molecules-logo

Journal Browser

Journal Browser

Inorganic Chemistry in Asia

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 5543

Special Issue Editor

Special Issue Information

Dear Colleagues,

It is our pleasure to announce this Special Issue entitled “Inorganic Chemistry in Asia”.

This Special Issue will present a high-quality collection of work from scientists in Asian countries, as well as contributions from other countries concerning the advances in inorganic chemistry in Asia (both original research articles and comprehensive review papers are welcome).

This Special Issue will discuss new knowledge or cutting-edge developments in the broadly defined inorganic chemistry research field, including coordination chemistry, organometallic chemistry, solid-stage chemistry, bioinorganic chemistry, nuclear and radiochemistry, analytical chemistry, etc. This Special Issue is a forum for the exchange of research findings and innovative ideas in the field.

Prof. Dr. Takashiro Akitsu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inorganic chemistry
  • coordination chemistry
  • organometallic chemistry
  • solid-stage chemistry
  • bioinorganic chemistry
  • nuclear- and radiochemistry
  • theoretical calculation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1773 KiB  
Article
Recoverable and Sensitive Pressure-Induced Mechanochromic Photoluminescence of a Au-P Complex
by Ningwen Yang, Yijia Chang, Jiangyue Wang, David James Young, Hong-Xi Li, Yuxin Lu and Zhi-Gang Ren
Molecules 2025, 30(9), 2011; https://doi.org/10.3390/molecules30092011 (registering DOI) - 30 Apr 2025
Abstract
A binuclear Au-P complex [Au2(2-bdppmapy)2](PF6)2 (1) was synthesised by the reaction of 2-bdppmapy (N,N′-bis-(diphenylphosphanylmethyl-2-aminopyridine) with AuCN and [Cu(MeCN)4]PF6. The solid phase of 1 emitted bright yellow phosphorescence at λmax [...] Read more.
A binuclear Au-P complex [Au2(2-bdppmapy)2](PF6)2 (1) was synthesised by the reaction of 2-bdppmapy (N,N′-bis-(diphenylphosphanylmethyl-2-aminopyridine) with AuCN and [Cu(MeCN)4]PF6. The solid phase of 1 emitted bright yellow phosphorescence at λmax = 580 nm under UV excitation (QY = 4.41%, τ = 1.88 μs), which shifted to green (λmax = 551 nm, QY = 5.73%) after being pressurised under 5 MPa. This colour change was recoverable upon exposure to CH2Cl2 vapor. Similar mechanochromic photoluminescence behaviour was observed after grinding the crystals of 1. A filter paper impregnated with 1 demonstrated recyclable write/erase functionality for encrypted information transfer. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
14 pages, 4714 KiB  
Article
Investigating the Physical Adsorption of DCPD/Furfural and H2 Adsorption–Dissociation Behaviors in RE-MOFs
by Muye Niu, Zuoshuai Xi, Chenhui He, Wenting Ding, Shanshan Cheng, Juntao Zhang and Hongyi Gao
Molecules 2025, 30(9), 1954; https://doi.org/10.3390/molecules30091954 - 28 Apr 2025
Viewed by 69
Abstract
Metal–organic frameworks (MOFs) have emerged as promising catalysts in the hydrogenation of bicyclopentadiene (DCPD) and furfural. The physical adsorption behaviors of substrate molecules and H2 within the pore structures of MOFs significantly influence the efficacy of subsequent catalytic reactions. This study employs [...] Read more.
Metal–organic frameworks (MOFs) have emerged as promising catalysts in the hydrogenation of bicyclopentadiene (DCPD) and furfural. The physical adsorption behaviors of substrate molecules and H2 within the pore structures of MOFs significantly influence the efficacy of subsequent catalytic reactions. This study employs molecular dynamics (MD) simulations to identify the optimal temperature and pressure conditions for the adsorption of DCPD and H2, as well as furfural and H2, within rare-earth-element-based MOFs (RE-MOFs). By analyzing the physical adsorption characteristics of 1538 RE-MOFs, we investigate the correlation between pore structures and adsorption capabilities. This exploration has led to the identification of 10 RE-MOF structures that demonstrate superior physical adsorption performance for both DCPD and furfural. Following this initial evaluation, density functional theory (DFT) calculations were conducted to determine the chemisorption energies of H2 molecules on these 10 selected RE-MOF structures. Notably, the structure identified as “JALLEQ_clean” exhibited the most optimal overall adsorption performance. This study elucidates the quantitative relationship between the pore structure of RE-MOFs and their physical adsorption performance, clarifying the influence of porosity parameters on adsorption capacity and highlighting the advantages of cluster-type structures in mass transfer and adsorption. The findings provide theoretical guidance for developing high-performance RE-MOF catalysts and offer new insights for the rational design of MOF-based catalytic materials. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

17 pages, 7697 KiB  
Article
Power Frequency Breakdown Properties of LDPE-Doped Inorganic Nanoparticles
by Yujia Cheng and Guang Yu
Molecules 2025, 30(9), 1914; https://doi.org/10.3390/molecules30091914 - 25 Apr 2025
Viewed by 131
Abstract
Although polyethylene is widely used in electrical insulation, it does not possess dielectric properties. It is therefore desirable to develop insulation materials with excellent dielectric properties. In this study, low-density polyethylene (LDPE) was used as a matrix resin, while MgO, wollastonite, and montmorillonite [...] Read more.
Although polyethylene is widely used in electrical insulation, it does not possess dielectric properties. It is therefore desirable to develop insulation materials with excellent dielectric properties. In this study, low-density polyethylene (LDPE) was used as a matrix resin, while MgO, wollastonite, and montmorillonite (MMT) were employed as inorganic nano-additives. Three composites were prepared using the boiling–melt blending approach. Power frequency breakdown tests were performed on the original LDPE and on the prepared nanoparticle/LDPE composites. Upon combination with the Weibull distribution, the breakdown test results revealed that the addition of these nano-additive particles to the LDPE matrix increased the breakdown field strength of the material. The highest breakdown field strength for the nano-MgO/LDPE composite was obtained using a MgO loading of 0.5%. Notably, the obtained value was 1.8% higher than that of the pure LDPE. In addition, the highest breakdown field strength for the nano-wollastonite/LDPE composite was obtained using a wollastonite loading of 1% (7.48% higher than that of pure LDPE). Similarly, the highest breakdown field strength of the nano-MMT/LDPE composite was obtained using an MMT loading of 3%, giving a value that was 6.67% higher than that of the pure LDPE. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

19 pages, 7995 KiB  
Article
Insights into the Factors Controlling the Origin of Activation Barriers in the [2 + 2] Cycloaddition Reactions of Heavy Imine-like Molecules Featuring a Ge=Group 15 Double Bond with Heterocumulenes
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(9), 1905; https://doi.org/10.3390/molecules30091905 - 25 Apr 2025
Viewed by 163
Abstract
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L [...] Read more.
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L1L2Ge=G15L3) is characterized by electron-sharing bonding between the triplet L1L2Ge and triplet G15–L3 fragments. All five Ge=G15-based heavy imine analogues readily undergo [2 + 2] cycloaddition reactions with N=C=N. Energy decomposition analysis (EDA–NOCV) suggests that the [2 + 2] cycloaddition reaction between Ge=G15-Rea and N=C=N involves a donor–acceptor (singlet–singlet) interaction instead of an electron-sharing (triplet–triplet) interaction. Frontier molecular orbital (FMO) theory and the energy decomposition analysis–natural orbitals for chemical valence (EDA–NOCV) findings emphasize that the key bonding interaction involves the occupied p-π orbital of Ge=G15-Rea and the vacant p-π* orbital of C=N=C. Based on the activation strain model results, the activation barrier of the [2 + 2] cycloaddition reaction is predominantly controlled by the deformation energies of Ge=G15-Rea and N=C=N. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

11 pages, 2692 KiB  
Article
Hydrogenation-Facilitated Spontaneous N-O Cleavage Mechanism for Effectively Boosting Nitrate Reduction Reaction on Fe2B2 MBene
by Yuexuan He, Zhiwen Chen and Qing Jiang
Molecules 2025, 30(8), 1778; https://doi.org/10.3390/molecules30081778 - 15 Apr 2025
Viewed by 253
Abstract
The electrochemical reduction of toxic nitrate wastewater to green fuel ammonia under mild conditions has become a goal that researchers have relentlessly pursued. Existing designed electrocatalysts can effectively promote the nitrate reduction reaction (NO3RR), but the study of the catalytic mechanism [...] Read more.
The electrochemical reduction of toxic nitrate wastewater to green fuel ammonia under mild conditions has become a goal that researchers have relentlessly pursued. Existing designed electrocatalysts can effectively promote the nitrate reduction reaction (NO3RR), but the study of the catalytic mechanism is not extensive enough, resulting in no breakthroughs in performance. In this study, a novel mechanism of hydrogenation-facilitated spontaneous N-O cleavage was explored based on density functional theory calculations. Furthermore, the Ead−*OH (adsorption energy of the adsorbed *OH) was used as a key descriptor for predicting the occurrence of spontaneous N-O bond cleavage. We found that Ead−*OH < −0.20 eV results into spontaneous N-O bond cleavage. However, excessively strong adsorption of OH* hinders the formation of water. To address this challenge, we designed the eligible Fe2B2 MBene, which shows excellent catalytic activity with an ultra-low limiting potential for NO3RR of −0.22  V under this novel reaction mechanism. Additionally, electron-deficient Fe active sites could inhibit competing hydrogen evolution reactions (HERs), which provides high selectivity. This work may offer valuable insights for the rational design of advanced electrocatalysts with enhanced performance. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

16 pages, 2968 KiB  
Article
A Site-Ordered Quadruple Perovskites, RMn3Ni2Mn2O12 with R = Bi, Ce, and Ho, with Different Degrees of B Site Ordering
by Alexei A. Belik
Molecules 2025, 30(8), 1749; https://doi.org/10.3390/molecules30081749 - 14 Apr 2025
Viewed by 226
Abstract
A site-ordered quadruple perovskites, AA′3B4O12, can have 3d transition metals at A′ and B sites, and show complex magnetic interactions and behavior. Additional complexity appears when B site-ordered arrangements are realized in AA′3B2 [...] Read more.
A site-ordered quadruple perovskites, AA′3B4O12, can have 3d transition metals at A′ and B sites, and show complex magnetic interactions and behavior. Additional complexity appears when B site-ordered arrangements are realized in AA′3B2B′2O12. In this work, A site-ordered quadruple perovskites, RMn3Ni2Mn2O12 with R = Bi, Ce, and Ho, were prepared by a high-pressure, high-temperature method at about 6 GPa and about 1500 K. The R = Bi and Ce samples were found to crystallize in space group Im-3 with a disordered distribution of Ni2+ and Mn4+ cations in one B site. On the other hand, the R = Ho sample crystallized in space group Pn-3 and showed partial ordering of Ni2+ and Mn4+ cations between two B sites. The structural data (and bond valence sums) suggest that cerium has the oxidation state +3, which is unusual for such perovskites. Magnetic properties were investigated by magnetic susceptibility and specific heat measurements, which showed the presence of one magnetic transition near 36 K for R = Bi; there was evidence for the presence of two magnetic transitions near 27 K and 33 K for R = Ce, and near 10 K and 36 K for R = Ho. Curie–Weiss parameters were estimated for all samples from high-temperature magnetic measurements up to 750 K. The total effective magnetic moment for R = Ce also suggests the presence of Ce3+. A magnetic field of 90 kOe had the largest effect on the specific heat of the R = Ho sample, and almost no effects on the specific heat of the R = Bi sample. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

14 pages, 8111 KiB  
Article
ALD-Deposited Hydroxyl-Rich NiOx to Enhance SAM Anchoring for Stable and Efficient Perovskite Solar Cells
by Fengming Guo, Xuteng Yu, Yuheng Li, Yong Chen, Chi Li, Chunming Liu and Peng Gao
Molecules 2025, 30(6), 1299; https://doi.org/10.3390/molecules30061299 - 13 Mar 2025
Viewed by 563
Abstract
The interface between nickel oxide (NiOx) and self-assembled monolayers (SAMs) in perovskite solar cells (PSCs) often suffers from limited adsorption strength, poor energy-level alignment, and inadequate defect passivation, which hinder device performance and stability. To address these issues, we introduce a [...] Read more.
The interface between nickel oxide (NiOx) and self-assembled monolayers (SAMs) in perovskite solar cells (PSCs) often suffers from limited adsorption strength, poor energy-level alignment, and inadequate defect passivation, which hinder device performance and stability. To address these issues, we introduce a hybrid hole selective layer (HSL) combining atomic layer deposition (ALD)-fabricated NiOx with full-aromatic SAM molecules, creating a highly stable and efficient interface. ALD NiOx, enriched with hydroxyl groups, provides robust adsorption sites for the SAM molecule MeO-PhPACz, ensuring a strong, stable interaction. This hybrid HSL enhances energy-level alignment, hole selectivity, and defect passivation at the NiOx/perovskite interface. Devices utilizing this approach demonstrate significant performance improvements, achieving a power conversion efficiency (PCE) of 21.74%, with reduced voltage losses and minimal hysteresis. Furthermore, operational stability tests reveal enhanced durability under elevated humidity and temperature conditions. These findings highlight the potential of ALD NiOx and SAM hybrid HSL to overcome existing barriers, advancing the commercial viability of PSC technologies. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

17 pages, 7695 KiB  
Article
High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data Statistics
by Anna Okui, Rin Tsuchiya, Daisuke Nakane, Takashiro Akitsu and Toby J. Blundell
Molecules 2025, 30(6), 1289; https://doi.org/10.3390/molecules30061289 - 13 Mar 2025
Viewed by 368
Abstract
In this study, single crystals of previously reported Schiff base copper (II) (Cu) and nickel (II) (Ni) complexes were synthesized; a structural analysis was performed using data measured at high temperatures, 298 K and 410 K; and CIF and [...] Read more.
In this study, single crystals of previously reported Schiff base copper (II) (Cu) and nickel (II) (Ni) complexes were synthesized; a structural analysis was performed using data measured at high temperatures, 298 K and 410 K; and CIF and electron density maps were obtained. The purpose of this study was to examine the accuracy of high-temperature measurements in X-ray crystal structure analyses and the details of atomic movement. Various data (statistics such as standard deviation) obtained from the structural analysis, such as the lattice constants, temperature factors, and electron density in cases without phase transitions, were compared. In addition, the anisotropic temperature factors were statistically processed. In the electron density map, the electron density tended to decrease at high temperatures. Looking at the two-dimensional fingerprint plot constructed from the Hirshfeld surface analysis, the intermolecular interactions between chlorine atoms and hydrogen atoms in the Cu changed significantly with the temperature change. In addition, the change in the anisotropic temperature factor of chlorine was significant. Moreover, a difference was observed in the analytical data at room temperature and high temperatures, which is thought to be useful for creating a model of temperature dependence. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

15 pages, 7751 KiB  
Article
Study on the Extraction of Rare Earth Elements (REEs) from Phosphogypsum Using Gluconobacter oxydans Culture Solution
by Jiangang Zhang, Zhuo Qi, Zijian He, Xinyue Zhang, Qinglian Zhang and Xiangdong Su
Molecules 2025, 30(3), 674; https://doi.org/10.3390/molecules30030674 - 3 Feb 2025
Viewed by 668
Abstract
With the rapid development of modern industry, particularly in the fields of electric vehicles and renewable energy technologies, the demand for rare earth elements (REEs) has surged dramatically. Phosphogypsum (PG), which is an industrial waste product generated during the production of phosphoric acid [...] Read more.
With the rapid development of modern industry, particularly in the fields of electric vehicles and renewable energy technologies, the demand for rare earth elements (REEs) has surged dramatically. Phosphogypsum (PG), which is an industrial waste product generated during the production of phosphoric acid through the sulfuric acid process, is rich in REEs. However, traditional chemical leaching methods pose environmental pollution and resource wastage issues. This study aims to explore the feasibility and optimal conditions for bioleaching REEs from phosphogypsum using Gluconobacter oxydans (G. oxydans). The phase composition and components of phosphogypsum, as well as the growth characteristics and leaching efficiency of G. oxydans, were analyzed in detail using SEM, EDS, XRD, and XRF techniques. Experimental results indicate that G. oxydans can effectively leach REEs from phosphogypsum under conditions of 28 °C, an agitation speed of 150 rpm, and a liquid-to-solid ratio of 4:1, with a maximum leaching efficiency of 24.67%. Moreover, it is revealed in the study that G. oxydans exhibits selectivity in leaching REEs. Specifically, the leaching efficiency for Nd is significantly enhanced at low pH values. This research provides a theoretical basis and practical application example for the efficient and environmentally friendly recovery of REEs from phosphogypsum. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

15 pages, 4059 KiB  
Article
Magnetically Diluted Dy3+ and Yb3+ Squarates Showing Relaxation Tuning and Matrix Dependence
by Rina Takano and Takayuki Ishida
Molecules 2025, 30(2), 356; https://doi.org/10.3390/molecules30020356 - 16 Jan 2025
Viewed by 595
Abstract
A new compound [Y2(sq)3(H2O)4] (Y-sq; sq = squarate (C4O42–)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of [...] Read more.
A new compound [Y2(sq)3(H2O)4] (Y-sq; sq = squarate (C4O42–)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (HDC), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions. The Orbach and Raman mechanisms are assumed in the Arrhenius plots, giving Ueff/kB = 139(5) and 135(8) K for Dy@Y-sq and Dy@Lu-sq, respectively, at HDC = 0 Oe. In contrast, Yb@Y-sq and Yb@Lu-sq behaved different; Yb@Y-sq can be regarded as a field-induced SIM because AC out-of-phase response was recorded only when HDC was present. On the other hand, Yb@Lu-sq showed a relaxation independent from temperature around 2 K at HDC = 0 Oe, possibly ascribed to a quantum-tunneling-magnetization mechanism. Applying HDC = 400 Oe afforded Ueff = 61.2(14) and 62.5(16) K for Yb@Y-sq and Yb@Lu-sq, respectively. The Y/Lu matrix dependence may be related to spin–phonon coupling. The dilution technique is a facile and versatile tool for modification of SIM characteristics. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

15 pages, 2952 KiB  
Article
Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System
by Daewon Shim, Junsu Lee, Aziz Ahmed, Ji Hee Pi, Myung-Ho Choi, Kang Min Ok, Kyu Hyoung Lee and Tae-Soo You
Molecules 2025, 30(2), 310; https://doi.org/10.3390/molecules30020310 - 14 Jan 2025
Viewed by 746
Abstract
Four quaternary Zintl phase thermoelectric (TE) materials belonging to the Ba1-xEuxZn2Sb2 (x = 0.02(1), 0.04(1), 0.08(1), 0.15(1)) system were successfully synthesized using the molten Pb-flux or the conventional high-temperature reaction methods. Their crystal structures [...] Read more.
Four quaternary Zintl phase thermoelectric (TE) materials belonging to the Ba1-xEuxZn2Sb2 (x = 0.02(1), 0.04(1), 0.08(1), 0.15(1)) system were successfully synthesized using the molten Pb-flux or the conventional high-temperature reaction methods. Their crystal structures were characterized by both powder and single-crystal X-ray diffraction analyses, and all four isotypic title compounds adopted the orthorhombic BaCu2S2-type (Pnma, Z = 4, Pearson code oP20) structure. The radius ratio criterion, based on the cationic and anionic elements (i.e., r+/r), was successfully verified in the title system, as in our previous reports, where r+/r > 1 for the BaCu2S2-type structure. A series of density functional theory calculations were performed using a hypothetical model with the idealized compositions of Ba0.75Eu0.25Zn2Sb2, and the results were compared with the ternary parental compound BaZn2Sb2 to understand the influence of Eu substituents in the Ba1-xEuxZn2Sb2 system. A similar overall shape of the density of states (DOS) curves and the near-constant DOS values at EF before and after the cationic substitution suggest only marginal changes in the carrier concentration. Therefore, carrier mobility has a dominant role in rationalizing the observed variations in the electrical transport properties of the title system. Temperature-dependent TE property measurements proved that an increase in the Seebeck coefficient S and a decrease in electrical conductivity σ were observed as the Eu substituents gradually increased in the Ba1-xEuxZn2Sb2 system, although the overall S and σ values were lower than those in the parental compound BaZn2Sb2. The thermal conductivities of these title compounds were successfully lowered by phonon scattering, but due to the overall smaller electrical transport properties, the observed maximum ZT was 0.49 at 773 K for Ba0.98(1)Eu0.02Zn2Sb2. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

12 pages, 6094 KiB  
Article
A Fluorine-Functionalized Tb(III)–Organic Framework for Ba2+ Detection
by Yang Zhang, Hua Tan, Jiaping Zhu, Linhai Duan, Yuchi Ding, Fenglan Liang, Yongshi Li, Xinteng Peng, Ruomei Jiang, Jiaxin Yu, Jianjiong Fan, Yuhang Chen, Rimeng Chen and Deyun Ma
Molecules 2024, 29(24), 5903; https://doi.org/10.3390/molecules29245903 - 13 Dec 2024
Cited by 3 | Viewed by 906
Abstract
The development of lanthanide–organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic (fcu [...] Read more.
The development of lanthanide–organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic (fcu) topology constructed from hexanuclear clusters (Tb6O30) bridged by fdpdc ligands, formulated as {[Tb6(fdpdc)6(μ3-OH)8(H2O)6]·4DMF}n (1), (fdpdc = 3-fluorobiphenyl-4,4′-dicarboxylate). Complex 1 displays a 3D framework with the channel of 7.2 × 7.2 Å2 (measured between opposite atoms) perpendicular to the a-axis. With respect to Ba2+ cation, the framework of activated 1 (1a) exhibits high selectivity and reversibility in luminescence sensing function, with an LOD of 4.34665 mM. According to the results of simulations, compared to other small gas molecules (CO2, N2, H2, CO, and CH4), activated 1 (1a) shows a high adsorption selectivity for C2H2 at 298 K. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

Back to TopTop