Landslide Risks to Bridges in Valleys in North Carolina
Abstract
:1. Introduction
2. Study Area and Landslide Data
3. Materials and Methods
3.1. Landslide and Bridge Inventory
3.2. Conditioning Factors
3.3. Logistic Regression Model
3.4. Random Forest Model
3.5. North Carolina Highway Bridges
4. Results and Discussion
4.1. Statistical Results
4.2. Validation and Comparison of Models
4.3. Predicted Probabilities and Susceptibility Map
4.4. Bridge in a Valley
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Bridge ID | Longitude | Latitude | AFP | GIS Classification | Extra Observation | Probability of Landslide Occurrence |
---|---|---|---|---|---|---|---|
1 | 860024 | −83.31964644 | 35.47677134 | 1.02 | Valley Bridge | Valley Bridge | 0.25 |
2 | 990034 | −82.37624068 | 35.95286913 | 1.05 | Valley Bridge | Valley Bridge | 0.27 |
3 | 860020 | −83.41412095 | 35.43162131 | 1.73 | Valley Bridge | Valley Bridge | 0.19 |
4 | 430010 | −82.82258403 | 35.39932611 | 1.79 | Valley Bridge | Valley Bridge | 0.19 |
5 | 600084 | −82.27706725 | 36.08360385 | 1.89 | Valley Bridge | Valley Bridge | 0.18 |
6 | 440161 | −82.55773367 | 35.1673545 | 2.59 | Valley Bridge | Valley Bridge | 0.24 |
7 | 580017 | −81.97599594 | 35.57528782 | 2.62 | Valley Bridge | Valley Bridge | 0.03 |
8 | 550229 | −83.6553343 | 35.25717623 | 2.82 | Valley Bridge | Valley Bridge | 0.16 |
9 | 860137 | −83.51710646 | 35.39425632 | 2.85 | Valley Bridge | Valley Bridge | 0.13 |
10 | 550228 | −83.6690064 | 35.26770495 | 3.00 | Valley Bridge | Valley Bridge | 0.17 |
11 | 490080 | −83.10854232 | 35.29399205 | 3.40 | Valley Bridge | Valley Bridge | 0.25 |
12 | 210057 | −83.91391948 | 34.9993788 | 3.90 | Valley Bridge | Valley Bridge | 0.17 |
13 | 860104 | −83.51851741 | 35.39461143 | 3.92 | Valley Bridge | Valley Bridge | 0.08 |
14 | 550230 | −83.65351494 | 35.24695009 | 4.24 | Valley Bridge | Valley Bridge | 0.32 |
15 | 560138 | −82.77026923 | 35.83929582 | 4.62 | Valley Bridge | Valley Bridge | 0.19 |
16 | 600026 | −82.22878565 | 36.04036643 | 5.28 | Valley Bridge | Valley Bridge | 0.10 |
17 | 020021 | −81.02105795 | 36.54282685 | 6.20 | Valley Bridge | Not Valley Bridge | 0.14 |
18 | 190159 | −84.06817913 | 35.11164097 | 6.23 | Valley Bridge | Valley Bridge | 0.16 |
19 | 740002 | −82.34673092 | 35.21555685 | 6.61 | Valley Bridge | Valley Bridge | 0.92 |
20 | 040045 | −81.57578897 | 36.44914354 | 6.73 | Valley Bridge | Valley Bridge | 0.10 |
21 | 560122 | −82.8361671 | 35.87993609 | 6.74 | Valley Bridge | Valley Bridge | 0.16 |
22 | 190271 | −84.00223354 | 35.070788 | 7.94 | Not Valley Bridge | Not Valley Bridge | 0.03 |
23 | 100249 | −82.62422335 | 35.71781996 | 9.14 | Not Valley Bridge | Not Valley Bridge | 0.13 |
24 | 040039 | −81.3365605 | 36.47373934 | 10.74 | Not Valley Bridge | Not Valley Bridge | 0.08 |
25 | 040032 | −81.49664884 | 36.55558414 | 11.18 | Not Valley Bridge | Not Valley Bridge | 0.40 |
26 | 370033 | −83.93801605 | 35.44444511 | 11.37 | Not Valley Bridge | Not Valley Bridge | 0.08 |
27 | 190270 | −84.02028287 | 35.07271993 | 11.42 | Not Valley Bridge | Not Valley Bridge | 0.19 |
28 | 050026 | −82.01580245 | 35.98178364 | 11.91 | Not Valley Bridge | Not Valley Bridge | 0.06 |
29 | 100494 | −82.30741992 | 35.61896287 | 12.44 | Not Valley Bridge | Not Valley Bridge | 0.16 |
30 | 560547 | −82.55788273 | 35.91704369 | 12.55 | Not Valley Bridge | Not Valley Bridge | 0.40 |
31 | 600247 | −82.08616795 | 35.9228022 | 15.85 | Not Valley Bridge | Not Valley Bridge | 0.07 |
32 | 430098 | −82.94589996 | 35.58069908 | 16.11 | Not Valley Bridge | Not Valley Bridge | 0.11 |
33 | 580304 | −82.21520267 | 35.63570163 | 22.58 | Not Valley Bridge | Not Valley Bridge | 0.13 |
34 | 980035 | −80.43227182 | 36.21614972 | 23.48 | Not Valley Bridge | Not Valley Bridge | 0.00 |
35 | 430207 | −82.9947526 | 35.66607999 | 24.49 | Not Valley Bridge | Not Valley Bridge | 0.43 |
36 | 850392 | −80.86723297 | 36.25986437 | 24.55 | Not Valley Bridge | Not Valley Bridge | 0.02 |
37 | 850391 | −80.867459 | 36.259959 | 25.31 | Not Valley Bridge | Not Valley Bridge | 0.00 |
References
- Regmi, N.R.; Giardino, J.R.; McDonald, E.V.; Vitek, J.D. A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 2014, 11, 247–262. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Zhang, Y.; Xue, M. An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide. Nat. Hazards 2021, 105, 1255–1279. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Teimoori Yansari, Z.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Singh, S.K.; Al-Ansari, N.; Clague, J.J.; Jaafari, A.; Chen, W.; Miraki, S.; Dou, J.; et al. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. Int. J. Environ. Res. Public Health 2020, 17, 2749. [Google Scholar] [CrossRef] [PubMed]
- Wubalem, A.; Meten, M. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl. Sci. 2020, 2, 807. [Google Scholar] [CrossRef]
- Ganga, A.; Elia, M.; D’Ambrosio, E.; Tripaldi, S.; Capra, G.F.; Gentile, F.; Sanesi, G. Assessing Landslide Susceptibility by Coupling Spatial Data Analysis and Logistic Model. Sustainability 2022, 14, 8426. [Google Scholar] [CrossRef]
- USGS. Landslides 101. Available online: https://www.usgs.gov/programs/landslide-hazards/landslides-101 (accessed on 30 August 2023).
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook-A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008.
- Ozturk, D.; Uzel-Gunini, N. Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey. Nat. Hazards 2022, 114, 2571–2604. [Google Scholar] [CrossRef]
- Bessette-Kirton, E.K.; Cerovski-Darriau, C.; Schulz, W.H.; Coe, J.A.; Kean, J.W.; Godt, J.W.; Thomas, M.A.; Hughes, K.S. Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico. GSA Today 2019, 29, 4–10. [Google Scholar]
- Ortiz, F. Coming Back from Disaster. Public Roads 2020, 83, FHWA-HRT-20-002. [Google Scholar]
- Keellings, D.; Hernández Ayala, J.J. Extreme Rainfall Associated With Hurricane Maria Over Puerto Rico and Its Connections to Climate Variability and Change. Geophys. Res. Lett. 2019, 46, 2964–2973. [Google Scholar] [CrossRef]
- Miele, P.; Di Napoli, M.; Guerriero, L.; Ramondini, M.; Sellers, C.; Annibali Corona, M.; Di Martire, D. Landslide Awareness System (LAwS) to Increase the Resilience and Safety of Transport Infrastructure: The Case Study of Pan-American Highway (Cuenca–Ecuador). Remote Sens. 2021, 13, 1564. [Google Scholar] [CrossRef]
- Schlögl, M.; Richter, G.; Avian, M.; Thaler, T.; Heiss, G.; Lenz, G.; Fuchs, S. On the nexus between landslide susceptibility and transport infrastructure—An agent-based approach. Nat. Hazards Earth Syst. Sci. 2019, 19, 201–219. [Google Scholar] [CrossRef]
- North Carolina Secretary of State Kids Page Geography. Geography. Available online: https://www.sosnc.gov/divisions/publications/kids_page_geography (accessed on 20 June 2023).
- NCGS. Introduction to Landslides in North Carolina. Available online: https://www.deq.nc.gov/about/divisions/energy-mineral-and-land-resources/north-carolina-geological-survey/geologic-hazards/landslides (accessed on 30 August 2023).
- Belair, G.M.; Jones, E.S.; Slaughter, S.L.; Mirus, B.B. Landslide Inventories across the United States Version 2: U.S. Geological Survey Data Release; USGS, Ed.; US Geological Survey: Reston, VA, USA, 2022.
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J.; et al. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Abella, E.A.C.; Van Westen, C.J. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 2007, 4, 311–325. [Google Scholar] [CrossRef]
- Chau, K.T.; Chan, J.E. Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island. Landslides 2005, 2, 280–290. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T.; Nazmfar, H.; Rezaei Moghaddam, M.H. Landslide Susceptibility Mapping for the Urmia Lake basin, Iran: A multi- Criteria Evaluation Approach using GIS. Int. J. Environ. Res. 2013, 7, 319–336. [Google Scholar]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Mondini, A.C. Measures of Spatial Autocorrelation Changes in Multitemporal SAR Images for Event Landslides Detection. Remote Sens. 2017, 9, 554. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Mousavi, S.Z.; Kavian, A.; Soleimani, K.; Mousavi, S.R.; Shirzadi, A. GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat. Nat. Hazards Risk 2011, 2, 33–50. [Google Scholar] [CrossRef]
- USGS. 1 Arc-Second Digital Elevation Models (DEMs)—USGS National Map 3DEP Downloadable Data Collection; US Geological Survey: Reston, VA, USA, 2023.
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- NCDEQ. Geologic Faults; NCDEQ: Raleigh, NC, USA, 2022.
- Cebulski, J. Impact of river erosion on variances in colluvial movement and type for landslides in the Polish Outer Carpathians. Catena 2022, 217, 106415. [Google Scholar] [CrossRef]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- USGS. USGS National Hydrography Dataset Best Resolution (NHD)—North Carolina (Published 20230305) Shapefile; US Geological Survey: Reston, VA, USA, 2023.
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Knol, M.J. A tutorial on interaction. Epidemiol. Methods 2014, 3, 33–72. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. Logistic Regression; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, S.; Sharples, J.J. Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomat. Nat. Hazards Risk 2016, 7, 1800–1815. [Google Scholar] [CrossRef]
- Park, S.H.; Goo, J.M.; Jo, C.H. Receiver operating characteristic (ROC) curve: Practical review for radiologists. Korean J. Radiol. 2004, 5, 11–18. [Google Scholar] [CrossRef]
- Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S.D. Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method. Forests 2021, 12, 5. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.-X.; Pei, X.; Duan, Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total Environ. 2018, 626, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Park, S.; Kim, J. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree Models, and a Comparison of Their Performance. Appl. Sci. 2019, 9, 942. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef]
- ESRI. Geomorphon Landforms (Spatial Analyst). Available online: https://pro.arcgis.com/en/pro-app/3.1/tool-reference/spatial-analyst/geomorphon-landforms.htm (accessed on 24 November 2023).
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Quesada-Román, A. Landslide risk index map at the municipal scale for Costa Rica. Int. J. Disaster Risk Reduct. 2021, 56, 102144. [Google Scholar] [CrossRef]
- Nowicki Jessee, M.; Hamburger, M.W.; Allstadt, K.; Wald, D.J.; Robeson, S.M.; Tanyas, H.; Hearne, M.; Thompson, E.M. A global empirical model for near-real-time assessment of seismically induced landslides. J. Geophys. Res. Earth Surf. 2018, 123, 1835–1859. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Han, J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Appl. Sci. 2019, 9, 171. [Google Scholar] [CrossRef]
Variable | Unit | Aspect (Reclass) Interact Slope | Significance 1 |
---|---|---|---|
Elevation * | m | 2.264 × 10−3 | *** |
Slope | Degree | 6.346 × 10−1 | *** |
Rainfall | mm/year | 3.399 × 10−3 | *** |
Distance to faults | m | −1.069 × 10−5 | *** |
Distance to rivers | m | 1.515 × 10−4 | ** |
Aspect 2 | 5.706 × 10−1 | *** | |
Aspect 3 | 1.175 × 100 | *** | |
Aspect 4 | 1.362 × 100 | *** | |
Aspect 5 | 9.241 × 10−1 | *** | |
Aspect 6 | 5.366 × 10−1 | *** | |
Aspect 7 | −1.296 × 10−1 | † | |
Aspect 8 | −2.987 × 10−1 | * | |
Slope: Elevation | −3.752 × 10−4 | *** | |
Intercept | −5.523 × 100 | *** |
Models | Evaluation | Value |
---|---|---|
Logistic Regression | AIC 1 | 8116.8 |
Accuracy | 0.763 | |
Sensitivity | 0.7736 | |
AUC | 0.8431 | |
Random Forest | OOB | 16.52% |
Accuracy | 0.8269 | |
Sensitivity | 0.8592 | |
AUC | 0.9092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Chen, S.-E.; Tang, W.; Chavan, V.; Shanmugam, N.; Allan, C.; Diemer, J. Landslide Risks to Bridges in Valleys in North Carolina. GeoHazards 2024, 5, 286-309. https://doi.org/10.3390/geohazards5010015
Lin S, Chen S-E, Tang W, Chavan V, Shanmugam N, Allan C, Diemer J. Landslide Risks to Bridges in Valleys in North Carolina. GeoHazards. 2024; 5(1):286-309. https://doi.org/10.3390/geohazards5010015
Chicago/Turabian StyleLin, Sophia, Shen-En Chen, Wenwu Tang, Vidya Chavan, Navanit Shanmugam, Craig Allan, and John Diemer. 2024. "Landslide Risks to Bridges in Valleys in North Carolina" GeoHazards 5, no. 1: 286-309. https://doi.org/10.3390/geohazards5010015
APA StyleLin, S., Chen, S. -E., Tang, W., Chavan, V., Shanmugam, N., Allan, C., & Diemer, J. (2024). Landslide Risks to Bridges in Valleys in North Carolina. GeoHazards, 5(1), 286-309. https://doi.org/10.3390/geohazards5010015