Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of MV@β-Zeolite
2.2. Optical Properties of MV@β-Zeolite
2.3. Chromic Property of MV@β-Zeolite
2.4. Influence Factors of Chromic Behavior
2.5. Chromic Reversibility of MV@β-Zeolite
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Synthesis of MV@β-Zeolite
3.3. Evaluation of Optical Property
3.4. Study of Chromic Property
3.5. Research on Chromic Reversibility
3.6. Exploration of Chromic Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Li, S.-H.; Li, Z.-Y.; Zhang, N.-N.; Yu, Y.-T.; Zeng, J.-G.; Hua, Y. Advances in viologen-based stimulus-responsive crystalline hybrid materials. Coord. Chem. Rev. 2024, 518, 216064. [Google Scholar] [CrossRef]
- Dou, C.; Gao, J.; Song, Z.; Ning, L.; Liu, Q. Multimodal stimuli-responsive luminescence and photochromism of Cr3+-doped gallate β-alumina. Adv. Funct. Mater. 2025, 2508216. [Google Scholar] [CrossRef]
- Wang, X.F.; Lin, R.L.; Sun, W.Q.; Liu, J.X.; Xu, L.X.; Redshaw, C.; Feng, X. Cucurbit[7]uril-based self-assembled supramolecular complex with reversible multistimuli-responsive chromic behavior and controllable fluorescence. Adv. Opt. Mater. 2024, 12, 2400839. [Google Scholar] [CrossRef]
- Shi, H.H.; Wu, S.S.; Wang, R.J.; Zhang, Y.; An, S.H.; Lu, W.; Chen, T. Double-layer hydrogels with tunable mechanofluorochromic response for smart display. Chin. J. Polym. Sci. 2023, 41, 547–555. [Google Scholar] [CrossRef]
- Tang, C. Fundamental aspects of stretchable mechanochromic materials: Fabrication and characterization. Materials 2024, 17, 3980. [Google Scholar] [CrossRef] [PubMed]
- Martusciello, M.; Lanfranchi, A.; Castellano, M.; Patrini, M.; Lova, P.; Comoretto, D. Stretchable distributed bragg reflectors as strain-responsive mechanochromic sensors. ACS Appl. Mater. Interfaces 2024, 16, 51384–51396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yuan, L.; Guan, F.; Li, X.; Wang, R.; Xu, J.; Qin, Y.; Chen, G. Substituent-adjusted electrochromic behavior of symmetric viologens. Materials 2021, 14, 1702. [Google Scholar] [CrossRef]
- Murugavel, K.; Bebin, A.; Natarajan, A.; Mathew, D.E.; Dhavamani, S.; Stephan, A.M. Viologens: A versatile organic molecule for energy storage applications. J. Mater. Chem. A 2021, 9, 27215–27233. [Google Scholar]
- Yang, F.; Chen, J.; Wang, J.; Liu, J. Two novel photochromic compounds based on a thiazolothiazole extended viologen derivative. Dye. Pigment. 2023, 218, 111510. [Google Scholar] [CrossRef]
- Nie, H.; Rao, Y.; Song, J.; Ni, X.-L. Through-space conjugated supramolecular polymer radicals from spatial organization of Cucurbit[8]uril: An efficient approach for electron transfer and smart photochromism materials. Chem. Mater. 2022, 34, 8925–8934. [Google Scholar] [CrossRef]
- Feng, D.-X.; Mu, Y.; Li, J.; Han, S.-D.; Li, J.-H.; Sun, H.-L.; Pan, M.; Hu, J.-X.; Wang, G.-M. Light-induced electron transfer toward on/off room temperature phosphorescence in two photochromic coordination polymers. Adv. Funct. Mater. 2023, 33, 2305796. [Google Scholar] [CrossRef]
- Wu, J.; Tao, C.; Li, Y.; Li, J.; Yu, J. Methyl viologen-templated zinc gallophosphate zeolitic material with dual photo-/thermochromism and tuneable photovoltaic activity. Chem. Sci. 2015, 6, 2922–2927. [Google Scholar] [CrossRef] [PubMed]
- Sagara, T.; Tahara, H. Redox of viologen for powering and coloring. Chem. Rec. 2021, 21, 2375–2388. [Google Scholar] [CrossRef]
- Yu, H.-F.; Chen, K.-I.; Yeh, M.-H.; Ho, K.-C. Effect of trifluoromethyl substituents in benzyl-based viologen on the electrochromic performance: Optical contrast and stability. Sol. Energy Mater. Sol. Cells 2019, 200, 110020. [Google Scholar] [CrossRef]
- Pande, G.K.; Kim, N.; Choi, J.H.; Balamurugan, G.; Moon, H.C.; Park, J.S. Effects of counter ions on electrochromic behaviors of asymmetrically substituted viologens. Sol. Energy Mater. Sol. Cells 2019, 197, 25–31. [Google Scholar] [CrossRef]
- Li, Y.-D.; Ma, L.-F.; Yang, G.-P.; Wang, Y.-Y. Photochromic metal-organic frameworks based on host-guest strategy and different viologen derivatives for organic amines sensing and information anticounterfeiting. Angew. Chem. Int. Ed. 2025, 64, e202421744. [Google Scholar] [CrossRef]
- Wu, W.; Guo, S.; Bian, J.; He, X.; Li, H.; Li, J. Viologen-based flexible electrochromic devices. J. Energy Chem. 2024, 93, 453–470. [Google Scholar] [CrossRef]
- Yu, Y.-T.; Li, S.-H.; Li, Z.; Zeng, J.; Liu, C.; Li, L. A novel viologen-based hybrid crystalline material for photochromic glass films, information storage and anti-counterfeiting. Dalton Trans. 2024, 53, 17565–17570. [Google Scholar] [CrossRef]
- Sui, Q.; Li, P.; Yang, N.-N.; Gong, T.; Bu, R.; Gao, E.-Q. Differentiable detection of volatile amines with a viologen-derived metal-organic material. ACS Appl. Mater. Interfaces 2018, 10, 11056–11062. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, J.-P.; Li, L.-K.; Zang, S.-Q. Multi-stimuli-responsive chromic behaviors of an all-in-one viologen-based Cd(II) complex. Inorg. Chem. 2023, 62, 14385–14392. [Google Scholar] [CrossRef]
- Lu, P.; Xu, J.; Sun, Y.; Guillet-Nicolas, R.; Willhammar, T.; Fahda, M.; Dib, E.; Wang, B.; Qin, Z.; Xu, H.; et al. A stable zeolite with atomically ordered and interconnected mesopore channel. Nature 2024, 636, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R.J.; Chmelka, B.F.; Ryoo, R. Directing zeolite structures into hierarchically nanoporous architectures. Science 2011, 333, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Koike, N.; Iyoki, K.; Chaikittisilp, W.; Wang, Y.; Wakihara, T.; Okubo, T. Insights into the ion-exchange properties of Zn(II)-incorporated MOR zeolites for the capture of multivalent cations. Phys. Chem. Chem. Phys. 2019, 21, 4015–4021. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.F.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Generation and characterization of catalytically active sites of heteropolyacids on zeolite Y for liquid-phase esterification. Catal. Today 2017, 289, 70–77. [Google Scholar] [CrossRef]
- Zou, Q.; He, H.; Xie, J.; Han, S.; Lin, W.; Mondal, A.K.; Huang, F. Study on the mechanism of acid modified H-Beta zeolite acidic sites on the catalytic pyrolysis of Kraft lignin. Chem. Eng. J. 2023, 462, 142029. [Google Scholar] [CrossRef]
- Al-Ani, A.; Haslam, J.J.C.; Mordvinova, N.E.; Lebedev, O.I.; Vicente, A.; Fernandez, D.; Zholobenko, V. Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites. Nanoscale Adv. 2019, 1, 2029–2039. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Wang, H.; Chen, X.; Wei, F. Atomic imaging of zeolites and confined single molecules by iDPC-STEM. ACS Catal. 2023, 13, 12213–12226. [Google Scholar] [CrossRef]
- Pour, Z.A.; Abduljawad, M.M.; Alassmy, Y.A.; Alnafisah, M.S.; Nokab, M.E.H.E.; Steenberge, P.H.M.V.; Sebakhy, K.O. Synergistic catalytic effects of alloys of noble metal nanoparticles supported on two different supports: Crystalline zeolite Sn-beta and carbon nanotubes for glycerol conversion to methyl lactate. Catalysts 2023, 13, 1486. [Google Scholar] [CrossRef]
- Chen, S.; Gao, F.; Li, H.; Li, S.; Li, Y.; Li, J.; Wu, S.; Pan, Q. Multi-emission regulation of trans-4-[4-(N,N-dimethylamino)styryl] pyridine with a mild host-guest strategy based on H-type β-zeolite. Dye. Pigment. 2024, 221, 111818. [Google Scholar] [CrossRef]
- Chen, S.; Han, J.; Li, H.; Li, S.; Li, Y.; Guo, D.-Y.; Wang, S.; Pan, Q. Sensitive monitoring of meat freshness via changes in fluorescence intensity and wavelength based on protonation-regulated intramolecular charge transfer. Sens. Actuators B Chem. 2025, 426, 137081. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Lu, S. Effects of amino compounds and zeolite matrix on the afterglow performance of carbon dots@zeolite composites. Adv. Funct. Mater. 2024, 34, 2410233. [Google Scholar] [CrossRef]
- Zong, S.; Wang, B.; Zhang, J.; Yu, X.; Zhou, Y.; Chen, Y.; Zhang, T.; Li, J. Confinement microenvironment regulation of carbon dots inzeolite for multi-mode time-dependent phosphorescence colorevolution. Angew. Chem. Int. Ed. 2025, 64, e202420156. [Google Scholar] [CrossRef]
- Fernandez, S.; Ostraat, M.L.; Lawrence, J.A., III; Zhang, K. Tailoring the hierarchical architecture of beta zeolites using base leaching and pore-directing agents. Micropor. Mesopor. Mat. 2018, 263, 201–209. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef]
- Ma, Z.; Tu, J.; Yang, D.; Zhang, Q.; Wu, J. Recent advances in organic small-molecular dual-state emission probes. J. Mol. Struct. 2024, 1312, 138478. [Google Scholar] [CrossRef]
- Chen, C.-H.; Liu, C.; Liu, B. The effect of alkoxyl groups on the photoproperties of meta-octasubstituted tetraphenyl porphyrins. Inorg. Chem. Commun. 2022, 146, 110139. [Google Scholar] [CrossRef]
- Krishnan, N.; Ameena, M.A.H.; Atchimnaidu, S.; Perumal, D.; Golla, M.; Krishna, J.; Varghese, R. Self-assembly of tetraphenylethylene-based dendron into blue fluorescent nanoparticles with aggregation induced enhanced emission. J. Chem. Sci. 2018, 130, 141. [Google Scholar] [CrossRef]
- Somjit, V.; Kaiyasuan, C.; Thinsoongnoen, P.; Pila, T.; Promarak, V.; Kongpatpanich, K. Encapsulation of aggregation-caused quenching dye in metal-organic framework as emissive layer of organic light-emitting diodes. Micropor. Mesopor. Mat. 2021, 328, 111452. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, T.-D.; Chen, J.-T.; Yan, H.; Sun, W.-B. Metal-cyanide hybrid materials exhibiting photochromic and photomagnetic responses based on viologen receptors. J. Mater. Chem. C 2024, 12, 6326–6332. [Google Scholar] [CrossRef]
- Han, H.; Li, L.; Liu, J. Structure and photochromic properties of two metal-viologen complexes derived from 1-amyl-4,4′-bipyridinium ligand. J. Mol. Struct. 2025, 1334, 141933. [Google Scholar] [CrossRef]
- Han, H.; Sun, Z.; Zhao, X.; Yang, S.; Wang, G. Viologen guest-mediated luminescence emission tuning and photochromic behavior by a series of viologen@Zn-MOF materials. ACS Appl. Mater. Interfaces 2023, 15, 51411–51420. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Ying, J.; Tian, A.; Yang, M. Three Anderson and octamolybdate based compounds modified by an asymmetric viologen: Photo-/thermo-chromic and luminescence properties. J. Alloys Compd. 2024, 976, 173001. [Google Scholar] [CrossRef]
- Liu, J.-J.; Li, J.; Zhao, G.-Z. Photochromism of three supramolecular assemblies derived from benzenecarboxylate donors and viologen acceptors. Polyhedron 2019, 161, 237–242. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.-T.; Zhang, N.-N.; Li, S.-H.; Zeng, G.-J.; Zhang, H. Polyoxometalate (POM)-based crystalline hybrid photochromic materials. Coord. Chem. Rev. 2024, 500, 215526. [Google Scholar] [CrossRef]
- Xia, D.-X.; Wang, X.; Sun, W.-Q.; Lin, R.-L.; Liu, J.-X.; Yang, Y.-W. Chameleon-inspired supramolecular materials based on cucurbit[7]uril and viologens exhibiting full-color tunable photochromic behavior. Chem. Eng. J. 2024, 484, 149551. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Li, M.-H.; Zhang, S.-Q.; Fang, X.; Lin, M.-J. A three-component donor−acceptor hybrid framework with low power X-ray-induced photochromism. Inorg. Chem. 2022, 61, 8153–8159. [Google Scholar] [CrossRef]
- Mlekodaj, K.; Olszowka, J.E.; Tokarova, V.; Tabor, E.; Kasparek, A.; Novakova, J.; Stavova, G.; Gonsiorova, O.; Peliskova, L.; Brus, J.; et al. Effect of alkali-free synthesis and post-synthetic treatment on acid sites in beta zeolites. Molecules 2020, 25, 3434. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Zhang, T.; Wang, Y.; Xu, Y.; Komarneni, S.; Wang, Y.; Liu, X.; Yan, Z. Hydrothermal synthesis of beta zeolite from industrial silica sol as silicon source. J. Porous Mater. 2019, 26, 1017–1025. [Google Scholar] [CrossRef]
- Jin, X.-X.; Shao, Z.; Fu, P.-X.; Deng, Y.-F.; Sui, Q.; Wang, Y.-H.; Xiong, J.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Tuning photochromism and photomagnetism via diverse bimetallic cyanido viologen hybrid materials. Inorg. Chem. Front. 2025, 12, 3294–3304. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.-N.; Fang, N.-N.; Zhang, Q.; Li, Z.-H. A one-dimensional viologen-based coordination polymer derived from viologen-carboxylate and sulfate ligands: Crystal structure, photochromism and inkless printing. J. Mol. Struct. 2025, 1329, 141431. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Y.; Zong, H.; Zhou, G. Photochromic and thermochromic inks based on supramolecular complexes of viologens and cyclodextrin for printable anticounterfeiting applications. Chem. Eng. J. 2025, 507, 160650. [Google Scholar] [CrossRef]
- Gao, B.-H.; Liu, X.-L.; Li, G.; Chen, F.-L.; Wang, X.-Y. Synergistic photochromism, fluorescence switching, and photomagnetism of three Mn(II) complexes based on a thiazolothiazole extended viologen derivative. Inorg. Chem. 2025, 64, 7619–7629. [Google Scholar] [CrossRef] [PubMed]
Material | Stimulus | Mode | Time | Reversibility | References |
---|---|---|---|---|---|
(MVII)0.5[FeIIIZnII(CN)6]·(H2O)n | Light | Absorption | 30 min | Yes | [49] |
{[Cd(cpbpy)(SO4)(H2O)](H2O)2}n | Light | Absorption | 15 min | Yes | [50] |
CBV-CD | Light or heat | Absorption | 7 s | Yes | [51] |
[Zn2(AQ)2(BTEC)(H2O)8](H2BTEC)·6H2O | Light | Absorption | 5 min | Yes | [40] |
Mn2(TTVP)(m-BDC)2 | Light | Absorption | 60 min | Yes | [52] |
MV@β-zeolite | Light and a chemical reductant | Absorption/ fluorescence | 250 s | Yes | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Li, S.; Li, H.; Li, Y.; Qin, J.; Wang, F.; Pan, Q. Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism. Molecules 2025, 30, 2872. https://doi.org/10.3390/molecules30132872
Han J, Li S, Li H, Li Y, Qin J, Wang F, Pan Q. Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism. Molecules. 2025; 30(13):2872. https://doi.org/10.3390/molecules30132872
Chicago/Turabian StyleHan, Jingxuan, Shaoning Li, Huihui Li, Yu Li, Jiaqiao Qin, Fuxiang Wang, and Qinhe Pan. 2025. "Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism" Molecules 30, no. 13: 2872. https://doi.org/10.3390/molecules30132872
APA StyleHan, J., Li, S., Li, H., Li, Y., Qin, J., Wang, F., & Pan, Q. (2025). Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism. Molecules, 30(13), 2872. https://doi.org/10.3390/molecules30132872