Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats
Abstract
1. Introduction
2. Results
2.1. Molecular Docking
2.2. Vasodilator Effects of Q3MG on the MVBs of Hypertensive Rats
2.3. The Vascular Effect of Q3MG Is Dependent of Vascular Endothelium and NO/cGMP Pathway
2.4. The Vascular Effect of Q3MG Involves Activating BKCa Channels
2.5. Effects of Q3MG on Intracellular Concentration of Cyclic Guanosine Monophosphate (cGMP)
3. Discussion
4. Materials and Methods
4.1. In Silico Experiments
Molecular Docking
4.2. Pharmacological Assays
4.2.1. Drugs and Reagents
4.2.2. Animals
4.2.3. Isolation and Preparation of the Mesenteric Vascular Beds (MVBs)
4.2.4. Investigation of the Vasodilatory Effects of Q3MG and the Molecular Mechanisms Involved
4.2.5. Effects of Q3MG on the Intracellular Concentration of Cyclic Guanosine Monophosphate (cGMP)
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVDs | Cardiovascular Diseases |
Q3MG | Quercetin 3-O-MalonylGlucoside |
eNOS | Endothelial Nitric Oxide Synthase |
BKCa | Large-Conductance Calcium-Activated Potassium Channel |
MVBs | Mesenteric Vascular Beds |
cGMP | Cyclic Guanosine Monophosphate |
ACh | Acetylcholine |
L-NAME | Nω-Nitro-L-Arginine Methyl Ester (NO Synthase Inhibitor) |
PGI2 | Prostacyclin |
EDHF | Endothelium-Derived Hyperpolarizing Factor |
TEA | Tetraethylammonium (Non-Selective K+ Channel Blocker) |
IbTX | Iberiotoxin (Selective BKCa Blocker) |
PSS | Physiological Saline Solution |
SHR | Spontaneously Hypertensive Rats |
FQ | Fit Quality |
LE | Ligand Efficiency |
BEI | Binding Efficiency Index |
Ki | Inhibition Constant |
ANOVA | Analysis of Variance |
ATP | Adenosine Triphosphate |
SKCa | Small-Conductance Calcium-Activated Potassium Channel |
IKCa | Intermediate-Conductance Calcium-Activated Potassium Channel |
PDB | Protein Data Bank |
MB | Methylene Blue |
TRAM-34 | Selective IKCa Channel Blocker |
Apm | Apamin (Selective SKCa Channel Blocker) |
References
- Chaturvedi, A.; Zhu, A.; Gadela, N.V.; Prabhakaran, D.; Jafar, T.H. Social Determinants of Health and Disparities in Hypertension and Cardiovascular Diseases. Hypertension 2024, 81, 387–399. [Google Scholar] [CrossRef]
- Bludorn, J.; Railey, K. Hypertension Guidelines and Interventions. Prim. Care 2024, 51, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Savoia, C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int. J. Mol. Sci. 2024, 25, 6661. [Google Scholar] [CrossRef] [PubMed]
- Hisamatsu, T.; Miura, K. Epidemiology and Control of Hypertension in Japan: A Comparison with Western Countries. J. Hum. Hypertens. 2024, 38, 469–476. [Google Scholar] [CrossRef]
- Choi, D.; Im, H.B.; Choi, S.J.; Han, D. Safety Classification of Herbal Medicine Use among Hypertensive Patients: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2024, 15, 1321523. [Google Scholar] [CrossRef] [PubMed]
- Singhai, H.; Rathee, S.; Jain, S.K.; Patil, U.K. The Potential of Natural Products in the Management of Cardiovascular Disease. Curr. Pharm. Des. 2024, 30, 624–638. [Google Scholar] [CrossRef]
- Li, H.; Zeng, Y.; Zi, J.; Hu, Y.; Ma, G.; Wang, X.; Shan, S.; Cheng, G.; Xiong, J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol. Nutr. Food Res. 2024, 68, 2300727. [Google Scholar] [CrossRef]
- Vazhappilly, C.G.; Ansari, S.A.; Al-Jaleeli, R.; Al-Azawi, A.M.; Ramadan, W.S.; Menon, V.; Hodeify, R.; Siddiqui, S.S.; Merheb, M.; Matar, R.; et al. Role of Flavonoids in Thrombotic, Cardiovascular, and Inflammatory Diseases. Inflammopharmacology 2019, 27, 863–869. [Google Scholar] [CrossRef]
- Day, A.J.; Williamson, G. Biomarkers for exposure to dietary flavonoids: A review of the current evidence for identification of quercetin glycosides in plasma. Br. J. Nutr. 2001, 86, S105–S110. [Google Scholar] [CrossRef]
- DuPont, M.S.; Mondin, Z.; Williamson, G.; Price, K.R. Effect of Variety, Processing, and Storage on the Flavonoid Glycoside Content and Composition of Lettuce and Endive. J. Agric. Food Chem. 2000, 48, 3957–3964. [Google Scholar] [CrossRef]
- Jaramillo, K.; Dawid, C.; Hofmann, T.; Fujimoto, Y.; Osorio, C. Identification of Antioxidative Flavonols and Anthocyanins in Sicana Odorifera Fruit Peel. J. Agric. Food Chem. 2011, 59, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Enkhmaa, B.; Shiwaku, K.; Katsube, T.; Kitajima, K.; Anuurad, E.; Yamasaki, M.; Yamane, Y. Mulberry (Morus Alba L.) Leaves and Their Major Flavonol Quercetin 3-(6-Malonylglucoside) Attenuate Atherosclerotic Lesion Development in LDL Receptor-Deficient Mice. J. Nutr. 2005, 135, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of Flavonol Glycoside in Mulberry (Morus Alba L.) Leaf on Glucose Metabolism and Oxidative Stress in Liver in Diet-Induced Obese Mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Harahap, U.; Syahputra, R.A.; Ahmed, A.; Nasution, A.; Wisely, W.; Sirait, M.L.; Dalimunthe, A.; Zainalabidin, S.; Taslim, N.A.; Nurkolis, F.; et al. Current Insights and Future Perspectives of Flavonoids: A Promising Antihypertensive Approach. Phytother. Res. 2024, 38, 3146–3168. [Google Scholar] [CrossRef]
- Konukoglu, D.; Uzun, H. Endothelial Dysfunction and Hypertension. Adv. Exp. Med. Biol. 2017, 956, 511–540. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals 2023, 16, 1201. [Google Scholar] [CrossRef]
- Desiraju, G.R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573. [Google Scholar] [CrossRef]
- Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 2003, 42, 1210–1250. [Google Scholar] [CrossRef]
- Tonggu, L.; Wang, L. Structure of the human BK ion channel in lipid environment. Membranes 2022, 12, 758. [Google Scholar] [CrossRef]
- Cui, J.; Yang, H.; Lee, U.S. Molecular mechanisms of BK channel activation. Cell Mol. Life Sci. 2009, 66, 852–875. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; He, J.; Huang, D.; Xi, Y.; Xiao, T.; Ouyang, Q.; Zhang, S.; Wan, S.; Chen, X. Potential mechanisms underlying the therapeutic roles of sinisan formula in depression: Based on network pharmacology and molecular docking study. Front. Psychiatry 2022, 13, 1063489. [Google Scholar] [CrossRef] [PubMed]
- Embaby, E.M.; Megahed, A.; Mostafa, S.A.; Samy, A.; Yousef, E.H.; Dawood, A.F.; Eldesoqui, M. L-Citrulline Alleviates Testicular Ischemia/Reperfusion Injury in Rats by Modulating eNOS/iNOS Induced Nitric Oxide Production, Inflammation, and Apoptosis. J. Exp. Zool. A Ecol. Integr. Physiol. 2025, 343, 590–607. [Google Scholar] [CrossRef]
- Haider, S.; Alam, M.S.; Hamid, H.; Dhulap, A.; Umar, S.; Yar, M.S.; Bano, S.; Nazreen, S.; Ali, Y.; Kharbanda, C. Design, synthesis and docking studies of 2-benzoxazolinone-based 1,2,4-triazoles as proinflammatory cytokine inhibitors. Med. Chem. Res. 2014, 23, 4250–4268. [Google Scholar] [CrossRef]
- Chou, T.-C.; Yen, M.-H.; Li, C.-Y.; Ding, Y.-A. Alterations of Nitric Oxide Synthase Expression with Aging and Hypertension in Rats. Hypertension 1998, 31, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, J.; Zhang, L.; Li, S.; Wu, Y.; Shi, L. BKCa Channel Activity and Vascular Contractility Alterations with Hypertension and Aging via Β1 Subunit Promoter Methylation in Mesenteric Arteries. Hypertens. Res. 2018, 41, 96–103. [Google Scholar] [CrossRef]
- Kumar, G.; Dey, S.K.; Kundu, S. Functional Implications of Vascular Endothelium in Regulation of Endothelial Nitric Oxide Synthesis to Control Blood Pressure and Cardiac Functions. Life Sci. 2020, 259, 118377. [Google Scholar] [CrossRef]
- Krishnamoorthy-Natarajan, G.; Koide, M. BK Channels in the Vascular System. Int. Rev. Neurobiol. 2016, 128, 401–438. [Google Scholar] [CrossRef]
- Jackson, W.F. Endothelial Ion Channels and Cell-Cell Communication in the Microcirculation. Front. Physiol. 2022, 13, 805149. [Google Scholar] [CrossRef] [PubMed]
- Schaedler, M.I.; Palozi, R.A.C.; Tirloni, C.A.S.; Silva, A.O.; Araújo, V.O.; Lourenço, E.L.B.; de Souza, L.M.; Lívero, F.A.R.; Junior, A.G. Redox regulation and NO/cGMP plus K(+) channel activation contributes to cardiorenal protection induced by Cuphea carthagenensis (Jacq.) J.F. Macbr. in ovariectomized hypertensive rats. Phytomedicine 2018, 51, 7–19. [Google Scholar] [CrossRef]
- Moncada, S. Nitric oxide. J. Hypertens. Suppl. 1994, 12, S35–S39. [Google Scholar]
- González, C.; Baez-Nieto, D.; Valencia, I.; Oyarzún, I.; Rojas, P.; Naranjo, D.; Latorre, R. K+ Channels: Function-Structural Overview. Compr. Physiol. 2012, 2, 2087–2149. [Google Scholar] [CrossRef] [PubMed]
- Richter-Laskowska, M.; Trybek, P.; Delfino, D.V.; Wawrzkiewicz-Jałowiecka, A. Flavonoids as Modulators of Potassium Channels. Int. J. Mol. Sci. 2023, 24, 1311. [Google Scholar] [CrossRef]
- Brayden, J.E. Potassium Channels in Vascular Smooth Muscle. Clin. Exp. Pharmacol. Physiol. 1996, 23, 1069–1076. [Google Scholar] [CrossRef]
- Doyle, D.A.; Morais Cabral, J.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 1998, 280, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sordi, R.; Fernandes, D.; Heckert, B.; Assreuy, J. Early Potassium Channel Blockade Improves Sepsis-Induced Organ Damage and Cardiovascular Dysfunction. Br. J. Pharmacol. 2011, 163, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- McGregor, D.D. The Effect of Sympathetic Nerve Stimulation on Vasoconstrictor Responses in Perfused Mesenteric Blood Vessels of the Rat. J. Physiol. 1965, 177, 21–30. [Google Scholar] [CrossRef]
- Klider, L.M.; da Silva, M.L.F.; da Silva, G.R.; da Costa, J.R.C.; Marques, M.A.A.; Lourenço, E.L.B.; Lívero, F.A.D.R.; Manfron, J.; Junior, A.G. Nitric Oxide and Small and Intermediate Calcium-Activated Potassium Channels Mediate the Vasodilation Induced by Apigenin in the Resistance Vessels of Hypertensive Rats. Molecules 2024, 29, 5425. [Google Scholar] [CrossRef]
- Estancial, C.S.; Rodrigues, R.L.; De Nucci, G.; Antunes, E.; Mónica, F.Z. Pharmacological characterisation of the relaxation induced by the soluble guanylate cyclase activator, BAY 60-2770 in rabbit corpus cavernosum. BJU Int. 2015, 116, 657–664. [Google Scholar] [CrossRef]
Protein | H-Bond | Pi–Pi Stacking | Alkyl Interactions |
---|---|---|---|
1M9M | Conventional H-bonds: ALA446:HN–O5, CYS99:HG–O12, SER102:HG–O3, H1–ALA443:O, H2–ALA443:O, H3–O7, H4–GLY101:O, H4–O7, H8–SER102:O, H17–ASN466:O C–H bonds: GLY101:HA2–O7, SER102:HB1–O4, H13–O7, H21–ASN466:OD1 Pi–Donor H-bond: TRP445:HN–Ligand | TRP445 (×2 Pi–Pi stacked) | ALA446, CYS99 (Pi–Alkyl) |
6ND0 | Conventional H-bonds: ARG578:HH12–O15, ARG996:HH12–O7/O8, ARG996:HH21–O8, H1–GLU569:OE2, H4–ASP482:OD1, H4–O7, H5–GLU1008:OE1, H8/H9–SER577:O, H17–ILE579:O C–H bonds: GLU576:HA–O11, ARG578:HA–O14, H15–GLU569:OE2, H21–O14 | Pi–Sigma (Ligand internal) | PRO1005 (×3) (Pi–Alkyl) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.L.F.; Aytar, E.C.; Gasparotto Junior, A. Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats. Molecules 2025, 30, 2867. https://doi.org/10.3390/molecules30132867
da Silva MLF, Aytar EC, Gasparotto Junior A. Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats. Molecules. 2025; 30(13):2867. https://doi.org/10.3390/molecules30132867
Chicago/Turabian Styleda Silva, Maria Luiza Fidelis, Erdi Can Aytar, and Arquimedes Gasparotto Junior. 2025. "Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats" Molecules 30, no. 13: 2867. https://doi.org/10.3390/molecules30132867
APA Styleda Silva, M. L. F., Aytar, E. C., & Gasparotto Junior, A. (2025). Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats. Molecules, 30(13), 2867. https://doi.org/10.3390/molecules30132867