You are currently on the new version of our website. Access the old version .

GeoHazards

GeoHazards is an international, peer-reviewed, open access journal on theoretical and applied research across the whole spectrum of geomorphological hazards, namely endogenous and exogenous hazards, as well as those related to climate change and human activity, published quarterly online by MDPI.

Quartile Ranking JCR - Q3 (Geosciences, Multidisciplinary)

All Articles (251)

As the frequency and severity of extreme weather events may increase due to climate change, understanding their impacts on water systems, resources, and infrastructure becomes very important. This study contributes to the growing body of knowledge on how extreme storms and floods disrupt interrelated elements comprising water systems by examining the case of Storm Daniel, which struck the Thessaly region of Greece in September 2023. Using a multi-source approach, including field data, institutional reports, scientific assessments, and publications, the study systematically identifies and categorizes the impacts of the storm and the ensuing flood across surface waters, drinking water supply, and wastewater infrastructure and other water-related systems through various mechanisms. The findings provide an overview of how such extreme storms may affect such systems and reveal widespread, interconnected disruptions that highlight systemic vulnerabilities in both natural and engineered systems, synthesizing these impact pathways. The study presents evidence of poor resilience against extreme events and climate change hazards in water-related infrastructure.

19 January 2026

Map of Thessaly showing the plain situated between the Pindus Mountain Range in the west and Mount Pelion and the North Aegean Sea in the east, together with its main cities (Larissa, Trikala, Karditsa, and Volos) and principal water bodies (the Pineios River, the Pagasetic Gulf, Lake Plastira, and Lake Karla). The inset map shows the location of Thessaly within the Balkan Peninsula, outlined by the black rectangle.

Freeze–thaw cycles (FTCs) are a prevalent weathering process that threatens the stability of canal slopes in seasonally frozen regions. This study combines direct shear tests under multiple F-T cycles with coupled thermo-hydro-mechanical numerical modeling to investigate the failure mechanisms of slopes with different moisture contents (18%, 22%, 26%). The test results quantify a marked strength degradation, where the cohesion decreases to approximately 50% of its initial value and the internal friction angle is weakened by about 10% after 10 freeze–thaw cycles. The simulation reveals that temperature gradient-driven moisture migration is the core process, leading to a dynamic stress–strain concentration zone that propagates from the upper slope to the toe. The safety factors of the three soil specimens with different moisture contents fell below the critical threshold of 1.3. They registered values of 1.02, 0.99, and 0.78 within 44, 44, and 46 days, which subsequently induced shallow failure. The failure mechanism elucidated in this study enhances the understanding of freeze–thaw-induced slope instability in seasonally frozen regions.

17 January 2026

Overview of study area. The upper panel shows the regional topography of the study area, while the lower panel presents enlarged views and field photographs of the investigated irrigation canal slope. The areas outlined by red lines indicate the location of the studied slope and soil sampling zone.

This study investigates flooding and erosion impacts and human responses in Aoraki Mount Cook and Westland Tai Poutini national parks in Aotearoa New Zealand. These fast-eroding landscapes provide important test cases and insights for considering the public access dimensions of climate change. Our objectives were to explore and characterise the often-overlooked role of public access as a ubiquitous concern for protected areas and other area-based conservation approaches that facilitate connections between people and nature alongside their protective functions. We employed a mixed-methods approach including volunteered geographic information (VGI) from a park user survey (n = 273) and detailed case studies of change on two iconic mountaineering routes based on geospatial analyses of digital elevation models spanning 1986–2022. VGI data identified 36 adversely affected locations while 21% of respondents also identified beneficial aspects of recent landscape changes. Geophysical changes could be perceived differently by different stakeholders, illustrating the potential for competing demands on management responses. Impacts of rainfall-triggered erosion events were explored in case studies of damaged access infrastructure (e.g., roads, tracks, bridges). Adaptive responses resulted from formal or informal (park user-led) actions including re-routing, rebuilding, or abandonment of pre-existing infrastructure. Three widely transferable dimensions of public access management are identified: providing access that supports the core functions of protected areas; evaluating the impacts of both physical changes and human responses to them; and managing tensions between stakeholder preferences. Improved attention to the role of access is essential for effective climate change adaptation in parks and reserves.

15 January 2026

Overview of key locations mentioned in this study. (A) Aoraki Mount Cook National Park and Westland Tai Poutini National Park, situated back-to-back on the Main Divide of Kā Tiritiri o te Moana, the Southern Alps of Aotearoa New Zealand. (B) Tectonic setting characterised by the Alpine Fault and mountain building at the plate boundary.

Monitoring the stability of hydraulic structures such as dams and reservoirs in seismically active regions is essential for ensuring their safety and operational reliability. This study presents a comprehensive geospatial approach combining lineament analysis and geodynamic zoning to assess the structural stability of the Voroshilov and Priyut reservoirs located in the Almaty region, Kazakhstan. A regional lineament map was generated using ASTER GDEM data, while ALOS PALSAR data were used for detailed local analysis. Lineaments were extracted and analyzed through automated processing in PCI Geomatica. Lineament density maps and azimuthal rose diagrams were constructed to identify zones of tectonic weakness and assess regional structural patterns. Integration of lineament density, GPS velocity fields, InSAR deformation data, and probabilistic seismic hazard maps enabled the development of a detailed geodynamic zoning model. Results show that the studied sites are located within zones of low local geodynamic activity, with lineament densities of 0.8–1.2 km/km2, significantly lower than regional averages of 3–4 km/km2. GPS velocities in the area do not exceed 4 mm/year, and InSAR analysis indicates minimal surface deformation (<5 mm/year). Despite this apparent local stability, the 2024 Voroshilov Dam failure highlights the cumulative effect of regional seismic stresses (PGA up to 0.9 g) and localized filtration along fracture zones as critical risk factors. The proposed geodynamic zoning correctly identified the site as structurally stable under normal conditions but indicates that even low-activity zones are vulnerable under cumulative seismic loading. This demonstrates that an integrated approach combining remote sensing, geodetic, and seismic data can provide quantitative assessments for dam safety, predict potential high-risk zones, and support preventive monitoring in tectonically active regions.

9 January 2026

(a) Overview map of the study area; (b) Voroshilov Reservoir; (c) Priyut Reservoir.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Geotechnics for Hazard Mitigation
Reprint

Geotechnics for Hazard Mitigation

Editors: Mowen Xie, Yan Du, Yujing Jiang, Bo Li, Xuepeng Zhang
Natural Hazards and Disaster Risks Reduction
Reprint

Natural Hazards and Disaster Risks Reduction

Volume III
Editors: Stefano Morelli, Veronica Pazzi, Mirko Francioni

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
GeoHazards - ISSN 2624-795X