Topic Editors

Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de Mexico 09340, Mexico
1. Institute of Inorganic Chemistry, RWTH Aachen, D-52056 Aachen, Germany
2. A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science, 119071 Moscow, Russia

Theoretical, Quantum and Computational Chemistry—2nd Edition

Abstract submission deadline
31 March 2026
Manuscript submission deadline
31 July 2026
Viewed by
2932

Topic Information

Dear Colleagues,

Theory and computation are crucial parts of modern chemical research since they drive and stimulate investigations by proposing testable hypotheses, as well as providing explanations for chemical observations in terms of fundamental principles. Theoretical, quantum, and computational chemistry are based on a rigorous mathematical or simulational approach to problems of chemical, physical, or biological interest. The following Topic is focused on advances in the fundamental research and application of theoretical, quantum, and computational chemistry.

Submissions concerning, but not limited to, the following general areas are encouraged:

  • Bioanalytical sciences; 
  • Chemical reactivity simulation; 
  • D and f-element molecular magnetism modelling; 
  • Density functional theory; 
  • Theoretical spectroscopy; 
  • Femtochemistry; 
  • Electronic structure theory; 
  • Partition function for studying multimolecular systems; 
  • Protein structure and function; 
  • Atmospheric chemistry; 
  • Nanotechnology; 
  • Molecular quantum dynamics; 
  • Quantum chemical topology; 
  • Quantum mechanical study of inorganic molecular chemistry; 
  • Quantum mechanics in biological processes.

Prof. Dr. Jorge Garza
Dr. Andrei L. Tchougréeff
Topic Editors

Keywords

  • theoretical chemistry
  • quantum chemistry
  • computational chemistry
  • density functional theory
  • molecular quantum dynamics
  • bioanalytical sciences
  • material science

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Chemistry
chemistry
2.4 3.2 2019 17.2 Days CHF 1800 Submit
International Journal of Molecular Sciences
ijms
4.9 8.1 2000 16.8 Days CHF 2900 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit
Quantum Reports
quantumrep
- 3.3 2019 16.4 Days CHF 1400 Submit
Symmetry
symmetry
2.2 5.4 2009 17.3 Days CHF 2400 Submit
Magnetochemistry
magnetochemistry
2.6 3.9 2015 15.8 Days CHF 2200 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
12 pages, 2950 KiB  
Article
Production of Ultracold XOH (X = Ca, Sr, Ba) Molecules by Direct Laser Cooling: A Theoretical Study Based on Accurate Ab Initio Calculations
by Jingbo Wei, Peng Li, Jizhou Wu, Yuqing Li, Wenliang Liu, Yongming Fu and Jie Ma
Molecules 2025, 30(9), 1950; https://doi.org/10.3390/molecules30091950 - 28 Apr 2025
Viewed by 121
Abstract
Effective laser cooling schemes are fundamental for preparing ultracold triatomic molecules. Here, efficient laser cooling strategies for alkaline-earth hydroxides (XOH, X = Ca, Sr, Ba) are proposed using high-precision quantum calculations. By mapping Λ-S- and Ω-state potential energy surfaces, we identified quasi-closed optical [...] Read more.
Effective laser cooling schemes are fundamental for preparing ultracold triatomic molecules. Here, efficient laser cooling strategies for alkaline-earth hydroxides (XOH, X = Ca, Sr, Ba) are proposed using high-precision quantum calculations. By mapping Λ-S- and Ω-state potential energy surfaces, we identified quasi-closed optical cycles with dominant Franck–Condon factors (FCFs) and strong transition dipoles. The scheme utilizes targeted repumping to suppress vibrational leaks, enabling >104 photon scatters per molecule, exceeding Doppler cooling requirements. These results establish XOH molecules, particularly BaOH, as viable candidates for laser cooling experiments, providing key theoretical insights for ultracold triatomic molecule production. Full article
Show Figures

Figure 1

25 pages, 975 KiB  
Article
Quantum Classical Algorithm for the Study of Phase Transitions in the Hubbard Model via Dynamical Mean-Field Theory
by Anshumitra Baul, Herbert Fotso, Hanna Terletska, Ka-Ming Tam and Juana Moreno
Quantum Rep. 2025, 7(2), 18; https://doi.org/10.3390/quantum7020018 - 4 Apr 2025
Viewed by 384
Abstract
Modeling many-body quantum systems is widely regarded as one of the most promising applications for near-term noisy quantum computers. However, in the near term, system size limitation will remain a severe barrier for applications in materials science or strongly correlated systems. A promising [...] Read more.
Modeling many-body quantum systems is widely regarded as one of the most promising applications for near-term noisy quantum computers. However, in the near term, system size limitation will remain a severe barrier for applications in materials science or strongly correlated systems. A promising avenue of research is to combine many-body physics with machine learning for the classification of distinct phases. We present a workflow that synergizes quantum computing, many-body theory, and quantum machine learning (QML) for studying strongly correlated systems. In particular, it can capture a putative quantum phase transition of the stereotypical strongly correlated system, the Hubbard model. Following the recent proposal of the hybrid quantum-classical algorithm for the two-site dynamical mean-field theory (DMFT), we present a modification that allows the self-consistent solution of the single bath site DMFT. The modified algorithm can be generalized for multiple bath sites. This approach is used to generate a database of zero-temperature wavefunctions of the Hubbard model within the DMFT approximation. We then use a QML algorithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-to-Mott insulator phase transition. We train a recently proposed quantum convolutional neural network (QCNN) and then utilize the QCNN as a quantum classifier to capture the phase transition region. This work provides a recipe for application to other phase transitions in strongly correlated systems and represents an exciting application of small-scale quantum devices realizable with near-term technology. Full article
Show Figures

Figure 1

18 pages, 3210 KiB  
Article
Direct Determination of Ratios of All Conformations and Their Lifetimes for Small Flexible Molecules from Molecular Dynamics Simulations: 1,3-Propanediol in an Aqueous Environment
by Olga V. Grineva
Molecules 2025, 30(6), 1285; https://doi.org/10.3390/molecules30061285 - 13 Mar 2025
Viewed by 423
Abstract
For the first time in the course of molecular dynamics modeling of a liquid, the conformations of each of the small flexible molecules present in the system were fixed at short (1 ps) time intervals. This allowed the establishment of the ratios between [...] Read more.
For the first time in the course of molecular dynamics modeling of a liquid, the conformations of each of the small flexible molecules present in the system were fixed at short (1 ps) time intervals. This allowed the establishment of the ratios between various individual conformations and their families and determination of the average lifetimes of both individual conformations and families. As an example, data are presented for modeling boxes with different numbers of molecules (800, 2700, and 6400) for an aqueous solution with 1 mol. % 1,3-propanediol at 298.15 K and 1 atm. The results of the conformational analysis turned out to be very close for systems with different numbers of molecules and with different choices of initial conformations. For the systems under investigation, the tTTg conformation, which does not have intramolecular hydrogen bond, predominated (37–39%), and the total fractions of all conformations in the TT family were 74–76%. Only 0.4–0.5% of 1,3-propanediol molecules had conformations with the possible formation of intramolecular hydrogen bond, although the most stable conformers of free 1,3-propanediol molecules exhibit such a bond. The average lifetimes of each individual conformation did not exceed 7 ps in simulated systems, while the maximum lifetimes reached 60 ps. The average lifetimes of the main chain vary from ~110 ps in TT family to ~12 ps in GG′ family, in which the conformations tend to have intramolecular hydrogen bonds. It was found that calculations for an individual 1,3-propanediol molecule at the MP2/aug-cc-pVDZ or MP2/aug-cc-pVTZ theoretical levels lead to 22 conformers both in vacuum and by using the PCM model for implicit aqueous solvation (at the MP2/aug-cc-pVDZ level) and that such solvation reduces the energy difference between the conformers. Full article
Show Figures

Graphical abstract

10 pages, 1715 KiB  
Article
Proximity Effect of Optically Active h-BCN Nanoflakes Deposited on Different Substrates to Tailor Electronic, Spintronic, and Optoelectronic Properties
by Ahmad Alsaad, Jaeil Bai, Wai-Ning Mei, Joel Turallo, Carolina Ilie and Renat Sabirianov
Int. J. Mol. Sci. 2025, 26(5), 2096; https://doi.org/10.3390/ijms26052096 - 27 Feb 2025
Viewed by 301
Abstract
Hexagonal BCN (h-BCN), an isoelectronic counterpart to graphene, exhibits chirality and offers the distinct advantage of optical activity in the vacuum ultraviolet (VUV) region, characterized by significantly higher wavelengths compared to graphene nanoflakes. h-BCN possesses a wide bandgap and demonstrates desirable semiconducting properties. [...] Read more.
Hexagonal BCN (h-BCN), an isoelectronic counterpart to graphene, exhibits chirality and offers the distinct advantage of optical activity in the vacuum ultraviolet (VUV) region, characterized by significantly higher wavelengths compared to graphene nanoflakes. h-BCN possesses a wide bandgap and demonstrates desirable semiconducting properties. In this study, we employ Density Functional Theory (DFT) calculations to investigate the proximity effects of adsorbed h-BCN flakes on two-dimensional (2D) substrates. The chosen substrates encompass monolayers of 3D transition metals and WSe2, as well as a bilayer consisting of WSe2/Ni. Notably, the hydrogen-terminated h-BCN nanoflakes retain their planar configuration following adsorption. We observe a strong interaction between h-BCN and fcc-based monolayers such as Ni(111), resulting in the closure of the optical bandgap, while the adsorption energy on WSe2 is significantly weaker, preserving an approximate 1.1 eV bandgap. Furthermore, we demonstrate the magnetism induced by the proximity of adsorbed chiral h-BCN molecules, and the chiral-induced spin selectivity within the proposed systems. Full article
Show Figures

Figure 1

16 pages, 14767 KiB  
Article
Molecular Design and Mechanism Study of Non-Activated Collectors for Sphalerite (ZnS) Based on Coordination Chemistry Theory and Quantum Chemical Simulation
by Xiaoqin Tang, Yilang Pan, Jianhua Chen and Ye Chen
Molecules 2024, 29(24), 5882; https://doi.org/10.3390/molecules29245882 - 13 Dec 2024
Cited by 1 | Viewed by 800
Abstract
Sphalerite flotation is generally achieved by copper activation followed by xanthate collection. This study aims to propose a design idea to find novel collectors from the perspective of molecular design and prove the theoretical feasibility that the collector can effectively recover sphalerite without [...] Read more.
Sphalerite flotation is generally achieved by copper activation followed by xanthate collection. This study aims to propose a design idea to find novel collectors from the perspective of molecular design and prove the theoretical feasibility that the collector can effectively recover sphalerite without copper activation. To address this, 30 compounds containing different structures of sulfur atoms and different neighboring atoms were designed based on coordination chemistry. Twelve potential collectors were screened, and their properties and interactions with a hydrated sphalerite (110) surface were evaluated. Compound 27 (C2H4S22−) showed the greatest reactivity, suggesting that the double-coordination structure of two sulfhydryl groups is an effective molecular structure for direct sphalerite flotation. The DFTB+ and MD results demonstrate that 1,2-butanedithiol (C4H10S2), having a similar coordination structure to compound 27, has the potential to replace the traditional reagent scheme of sphalerite flotation. The strong reagent–surface interaction is attributed to the overlap of Zn 3d with S 3p orbitals, the most negative electrostatic potential, the relatively high EHOMO and low average local ionization energy, and the eliminated steric hindrance effect. It is expected that this study can provide a design idea for the targeted design and development of novel reagents for complex sulfide ore flotation. Full article
Show Figures

Figure 1

Back to TopTop