots. Clay content in vineyard soils is of interest with respect to soil management, environmental monitoring, and wine quality. However, spatially resolved clay mapping is laborious [...] Read more.
Vineyards hold considerable soil variability between regions and plots, and there is frequently large soil heterogeneity within plots. Clay content in vineyard soils is of interest with respect to soil management, environmental monitoring, and wine quality. However, spatially resolved clay mapping is laborious and expensive. Gamma-ray spectrometry (GS) is a suitable tool for predicting clay content in precision agriculture when locally calibrated, but it has scarcely been tested site-independently and in vineyards. This study evaluated GS to predict clay content with a site-independent calibration and four machine learning algorithms (Support Vector Machines, Random Forest, k-Nearest Neighbors, and Bayesian regulated neuronal networks) in eight vineyards from four German vine-growing regions. Clay content in the studied soils ranged from 62 to 647 g kg−1. The Random Forest calibration was most suitable. Test set evaluation revealed good model performance for the entire dataset with RPIQ = 4.64, RMSEP = 56.7 g kg−1, and R2 = 0.87; however, prediction quality varied between the sites. Overall, GS with the Random Forest model calibration was appropriate to predict the clay content and its spatial distribution, even for heterogeneous geopedological settings and in individual plots. Therefore, GS is considered a valuable tool for soil mapping in vineyards, where clay content and product quality are closely linked. Full article
(This article belongs to the Special Issue Precision Agriculture and Sensor Systems—2nd Edition)
Show Figures

Figure 1

Back to TopTop