Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = nailed-soil slope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4160 KiB  
Article
Study on Failure Surface Morphology of Supporting Structures Under Extreme Climate–Mechanical Coupling Effects Based on Reinforcement Theory
by Feilong Li, Changshan Jiang, Zhenli Hao, Jinbao Han, Xianfeng Meng and Miaoxian Yao
Appl. Sci. 2025, 15(9), 4874; https://doi.org/10.3390/app15094874 - 27 Apr 2025
Viewed by 404
Abstract
The high-filling engineering of airports is common in mountainous cities, and as critical infrastructure for urban development, airports are prone to slope instability under extreme climate and mechanical coupling effects. Therefore, it is essential to investigate the geometric form of failure surfaces under [...] Read more.
The high-filling engineering of airports is common in mountainous cities, and as critical infrastructure for urban development, airports are prone to slope instability under extreme climate and mechanical coupling effects. Therefore, it is essential to investigate the geometric form of failure surfaces under limit stability conditions for airport slopes. The rational determination of the form of the rupture surface of a soil nailing support structure is a key factor in the structural safety of a project. In this study, we analyzed the rupture surface form and reinforcement mechanism of four common soil nailing support structures in engineering. First, we established theoretical model I and verified the consistency of the upper-limit theorem of plastic mechanics and energy conservation in this model. Next, a theoretical analytical model of the rupture surface form was established taking into consideration the existence of tension depth in a certain depth range at the top. The mathematical expressions of the rupture surface form with respect to h/H and L/H were derived by combining plasticity mechanics and energy conservation. Finally, the rupture surface forms of the structure were analyzed for different slope angles of soil nail-supported structures and different friction angles within the soil. The findings were compared with the rupture surface forms in the existing codes and literature. The results showed that L/H decreased continuously with the slope angle β of the soil nailing support structure and decreased gradually with an increasing friction angle φ within the soil. Furthermore, h/H decreased with the slope angle of the soil nailing support structure, but it showed a trend with the increase in soil internal friction angle and the slope angle of the soil nailing support structure. The analysis revealed that only in some specific cases were β and φ closely aligned with the values acquired using standard methods in specifications and the literature. The theoretical analysis provided important reference values for the design and improvement of soil nailing length in soil nailing support structures under certain conditions, thereby ensuring their enhanced stability and strength. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

25 pages, 18710 KiB  
Article
Evaluation of the Performance of Soil-Nailed Walls in Weathered Sandstones Utilizing Instrumental Data
by Anıl Yeni, Murat Ergenokon Selçuk and Ömer Ündül
Appl. Sci. 2025, 15(6), 2908; https://doi.org/10.3390/app15062908 - 7 Mar 2025
Viewed by 922
Abstract
Used for soil and weathered rocks, soil nails are rigid reinforcements positioned at certain angles on the ground to provide slope stability. A rigid reinforcement element placed in a well filled with cement grout mix after completing drilling will generate adherence stress between [...] Read more.
Used for soil and weathered rocks, soil nails are rigid reinforcements positioned at certain angles on the ground to provide slope stability. A rigid reinforcement element placed in a well filled with cement grout mix after completing drilling will generate adherence stress between the grout-mixed nail bar and soil. Due to this stress, load is transferred to the soil along the soil–grout interaction surface. In the case discussed herein, the slope at the parcel border needed to be made steeper in order to accommodate the construction of a facility in the Taşkısığı region of Sakarya province. Soil-nailed walls, which are inexpensive and suitable for weathered rocks, were needed as a support system because the slope was too steep to support itself. Support system performance was measured using two inclinometers and two soil nail pull-out tests conducted on different sections observed during and after construction. Contrary to the design-phase prediction, it was determined that the stresses started to dampen in the region closer to the slope-facing zone. Field measurement data and numerical analysis revealed that higher parameters than necessary were selected. In this context, sensitivity and parameter analyses were carried out using the Hoek–Brown constitutive model. The GSI value was re-evaluated and found to be compatible with the observation results obtained from the field performance. Since the retaining wall performance observed was higher than expected, geometric parametric analysis of the structural elements was performed; high safety coefficients were found across variations. The effects of the inclination of the slope, nail length, nail spacing, and nail slope design parameters on the safety coefficient and horizontal displacement were examined. The optimal design suggested nail lengths of 4.00 m, a spacing of 1.60 m, and slopes of 20°. It was discovered that the effect of the inclination degree of the slope on the safety coefficient was lower than expected. The results revealed that a more economical design with a similar safety factor can be obtained by shortening the lengths of the nails. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 2291 KiB  
Article
Comparative Analysis of Carbon Emissions from Filled Embankment and Excavated Graben Schemes of Railway Subgrade Engineering
by Zhongshuai Shen, Xueying Bao, Zilong Li and Xiangru Lv
Sustainability 2024, 16(19), 8384; https://doi.org/10.3390/su16198384 - 26 Sep 2024
Cited by 2 | Viewed by 1442
Abstract
To quantitatively compare the carbon emissions between the filled embankment scheme and the excavated graben scheme of railway subgrade engineering, first, according to the life cycle assessment theory, the two schemes were separated into four stages: building materials production, building materials transportation, construction, [...] Read more.
To quantitatively compare the carbon emissions between the filled embankment scheme and the excavated graben scheme of railway subgrade engineering, first, according to the life cycle assessment theory, the two schemes were separated into four stages: building materials production, building materials transportation, construction, and operation and maintenance. The carbon emission factor method was then used to compute the carbon emissions of the filled embankment scheme and the excavated graben scheme. The results indicate that the carbon emissions of the filled embankment scheme are 8783.76 t, 801.71 t, 627.78 t, and 1021.33 t at each stage, and 11,234.58 t over its total life cycle. The carbon emissions at each stage of the excavated graben scheme are 954.96 t, 52.62 t, 772.69 t, and 178.03 t, respectively, and 1958.30 t over its total life cycle. Finally, the carbon abatement potential of the excavated graben scheme with less carbon emissions was investigated by changing the soil nail wall slope to an ecological slope. The results show that after changing the soil nail wall slope of the excavated graben scheme to an ecological slope, the excavated graben scheme’s carbon sequestration of the total life cycle is 3274.38 t. Full article
Show Figures

Figure 1

21 pages, 17813 KiB  
Article
Parametric Investigation of Corner Effect on Soil Nailed Walls and Prediction Using Machine Learning Methods
by Semiha Poyraz and İsa Vural
Appl. Sci. 2024, 14(16), 7331; https://doi.org/10.3390/app14167331 - 20 Aug 2024
Cited by 1 | Viewed by 1717
Abstract
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account [...] Read more.
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account the corner effect. The nailed wall model was created using Plaxis 2D v.23, and the performance of the model was verified with the results of inclinometer measurements taken on-site. To assess the influence of excavation pit dimensions on the corner effect, 25 three-dimensional and 25 plane–strain slice models were created using Plaxis 3D v.23, and the effect of excavation pit dimensions on the plane–strain ratio (PSR) was determined. Then, analysis studies were carried out by creating 336 3D and 336 plane–strain slice models with variable parameters, such as slope angle (β), wall angle (α), nail length (L/H), excavation depth (H), and distance from the corner (xH). Its effects on PSR were determined. The interactions of the parameters with each other and PSR estimation were evaluated using machine learning (ML) methods: artificial neural networks (ANN), classifical and regression tree (CART), support vector regression (SVR), extreme gradient boosting (XGBoost). The proposed ML prediction methods and PSR results were compared with performance metrics and reliable results were obtained. Full article
Show Figures

Figure 1

18 pages, 15690 KiB  
Article
Development of Eco-Friendly Soil Improvement Agent for Enhanced Slope Stability and Erosion Control in Urban Areas
by Dae-Hung Kang and Jaehong Kim
Buildings 2024, 14(4), 1021; https://doi.org/10.3390/buildings14041021 - 5 Apr 2024
Cited by 6 | Viewed by 2084
Abstract
Due to the impact of climate change, extreme rainfall events are becoming more frequent, resulting in shallow slope collapse and erosion that trigger debris flows. While traditional reinforcement methods like anchoring and nailing are effective, they can be costly and environmentally unfriendly. To [...] Read more.
Due to the impact of climate change, extreme rainfall events are becoming more frequent, resulting in shallow slope collapse and erosion that trigger debris flows. While traditional reinforcement methods like anchoring and nailing are effective, they can be costly and environmentally unfriendly. To address this issue, researchers have investigated using in situ soil reinforcement with vegetation, which is a more sustainable and economical option. In this study, a soil improvement agent was developed using leaf mold and herbal medicine to promote vegetation growth. Adding microcement and gypsum hemihydrate increased the shear strength of the soil, preventing surface erosion. A laboratory test confirmed that the combination of these ingredients effectively increased the soil’s resistance to erosion caused by rainfall. The soil improvement agent proposed in this study was applied to the case of the slope failure in the Gwangju area, South Korea, to confirm the slope stability for 10 days of rainfall. The results of numerical analysis confirmed that the reinforced slope cured by the pozzolanic reaction using the developed material improved the slope stability by 36% compared to the original soil slope during the rainy season. Full article
(This article belongs to the Special Issue Advances in Foundation Engineering for Building Structures)
Show Figures

Figure 1

20 pages, 32643 KiB  
Article
A Numerical Study of a Soil-Nail-Supported Excavation Pit Subjected to a Vertically Loaded Strip Footing at the Crest
by Meen-Wah Gui and Ravendra P. Rajak
Buildings 2024, 14(4), 927; https://doi.org/10.3390/buildings14040927 - 28 Mar 2024
Cited by 3 | Viewed by 1785
Abstract
Soil nailing is a prevalent and cost-effective technique employed to reinforce and enhance the stability of precarious natural or cut slopes; however, its application as a primary support system to prevent collapses or cave-ins during foundation excavation could be more frequent. To better [...] Read more.
Soil nailing is a prevalent and cost-effective technique employed to reinforce and enhance the stability of precarious natural or cut slopes; however, its application as a primary support system to prevent collapses or cave-ins during foundation excavation could be more frequent. To better understand the behavior of such a support system, this study simulated a full-scale nail-supported excavation for the foundation pit of a 20-story building to examine the effect of placing a strip footing with various combinations of configurations on the crest of the excavation pit. The results are discussed in terms of the nail axial force, wall horizontal deflection, basal heave, and safety factor against sliding. The results show that the footing width and setback distance are the two most significant factors dominating the wall horizontal deflection. This study also reveals that the maximum axial force is closely related to the apparent active earth pressure, which accounts for the presence of a tension crack, at nail depth. Such a finding allows engineers to assess and mitigate the risks of structural failure more effectively and optimize the design of nail-retaining structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 8817 KiB  
Article
Landslide Risks to Bridges in Valleys in North Carolina
by Sophia Lin, Shen-En Chen, Wenwu Tang, Vidya Chavan, Navanit Shanmugam, Craig Allan and John Diemer
GeoHazards 2024, 5(1), 286-309; https://doi.org/10.3390/geohazards5010015 - 21 Mar 2024
Cited by 3 | Viewed by 2982
Abstract
This research delves into the intricate dynamics of landslides, emphasizing their consequences on transportation infrastructure, specifically highways and roadway bridges in North Carolina. Based on a prior investigation of bridges in Puerto Rico after Hurricane Maria, we found that bridges above water and [...] Read more.
This research delves into the intricate dynamics of landslides, emphasizing their consequences on transportation infrastructure, specifically highways and roadway bridges in North Carolina. Based on a prior investigation of bridges in Puerto Rico after Hurricane Maria, we found that bridges above water and situated in valleys can be exposed to both landslide and flooding risks. These bridges faced heightened vulnerability to combined landslides and flooding events due to their low depth on the water surface and the potential for raised flood heights due to upstream landslides. Leveraging a dataset spanning more than a century and inclusive of landslide and bridge information, we employed logistic regression (LR) and random forest (RF) models to predict landslide susceptibility in North Carolina. The study considered conditioning factors such as elevation, aspect, slope, rainfall, distance to faults, and distance to rivers, yielding LR and RF models with accuracy rates of 76.3% and 82.7%, respectively. To establish that a bridge’s location is at the bottom of a valley, data including landform, slope, and elevation difference near the bridge location were combined to delineate a bridge in a valley. The difference between bridge height and the lowest river elevation is established as an assumed flooding potential (AFP), which is then used to quantify the flooding risk. Compared to traditional flood risk values, the AFP, reported in elevation differences, is more straightforward and helps bridge engineers visualize the flood risk to a bridge. Specifically, a bridge (NCDOT ID: 740002) is found susceptible to both landslide (92%) and flooding (AFT of 6.61 m) risks and has been validated by field investigation, which is currently being retrofitted by North Carolina DOT with slope reinforcements (soil nailing and grouting). This paper is the first report evaluating the multi-hazard issue of bridges in valleys. The resulting high-fidelity risk map for North Carolina can help bridge engineers in proactive maintenance planning. Future endeavors will extend the analysis to incorporate actual flooding risk susceptibility analysis, thus enhancing our understanding of multi-hazard impacts and guiding resilient mitigation strategies for transportation infrastructure. Full article
Show Figures

Figure 1

14 pages, 3601 KiB  
Article
Investigation of Shear Strength Reduction Method in Slope Stability of Reinforced Slopes by Anchor and Nail
by SeyedSaber Hosseini, Farshad Astaraki, Seyed Mohammad Reza Imam, Jafar Chalabii and Majid Movahedi Rad
Buildings 2024, 14(2), 432; https://doi.org/10.3390/buildings14020432 - 5 Feb 2024
Cited by 9 | Viewed by 2547
Abstract
Since the stability of slopes in infrastructures such as road and railroad embankments, excavations, and, in general, earthwork is important, analyzing the stability of these slopes has been one of the main focuses of geotechnical engineers. Although analyzing both reinforced and unreinforced slopes [...] Read more.
Since the stability of slopes in infrastructures such as road and railroad embankments, excavations, and, in general, earthwork is important, analyzing the stability of these slopes has been one of the main focuses of geotechnical engineers. Although analyzing both reinforced and unreinforced slopes is needed, reinforced slopes require special attention as the reinforcement elements significantly affect the calculations. Hence, the current study’s aim is to find out the differences between obtained safety factors using the Limit Equilibrium Method (LEM) and Shear Strength Reduction Method (SSRM). For this purpose, first, the origin differences in terms of Safety Factor (SF) are theoretically determined according to basic formulas for the aforementioned techniques. Then, to verify the formula, several numerical modelings are carried out using in situ measured geotechnical data to better understand the differences in terms of safety factors. The results indicate that for the reinforced slope with an SF value of higher than 1, the SSRM provides a higher SF in comparison with the other techniques, and the origin of this difference is the definitions of the SF in the different methods. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 3371 KiB  
Article
Accuracy of Non-Destructive Estimation of Length of Soil Nails
by Yonghong Wang, Jiamin Jin, Qijun Zhang, Ming Zhang, Xiwei Lin, Xin Wang and Peiyuan Lin
Buildings 2023, 13(7), 1699; https://doi.org/10.3390/buildings13071699 - 3 Jul 2023
Cited by 1 | Viewed by 1783
Abstract
The effective length of soil nails is one of the critical parameters ensuring the reinforcing effect, and its accurate estimation is of great significance for the safety of the slope and deep foundation pit supporting projects. Traditional quality insurance methods, such as nail [...] Read more.
The effective length of soil nails is one of the critical parameters ensuring the reinforcing effect, and its accurate estimation is of great significance for the safety of the slope and deep foundation pit supporting projects. Traditional quality insurance methods, such as nail pullout tests, suffer from a series of drawbacks including being destructive, high cost, and time-consuming. In contrast, non-destructive testing (NDT) has been increasingly applied in various engineering fields in the past decades given its advantages of not damaging the material and easy operation. However, the current application of NDT in soil nail length measurement is relatively limited, and its accuracy and reliability are yet to be quantitatively evaluated. This paper introduces three methods for estimating soil nail length based on guided wave theory and collects 116 sets of NDT data for nail length. The accuracy of the NDT in soil nail prediction is statistically analyzed using the model bias method. The results show that those methods can accurately predict the nail length with an average error of less than 3% and a low dispersion of 12%. The accuracy of the NDT methods is not affected by the hammer type or estimation method. Furthermore, this paper proposes a model calibration to the original NDT method, which improves the model’s average accuracy by 3% and reduces dispersion by 4% without increasing computational complexity. Finally, the probability distributions of the model biases are characterized. This study can provide practical tools for fast estimation of in situ nail length, which is of high significance to supporting slopes and deep foundation pits. Full article
(This article belongs to the Collection Innovation of Materials and Technologies in Civil Construction)
Show Figures

Figure 1

31 pages, 27775 KiB  
Article
Geotechnical Characterization of Quito’s North-Central Zone as Applied to Deep Excavation in the Urban Setting
by Vicente E. Capa, F. Javier Torrijo, Pedro A. Calderón and Carlos Hidalgo Signes
Sustainability 2023, 15(10), 8272; https://doi.org/10.3390/su15108272 - 19 May 2023
Cited by 1 | Viewed by 4114
Abstract
This paper describes an in-depth soil characterization study in the La Carolina financial district of Quito (Ecuador). As there was very little information available on the geotechnical structure of Quito’s volcanic soil, particularly in this area, where large-scale property development has taken place, [...] Read more.
This paper describes an in-depth soil characterization study in the La Carolina financial district of Quito (Ecuador). As there was very little information available on the geotechnical structure of Quito’s volcanic soil, particularly in this area, where large-scale property development has taken place, the aim was to provide information on soil parameters to engineers working on large geotechnical and civil engineering projects based on the results of a thorough and comprehensive study of such properties. A series of field tests were performed at three different sites, where thin-walled tube samples were collected for lab testing to estimate the index properties and mechanical parameters. These index properties were then combined with conventional two-way drainage oedometer tests and stress-path triaxial testing to evaluate compressibility, stiffness and strength. The subsoil was found to be partly composed of slightly overconsolidated volcanic soils. X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses were also conducted to determine mineralogical and microstructural features and evaluate their influence on the mechanical behavior of the volcanic soil. This type of research is frequently applied to the study of landslides in urban environments, where it is essential to understand their failure mechanisms, especially in slopes generated by the construction of important engineering works. Therefore, based on this geotechnical characterization study, parameters were subsequently determined for the Mohr–Coulomb (MC), Hardening Soil (HS), and Hardening Soil with Small-Strain Stiffness (HSsmall) soil constitutive models, and these were applied to a numerical study of the Soil Nailing system behavior for the construction of a five-level underground car parking structure of an important building located in the north-central sector of the city of Quito. It was verified that the HSsmall and HS constitutive soil models better reproduce the behavior of this type of structure. Finally, the multiple geotechnical parameters determined in this study significantly contribute to the analysis of these structures in this soil type. Full article
Show Figures

Figure 1

18 pages, 36353 KiB  
Article
Responses of Structural Components of a Full-Scale Nailed Retaining Structure under the Influence of Surcharge Loading and Nail Head Configuration: A Numerical Study
by Meen-Wah Gui and Ravendra P. Rajak
Buildings 2023, 13(2), 561; https://doi.org/10.3390/buildings13020561 - 18 Feb 2023
Cited by 4 | Viewed by 1933
Abstract
Soil-nailing is a simple and economical method of stabilizing cut slopes and retaining excavation. Most of the soil-nailing related studies, in particular the experimental work, were conducted in idealized or homogeneous ground, but such a result might not necessarily be representative. Thus, for [...] Read more.
Soil-nailing is a simple and economical method of stabilizing cut slopes and retaining excavation. Most of the soil-nailing related studies, in particular the experimental work, were conducted in idealized or homogeneous ground, but such a result might not necessarily be representative. Thus, for a more representative study, instead of treating the ground as homogeneous it should be treated as a system of horizontal layers. This study assessed the performance of a full-scale nailed retaining structure for a foundation pit of a 20-storey building through a series of numerical analyses. The influence of full-face facing thickness, nail head geometrical configuration (size and thickness) and surcharge loading on the response of the structural components of the soil-nailing system adopted is the main concern. The results were evaluated in terms of axial force, shear force and bending moment of the structural facing element and the horizontal displacement of the soil retained behind the facing element. In both cases, the distribution of nail axial (tensile) force in each nail reinforcement was also compared and evaluated. It was found that the thickness of full-face facing affected the facing shear force and bending moment, while the surcharge loading influenced the facing axial force and the horizontal displacement of the retained soil and that the magnitude of the axial force registered at the fixed end was governed by the size of the discrete nail head. Full article
(This article belongs to the Special Issue Advances in Soils and Foundations)
Show Figures

Figure 1

27 pages, 12328 KiB  
Article
Finite Element Modeling of the Soil-Nailing Process in Nailed-Soil Slopes
by Mahmoud H. Mohamed, Mohd Ahmed, Javed Mallick and Saeed AlQadhi
Appl. Sci. 2023, 13(4), 2139; https://doi.org/10.3390/app13042139 - 7 Feb 2023
Cited by 8 | Viewed by 4597
Abstract
The finite element technique has been accepted as a tool for modeling geotechnical complex processes. In this study, finite element (FE) modeling of various stages of the soil-nailing process, i.e., construction stages and overburden pressure stages, is carried out considering different soil parameters, [...] Read more.
The finite element technique has been accepted as a tool for modeling geotechnical complex processes. In this study, finite element (FE) modeling of various stages of the soil-nailing process, i.e., construction stages and overburden pressure stages, is carried out considering different soil parameters, simulating with in-house developed laboratory models. The soil-nailing process built in laboratory models is idealized as a plain strain problem and modeled in PLAXIS software. The laboratory models of the soil-nailing process consist of a Perspex sheet box containing a sandy soil slope, a Perspex sheet facing, steel bars as reinforcement and a steel plate as foundation. The stress–strain relationship of the sand is represented by a Hardening-Soil model. The interface at the soil and nail is described by the Coulomb friction model. The behavior of the soil-nailing process, during the construction stage and under varying overburden pressure and varying soil density, are investigated in terms of displacements of slope and stress conditions in slope soil mass. The slope displacements and stress conditions in slope soil mass are all well presented by the FE modeling and compared with laboratory model test data. The sensitivity analysis of the laboratory models’ dimensions is carried out by three-dimensional modeling of the nailed-soil slope. It can be concluded that the developed finite element model has the potential to simulate the performance of a field nailed-soil slope during construction and working stages and could provide guidance for the construction/maintenance of soil-nailed cut slopes in granular soils/weathered rocks. Full article
(This article belongs to the Special Issue New Trends in Sustainable Geotechnics—Volume II)
Show Figures

Figure 1

20 pages, 17854 KiB  
Article
Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall—A Case Study of Janina Mine, Poland
by Phu Minh Vuong Nguyen, Aleksander Wrana, Sylwester Rajwa, Zenon Różański and Robert Frączek
Energies 2022, 15(21), 8311; https://doi.org/10.3390/en15218311 - 7 Nov 2022
Cited by 25 | Viewed by 3953
Abstract
In Poland, the mining waste from underground coal mines is commonly deposited in surface dump sites, forming slopes or piles of materials dozens of meters high. Because of the loose structure of a mine waste dump slope, landslides may occur after a heavy [...] Read more.
In Poland, the mining waste from underground coal mines is commonly deposited in surface dump sites, forming slopes or piles of materials dozens of meters high. Because of the loose structure of a mine waste dump slope, landslides may occur after a heavy rainfall. This requires significant labor costs in reforming the mine waste dump sites and disturbs the continuity of the depositing operations. Moreover, if the mine waste dump sites located in the built-up areas, such as in the Janina mine waste dump, landslides apparently can threaten even lives and properties. Therefore, a mine waste dump stability analysis is necessary for ensuring safety. In this paper, slope stability analysis was conducted using numerical modeling under the impact of rainfall for the Janina mine waste dump, located in Libiąż, Poland. The results indicated that slope tends to loose stability in case of high rainfall intensity and short duration. Then, slope reinforcement using soil nailing and steel mesh was proposed to prevent landslide under the impact of high rainfall intensity. Once again, slope stability analysis was carried out with selected reinforcement. Meanwhile, slope monitoring was performed to assess the slope reinforcement implementation at the Janina mine waste dumps against the impact of high rainfall intensity. Based on the modeling and monitoring outcomes, assessments of slope stability and selected landslide prevention measures for the Janina mine waste dump under the impact of rainfall were presented. Full article
(This article belongs to the Special Issue Coal Mining)
Show Figures

Figure 1

20 pages, 9531 KiB  
Article
Parametric Assessment of Soil Nailing on the Stability of Slopes Using Numerical Approach
by Tausif E Elahi, Md Azijul Islam and Mohammad Shariful Islam
Geotechnics 2022, 2(3), 615-634; https://doi.org/10.3390/geotechnics2030030 - 20 Jul 2022
Cited by 11 | Viewed by 6372
Abstract
This study focuses on the stability analysis of slopes reinforced by soil nailing. The effects of slope geometry and nail parameters on slope stability are investigated using PLAXIS 2D. Four different slope angles and three different backslope angles are considered for assessing the [...] Read more.
This study focuses on the stability analysis of slopes reinforced by soil nailing. The effects of slope geometry and nail parameters on slope stability are investigated using PLAXIS 2D. Four different slope angles and three different backslope angles are considered for assessing the effect of slope geometry on the stability of a nailed slope. The factor of safety (FS) was found to decrease with the increasing values of the slope angle as well as the backslope angle. The influence of different nail parameters (nail inclination, nail length, and nail spacing) was also investigated. With the increase in nail inclination, FS was found to increase initially and thereafter, reaching a peak value followed by a drop in FS. The optimum nail inclination was found between 0 and 25° at a horizontal angle, depending on the different slope geometries, which is evident from observation of the slip surface as well. With the increase of nail length, FS increases; however, the increase was small after L/H (length of nail/height of slope) reached a value of 0.9. Moreover, increasing the length of the nail was found to be effective in reducing the lateral movement of the slope. The maximum nail forces are observed in the bottom-most row of nails and increase with the depth. The inclusion of soil nailing with optimum nail parameters can increase FS by 29–75% depending on the slope geometry, signifying the effectiveness of nailing. Full article
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Experimental Study on Chloride-Induced Corrosion of Soil Nail with Engineered Cementitious Composites (ECC) Grout
by Haoliang Wu, Jing Yu, Jiajia Zhou, Weiwen Li and Christopher K. Y. Leung
Infrastructures 2021, 6(11), 161; https://doi.org/10.3390/infrastructures6110161 - 10 Nov 2021
Cited by 3 | Viewed by 3249
Abstract
Conventionally, a soil nail is a piece of steel reinforcement installed inside a hole drilled into the slope and filled with cement paste (CP) grout. Chloride penetration is a major deterioration mechanism of conventional soil nails as the CP grout is easy to [...] Read more.
Conventionally, a soil nail is a piece of steel reinforcement installed inside a hole drilled into the slope and filled with cement paste (CP) grout. Chloride penetration is a major deterioration mechanism of conventional soil nails as the CP grout is easy to crack with an uncontrollable crack opening when the soil nail is subject to loading or ground movements. Engineered Cementitious Composites (ECC) are a class of fiber-reinforced material exhibiting excellent crack control even when loaded to several percent of strain, and therefore, ECCs have great potential to replace traditional CP grout in soil nails for achieving a long service life. In this study, the chloride ion transport characteristics and electrically accelerated corrosion process of steel rebar in ECC and CP grouts are systematically studied. The rapid chloride ion penetration test results showed a reduction of 76% and 58% passing charges in ECC with 0.15% and 0.3% pre-loading strain, respectively, as compared to that in un-cracked CP. Furthermore, the accelerated corrosion experimental data showed that ECC under pre-loading strain still exhibited a coefficient of chloride ion diffusion that is 20–50% lower than CP grout due to the ability to control crack width. Service life calculations based on experimentally measured parameters showed that the predicted corrosion rate and corrosion depth of soil nails in ECC grout were much lower than those in CP grout. The findings can facilitate the design of soil nails with excellent durability and long service life. Full article
(This article belongs to the Special Issue Durability of Concrete Infrastructure)
Show Figures

Figure 1

Back to TopTop