Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Extraction of Polysaccharides
2.3. Isolation and Purification of Polysaccharides
2.4. Characterization of Polysaccharides
2.4.1. Chemical Properties and Monosaccharide Composition Analysis
2.4.2. Molecular Weight Analysis
2.4.3. Methylation Analysis of FDOPs
2.4.4. FT-IR Spectroscopy Analyses
2.4.5. NMR Analyses
2.5. Evaluation of FDOPs Skin Care Effects In Vivo
2.5.1. Cell Culture
2.5.2. Cell Viability Assay
2.5.3. NO Assay
2.5.4. ELISA Assay
2.5.5. Western Blotting Analysis
2.5.6. ROS Assay
2.6. Statistical Analysis
3. Results
3.1. Purification and Chemical Properties of FDOPs
3.2. Structural Characterization of FDOPs
3.2.1. FT-IR Spectrum Analysis
3.2.2. Methylation Analysis
3.2.3. NMR Analysis
3.3. FDOPs Inhibit LPS-Induced Inflammatory Cytokine Release in RAW264.7 Cells
3.4. FDOPs Scavenge Intracellular ROS in RAW264.7 Cells
3.5. FDOPs Inhibit TLR4/NF-κB/NLRP3 Pathway for Anti-Inflammatory Activity
3.6. FDOPs Attenuate LPS-Induced Damage in HaCaT Cells
3.6.1. Cell Viability
3.6.2. FDOPs Enhance the Skin Barrier-Related Proteins in HaCaT Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Alalaiwe, A. Anti-inflammatory microRNAs for treating inflammatory skin diseases. Biomolecules 2022, 12, 1072. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, L. Preparation of multifunctional seaweed polysaccharides derivatives composite hydrogel to protect ultraviolet b-induced photoaging in vitro and in vivo. Macromol. Biosci. 2024, 24, 2300292. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Zou, S. Antioxidant and anti-inflammatory activity of constituents isolated from Dendrobium nobile (lindl.). Front. Chem. 2022, 10, 988459. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Meng, C. New sesquiterpenoids from the stems of Dendrobium nobile and their neuroprotective activities. Fitoterapia 2019, 138, 104351. [Google Scholar] [CrossRef]
- Pi, T.; Lang, G. Protective effects of Dendrobium nobile lindl. Alkaloids on alzheimer’s disease-like symptoms induced by high-methionine diet. Curr. Neuropharmacol. 2022, 20, 983–997. [Google Scholar] [CrossRef]
- Chen, H.; Shi, X. Ultrasonic extraction process of polysaccharides from Dendrobium nobile lindl.: Optimization, physicochemical properties and anti-inflammatory activity. Foods 2022, 11, 2957. [Google Scholar] [CrossRef]
- Wang, Y. Traditional uses and pharmacologically active constituents of Dendrobium plants for dermatological disorders: A review. Nat. Product. Bioprospecting 2021, 11, 465–487. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, T. Dendrobium officinale kimura et migo: A review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid.-Based Compl. Alt. 2017, 2017, 7436259. [Google Scholar] [CrossRef]
- Chen, W.; Lu, J. Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium officinale kimura et. Migo. Front. Pharmacol. 2021, 12, 726528. [Google Scholar] [CrossRef]
- Luo, A.; He, X. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile lindl. Extracts. Int. J. Biol. Macromol. 2009, 45, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Huo, P. Dendrobium nobile lindl polysaccharides improve testicular spermatogenic function in streptozotocin-induced diabetic rats. Mol. Reprod. Dev. 2022, 89, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tu, H. Dendrobium nobile lindl. Polysaccharides improve follicular development in pcos rats. Int. J. Biol. Macromol. 2020, 149, 826–834. [Google Scholar] [CrossRef]
- Guo, L.; Qi, J. Current advances of Dendrobium officinale polysaccharides in dermatology: A literature review. Pharm. Biol. 2020, 58, 664–673. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, G. Dendrobium candidum polysaccharide reduce atopic dermatitis symptoms and modulate gut microbiota in DNFB-induced AD-like mice. Front. Physiol. 2022, 13, 796421. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; You, Y. Enhanced uronic acid content, antioxidant, and anti-inflammatory activities of polysaccharides from ginseng fermented bysaccharomyces cerevisiae GIW-1. J. Food Process Preserv. 2020, 44, e14885. [Google Scholar] [CrossRef]
- Ma, J.; Wu, W. Preparation of Dendrobium officinale polysaccharide by lactic acid bacterium fermentation and its protective mechanism against alcoholic liver damage in mice. J. Agric. Food Chem. 2024, 72, 17633–17648. [Google Scholar] [CrossRef]
- Tian, W.; Dai, L. Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide: Structure and immunoregulatory activities. Int. J. Biol. Macromol. 2019, 135, 1034–1042. [Google Scholar] [CrossRef]
- Tang, X.; Wang, B. Screening of microbial strains used to ferment Dendrobium officinale to produce polysaccharides, and investigation of these polysaccharides’ skin care effects. Processes 2023, 11, 2563. [Google Scholar] [CrossRef]
- Michel Dubois, K.A.G.J. Colorimetric method for determination of sugars. Anal. Chem. 1956, 28, 2–57. [Google Scholar]
- Chen, S.; Xu, J. Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and nmr spectroscopy. Glycoconj. J. 2008, 25, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, F. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from ganoderma lucidum. Int. J. Biol. Macromol. 2020, 143, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.R.A.P. For preparation acetates carbohydrates. Anal. Biochem. 1992, 203, 101–108. [Google Scholar]
- Zhu, H.; Xu, L. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, ph, and metal ions. Food Hydrocoll. 2023, 137, 108311. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X. Preliminary characterization, antioxidant and α-glucosidase inhibitory activities of polysaccharides from mallotus furetianus. Carbohydr. Polym. 2019, 215, 307–315. [Google Scholar] [CrossRef]
- Wei, W.; Feng, L. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J. Agr. Food Chem. 2016, 64, 881–889. [Google Scholar] [CrossRef]
- Xing, X.; Cui, S.W. Study on Dendrobium officinale o-acetyl-glucomannan (dendronan®): Part i. Extraction, purification, and partial structural characterization. Bioact. Carbohydr. Diet. Fibre 2014, 4, 74–83. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Y. Isolation and structural characterization of a neutral polysaccharide from the stems of Dendrobium densiflorum. Int. J. Biol. Macromol. 2012, 50, 1207–1211. [Google Scholar] [CrossRef]
- Kuang, M.; Li, J. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohydr. Polym. 2020, 241, 116326. [Google Scholar] [CrossRef]
- Zohra, R.R.; Aman, A. Purification, characterization and end product analysis of dextran degrading endodextranase from bacillus licheniformis kibge-ib25. Int. J. Biol. Macromol. 2015, 78, 243–248. [Google Scholar] [CrossRef]
- Cai, Z.; Li, W. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of morchella esculenta. Carbohydr. Polym. 2018, 195, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Zhang, M. Structural characterization of a 2-o-acetylglucomannan from Dendrobium officinale stem. Carbohydr. Res. 2004, 339, 2219–2224. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, L. Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides. Front. Nutr. 2022, 9, 965073. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Zeng, H. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin. J. Nat. Med. 2020, 18, 1–27. [Google Scholar] [CrossRef]
- Ge, J.; Zha, X. Polysaccharides from Dendrobium huoshanense stems alleviates lung inflammation in cigarette smoke-induced mice. Carbohydr. Polym. 2018, 189, 289–295. [Google Scholar] [CrossRef]
- Fan, H.; Meng, Q. Partial characterization and antioxidant activities of polysaccharides sequentially extracted from Dendrobium officinale. J. Food Meas. Charact. 2018, 12, 1054–1064. [Google Scholar] [CrossRef]
- Chu, W.; Wang, P. Ultrasonic treatment of Dendrobium officinale polysaccharide enhances antioxidant and anti-inflammatory activity in a mouse d-galactose-induced aging model. Food Sci. Nutr. 2022, 10, 2620–2630. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Xu, W. Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr. Polym. 2020, 234, 115896. [Google Scholar] [CrossRef]
- Chen, C.; Su, C. Differences in water soluble non-digestible polysaccharides and anti-inflammatory activities of fruiting bodies from two cultivated xylaria nigripes strains. Int. J. Biol. Macromol. 2018, 116, 728–734. [Google Scholar] [CrossRef]
- Huang, K.; Li, Y. Purification, characterization and biological activity of polysaccharides from Dendrobium officinale. Molecules 2016, 21, 701. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Roth, J. More than suppression: Glucocorticoid action on monocytes and macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef]
- Barker, J.N.W.N.; Griffiths, C.E.M. Keratinocytes as initiators of inflammation. Lancet 1991, 337, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Schoop, V.M.; Mirancea, N. Epidermal organization and differentiation of hacat keratinocytes in organotypic coculture with human dermal fibroblasts. J. Investig. Dermatol. 1999, 112, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, R. Lps-induced vitamin d receptor decrease in oral keratinocytes is associated with oral lichen planus. Sci. Rep. 2018, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.L.; Huang, R.S. Dendrobium huoshanense polysaccharides prevent inflammatory response of ulcerative colitis rat through inhibiting the NF-κb signaling pathway. Chem. Biodivers. 2021, 18, e2100130. [Google Scholar] [CrossRef]
- Chen, H.; Shi, X. Effect of yeast fermentation on the physicochemical properties and bioactivities of polysaccharides of Dendrobium officinale. Foods 2023, 12, 150. [Google Scholar] [CrossRef]
- Wan, Z.; Zheng, G. Material basis and core chemical structure of Dendrobium officinale polysaccharides against colitis-associated cancer based on anti-inflammatory activity. Int. J. Biol. Macromol. 2024, 262, 130056. [Google Scholar] [CrossRef]
- Deng, G.; Zhao, C. Untargeted metabonomics and tlr4/ nf-κb signaling pathway analysis reveals potential mechanism of action of Dendrobium huoshanense polysaccharide in nonalcoholic fatty liver disease. Front. Pharmacol. 2024, 15, 1374158. [Google Scholar] [CrossRef]
- Ren, H.; Zha, P. Study on moisturizing effect of Dendrobium officinale, sparassis crispa, and their compound extracts. J. Cosmet. Dermatol. 2025, 24, e70189. [Google Scholar] [CrossRef]
Methylated Sugars | Linkage Types | Molar Ratio (%) | Mass Fragment (m/z) | |
---|---|---|---|---|
FDOP-1A | FDOP-2A | |||
2,3,4,6-Me4-Manp | T-linked-Manp | - | 9.89 | 59, 71, 87, 102, 113, 118, 129, 145, 162, 174, 189, 205 |
2,3,4,6-Me4-Glcp | T-linked-Glcp | 5.65 | - | 59, 71, 87, 102, 118, 129, 145, 162, 175, 205 |
2,3,6-Me3-Glcp | 1,4-linked-Glcp | 19.19 | 28.29 | 59, 71, 73, 87, 99, 102, 113, 118, 129, 131, 162, 173, 233 |
2,3,6-Me3-Manp | 1,4-linked-Manp | 37.13 | 44.43 | 59, 71, 87, 99, 102, 113, 118, 129, 142, 162, 173, 233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zou, A.; Yu, Q.; Wang, Z.; Tan, D.; Yang, K.; Cai, C.; Yu, G. Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair. Molecules 2025, 30, 2875. https://doi.org/10.3390/molecules30132875
Wang W, Zou A, Yu Q, Wang Z, Tan D, Yang K, Cai C, Yu G. Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair. Molecules. 2025; 30(13):2875. https://doi.org/10.3390/molecules30132875
Chicago/Turabian StyleWang, Wanshuai, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai, and Guangli Yu. 2025. "Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair" Molecules 30, no. 13: 2875. https://doi.org/10.3390/molecules30132875
APA StyleWang, W., Zou, A., Yu, Q., Wang, Z., Tan, D., Yang, K., Cai, C., & Yu, G. (2025). Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair. Molecules, 30(13), 2875. https://doi.org/10.3390/molecules30132875