Special Issue "Information Technologies and Electronics"

A special issue of Symmetry (ISSN 2073-8994).

Deadline for manuscript submissions: 31 May 2020.

Special Issue Editor

Prof. Dr. Alexander Shelupanov
E-Mail Website
Guest Editor
Department of Complex Information Security of Computer Systems, University of Control Systems and Radioelectronics, Lenin Ave, 40, Tomsk, Tomskaya oblast' 634050, Russia

Special Issue Information

Dear Colleagues,

In the Special Issue “Information Technologies and Electronics”, we would like to showcase research papers dedicated to the most up-to-date issues of mathematical modeling in control systems, information security, automated systems for data processing and control, nanoelectronics, optoelectronics and nanophotonics, plasma emission electronics, intelligent power electronics, microwave electronics, radiolocation systems, television, telecommunication, and radiometric systems.

Prof. Dr. Alexander Shelupanov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Model of Threats to Computer Network Software
Symmetry 2019, 11(12), 1506; https://doi.org/10.3390/sym11121506 - 11 Dec 2019
Abstract
This article highlights the issue of identifying information security threats to computer networks. The aim of the study is to increase the number of identified threats. Firstly, it was carried out the analysis of computer network models used to identify threats, as well [...] Read more.
This article highlights the issue of identifying information security threats to computer networks. The aim of the study is to increase the number of identified threats. Firstly, it was carried out the analysis of computer network models used to identify threats, as well as in approaches to building computer network threat models. The shortcomings that need to be corrected are highlighted. On the basis of the mathematical apparatus of attributive metagraphs, a computer network model is developed that allows to describe the software components of computer networks and all possible connections between them. On the basis of elementary operations on metagraphs, a model of threats to the security of computer network software is developed, which allows compiling lists of threats to the integrity and confidentiality of computer network software. These lists include more threats in comparison with the considered analogues. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Open AccessArticle
The Influence of AlGaN/GaN Heteroepitaxial Structure Fractal Geometry on Size Effects in Microwave Characteristics of AlGaN/GaN HEMTs
Symmetry 2019, 11(12), 1495; https://doi.org/10.3390/sym11121495 - 09 Dec 2019
Abstract
The investigation of size effects appearing in the dependence of AlGaN/GaN HEMT high-frequency characteristics on channel width d and number of sections n is conducted using the notions of measure, metric and normed functional (linear) spaces. In accordance with the results obtained, in [...] Read more.
The investigation of size effects appearing in the dependence of AlGaN/GaN HEMT high-frequency characteristics on channel width d and number of sections n is conducted using the notions of measure, metric and normed functional (linear) spaces. In accordance with the results obtained, in local approximation the phenomenon of similarity can exist, not only in metric spaces of heteroepitaxial structures, but also in the defined on them functional spaces of the measures of these structures’ additive electrophysical characteristics. This provides means to associate size effects of the HEMTs with their structure material fractal geometry. The approach proposed in the work gives an opportunity, not only to predict the size of the structural elements (e.g., channel width and number of sections) of the transistor with the desired characteristics, but also to reconstruct its compact model parameters, which significantly speeds up the development and optimization of the HEMTs with the desired device characteristics. At transferring to the global approximation, when the topological and fractal dimensions of the structure coincide, its electrophysical characteristics, and subsequently, the values of the compact model equivalent circuit parameters, as well as HEMT high frequency characteristics, follow the classic (linear) laws peculiar to the spaces of integer topological dimensions DT. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Application of the Gravitational Search Algorithm for Constructing Fuzzy Classifiers of Imbalanced Data
Symmetry 2019, 11(12), 1458; https://doi.org/10.3390/sym11121458 - 28 Nov 2019
Abstract
The presence of imbalance in data significantly complicates the classification task, including fuzzy systems. Due to a large number of instances of bigger classes, instances of smaller classes are not recognized correctly. Therefore, additional tools for improving the quality of classification are required. [...] Read more.
The presence of imbalance in data significantly complicates the classification task, including fuzzy systems. Due to a large number of instances of bigger classes, instances of smaller classes are not recognized correctly. Therefore, additional tools for improving the quality of classification are required. The most common methods for handling imbalanced data have several disadvantages. For example, methods for generating additional instances of minority classes can worsen classification if there is a strong overlap of instances from different classes. Methods that directly modify the fuzzy classification algorithm lead to a decline in the interpretability of the model. In this paper, we study the efficiency of the gravitational search algorithm in the tasks of selecting the features and tuning the term parameters for fuzzy classifiers of imbalanced data. We consider only data with two classes and apply the algorithm based on extreme values of classes to construct models with a minimum number of rules. In addition, we propose a new quality metric based on the sum of the overall accuracy and the geometric mean with the presence of a priority coefficient between them. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Open AccessArticle
Microwave Photonic ICs for 25 Gb/s Optical Link Based on SiGe BiCMOS Technology
Symmetry 2019, 11(12), 1453; https://doi.org/10.3390/sym11121453 - 26 Nov 2019
Abstract
The design, simulation and experimental results of the integrated optical and electronic components for 25 Gb/s microwave photonic link based on a 0.25 µm SiGe:C BiCMOS technology process are presented. A symmetrical depletion-type Mach-Zehnder modulator (MZM) and driver amplifier are intended for electro-optical [...] Read more.
The design, simulation and experimental results of the integrated optical and electronic components for 25 Gb/s microwave photonic link based on a 0.25 µm SiGe:C BiCMOS technology process are presented. A symmetrical depletion-type Mach-Zehnder modulator (MZM) and driver amplifier are intended for electro-optical (E/O) integrated transmitters. The optical divider and combiner of MZM are designed based on the self-imaging theory and then simulated with EM software. In order to verify the correctness of the theory and material properties used in the simulation, a short test (prototype) MZM of 1.9 mm length is produced and measured. It shows an extinction ratio of 19 dB and half-wave voltage-length product of Vπ ∙ L = ~1.5 Vcm. Based on these results, the construction of the segmented modulator with several driver amplifier units is defined. The designed driver amplifier unit provides a bandwidth of more than 30 GHz, saturated output power of 6 dBm (output voltage of Vpp = 1.26 V), and matching better than −15 dB up to 35 GHz; it dissipates 170 mW of power and occupies an area of 0.4 × 0.38 mm2. The optical-electrical (O/E) receiver consists of a Ge-photodiode, transimpedance amplifier (TIA), and passive optical structures that are integrated on a single chip. The measured O/E 3 dB analog bandwidth of the integrated receiver is 22 GHz, and output matching is better than −15 dB up to 30 GHz, which makes the receiver suitable for 25 Gb/s links with intensity modulation. The receiver operates at 1.55 μm wavelength, uses 2.5 V and 3.3 V power supplies, dissipates 160 mW of power, and occupies an area of 1.46 × 0.85 mm2. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Open AccessArticle
Evaluation of Speech Quality Through Recognition and Classification of Phonemes
Symmetry 2019, 11(12), 1447; https://doi.org/10.3390/sym11121447 - 25 Nov 2019
Abstract
This paper discusses an approach for assessing the quality of speech while undergoing speech rehabilitation. One of the main reasons for speech quality decrease during the surgical treatment of vocal tract diseases is the loss of the vocal tractˈs parts and the disruption [...] Read more.
This paper discusses an approach for assessing the quality of speech while undergoing speech rehabilitation. One of the main reasons for speech quality decrease during the surgical treatment of vocal tract diseases is the loss of the vocal tractˈs parts and the disruption of its symmetry. In particular, one of the most common oncological diseases of the oral cavity is cancer of the tongue. During surgical treatment, a glossectomy is performed, which leads to the need for speech rehabilitation to eliminate the occurring speech defects, leading to a decrease in speech intelligibility. In this paper, we present an automated approach for conducting the speech quality evaluation. The approach relies on a convolutional neural network (CNN). The main idea of the approach is to train an individual neural network for a patient before having an operation to recognize typical sounding of phonemes for their speech. The neural network will thereby be able to evaluate the similarity between the patientˈs speech before and after the surgery. The recognition based on the full phoneme set and the recognition by groups of phonemes were considered. The correspondence of assessments obtained through the autorecognition approach with those from the human-based approach is shown. The automated approach is principally applicable to defining boundaries between phonemes. The paper shows that iterative training of the neural network and continuous updating of the training dataset gradually improve the ability of the CNN to define boundaries between different phonemes. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Robust Hybrid Beamforming Scheme for Millimeter-Wave Massive-MIMO 5G Wireless Networks
Symmetry 2019, 11(11), 1424; https://doi.org/10.3390/sym11111424 - 18 Nov 2019
Abstract
Wireless networks employing millimeter-wave (mmWave) and Massive Multiple-Input Multiple-Output (MIMO) technologies are a key approach to boost network capacity, coverage, and quality of service (QoS) for future communications. They deploy symmetric antennas on a large scale in order to enhance the system throughput [...] Read more.
Wireless networks employing millimeter-wave (mmWave) and Massive Multiple-Input Multiple-Output (MIMO) technologies are a key approach to boost network capacity, coverage, and quality of service (QoS) for future communications. They deploy symmetric antennas on a large scale in order to enhance the system throughput and data rate. However, increasing the number of antennas and Radio Frequency (RF) chains results in high computational complexity and more energy requirements. Therefore, to solve these problems, this paper proposes a low-complexity hybrid beamforming scheme for mmWave Massive-MIMO 5G wireless networks. The proposed algorithm is on the basis of alternating the minimum mean square error (Alt-MMSE) hybrid beamforming technique in which the orthogonal properties of the digital matrix were designed, and then the MSE of the transmitted and received signal was reduced. The phase of the analog matrix was obtained from the updated digital matrix. Simulation results showed that the proposed hybrid beamforming algorithm had better performance than existing state-of-the-art algorithms, and similar performance with the optimal digital precoding algorithm. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Feature Selection Based on Swallow Swarm Optimization for Fuzzy Classification
Symmetry 2019, 11(11), 1423; https://doi.org/10.3390/sym11111423 - 18 Nov 2019
Abstract
This paper concerns several important topics of the Symmetry journal, namely, pattern recognition, computer-aided design, diversity and similarity. We also take advantage of the symmetric structure of a membership function. Searching for the (sub) optimal subset of features is an NP-hard problem. In [...] Read more.
This paper concerns several important topics of the Symmetry journal, namely, pattern recognition, computer-aided design, diversity and similarity. We also take advantage of the symmetric structure of a membership function. Searching for the (sub) optimal subset of features is an NP-hard problem. In this paper, a binary swallow swarm optimization (BSSO) algorithm for feature selection is proposed. To solve the classification problem, we use a fuzzy rule-based classifier. To evaluate the feature selection performance of our method, BSSO is compared to induction without feature selection and some similar algorithms on well-known benchmark datasets. Experimental results show the promising behavior of the proposed method in the optimal selection of features. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Reversible Steganographic Scheme for AMBTC-Compressed Image Based on (7,4) Hamming Code
Symmetry 2019, 11(10), 1236; https://doi.org/10.3390/sym11101236 - 03 Oct 2019
Abstract
In recent years, compression steganography technology has attracted the attention of many scholars. Among all image compression method, absolute moment block truncation coding (AMBTC) is a simple and effective compression method. Most AMBTC-based reversible data hiding (RDH) schemes do not guarantee that the [...] Read more.
In recent years, compression steganography technology has attracted the attention of many scholars. Among all image compression method, absolute moment block truncation coding (AMBTC) is a simple and effective compression method. Most AMBTC-based reversible data hiding (RDH) schemes do not guarantee that the stego AMBTC compression codes can be translated by the conventional AMBTC decoder. In other words, they do not belong to Type I AMBTC-based RDH scheme and easily attract malicious users’ attention. To solve this problem and enhance the hiding capacity, we used (7,4) hamming code to design a Type I AMBTC-based RDH scheme in this paper. To provide the reversibility feature, we designed a prediction method and judgement mechanism to successfully select the embeddable blocks during the data embedding phase and data extraction and recovery phase. In comparing our approach with other BTC-based schemes, it is confirmed that our hiding capacity is increased while maintaining the limited size of the compression codes and acceptable image quality of the stego AMBTC-compressed images. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Food Safety Event Detection Based on Multi-Feature Fusion
Symmetry 2019, 11(10), 1222; https://doi.org/10.3390/sym11101222 - 01 Oct 2019
Abstract
Food safety event detection is a technique used to discover food safety events by monitoring online news. In general, a set of keywords are extracted as features to represent news, and then the news is clustered to generate events. The most popular method [...] Read more.
Food safety event detection is a technique used to discover food safety events by monitoring online news. In general, a set of keywords are extracted as features to represent news, and then the news is clustered to generate events. The most popular method for news feature extraction is Term Frequency-Inverse Document Frequency (TF-IDF), however, it has some defects such as being prone to the “dimension disaster”, low computational efficiency, and a lack of semantic information. In addition, Latent Dirichlet Allocation (LDA) is also widely used in news representation. Despite its low dimension, it still suffers from some drawbacks such as the need to set a predefined number of clusters and has difficulty recognizing new events. In this paper, a method based on multi-feature fusion is proposed, which combines the TF-IDF features, the named entity features, and the headline features to represent the news. Based on the representations, the incremental clustering method is used to cluster the news documents and to detect food safety events. Compared with the traditional methods, the proposed method achieved higher Precision, Recall, and F1 scores. The proposed method can help regulatory authorities to make decisions and improve the reputation of the government, whilst reducing social anxiety and economic losses. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Detection and Localization of Interference and Useful Signal Extreme Points in Closely Coupled Multiconductor Transmission Line Networks
Symmetry 2019, 11(10), 1209; https://doi.org/10.3390/sym11101209 - 27 Sep 2019
Abstract
This study highlights the importance of detecting and localizing useful and interference signal extreme points in multiconductor transmission lines (MCTL) by developing a new approach for detecting and localizing signal extreme points in MCTL networks of arbitrary complexity. A radio-electronic component is presented [...] Read more.
This study highlights the importance of detecting and localizing useful and interference signal extreme points in multiconductor transmission lines (MCTL) by developing a new approach for detecting and localizing signal extreme points in MCTL networks of arbitrary complexity. A radio-electronic component is presented as a network consisting of a number of connected MCTL sections. Each MCTL section is divided into segments and the number of segments is set by the user. The approach is based on a quasi-static calculation of signal waveforms at any point (segment) along each conductor of an MCTL. The block diagrams of the developed algorithms are presented. Using the approach, a number of investigations have been done which include the following: the signal maximum detection and localization in the meander lines with one and two turns, the influence of ultrashort pulse duration on localization of its extreme points in the printed circuit board (PCB) bus of a spacecraft autonomous navigation system, the influence of ultrashort pulse duration on localization of crosstalk extreme points in the PCB bus, and the simulation of electrostatic discharge effects on the PCB bus. There are also some investigations with optimization methods presented. A genetic algorithm (GA) was used to optimize the influence of ultrashort pulse duration on localization of the pulse and crosstalk extreme points in the PCB bus. Furthermore, the GA was used to optimize the PCB bus loads by criteria of the peak voltage minimization. A similar investigation was carried out with the evolution strategy. The obtained results help us to argue that the signal extreme points can be detected both in structures with different configurations and applying different excitations. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Open AccessArticle
Robust Nonparametric Methods of Statistical Analysis of Wind Velocity Components in Acoustic Sounding of the Lower Layer of the Atmosphere
Symmetry 2019, 11(8), 961; https://doi.org/10.3390/sym11080961 - 31 Jul 2019
Abstract
Statistical analysis of the results of minisodar measurements of vertical profiles of wind velocity components in a 5–200 m layer of the atmosphere shows that this problem belongs to the class of robust nonparametric problems of mathematical statistics. In this work, a new [...] Read more.
Statistical analysis of the results of minisodar measurements of vertical profiles of wind velocity components in a 5–200 m layer of the atmosphere shows that this problem belongs to the class of robust nonparametric problems of mathematical statistics. In this work, a new consecutive nonparametric method of adaptive pendular truncation is suggested for outlier detection and selection in sodar data. The method is implemented in a censoring algorithm. The efficiency of the suggested algorithm is tested in numerical experiments. The algorithm has been used to calculate statistical characteristics of wind velocity components, including vertical profiles of the first four moments, the correlation coefficient, and the autocorrelation and structure functions of wind velocity components. The results obtained are compared with classical sample estimates. Full article
(This article belongs to the Special Issue Information Technologies and Electronics)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Earth-to-earth microwave and optical rain attenuation: A literature survey
Authors: Spyridon Chronopoulos's team
Abstract: The idea behind rainfall measurement, as well as the first relevant measurements, using the power loss estimation function from wireless links, dates back almost fifteen years ago. By that time, several mainly theoretical models had already been developed relating the signal attenuation to the rainfall intensity. The latter is a dominant attenuation parameter specifically for frequencies above 10GHz. Since then, a part of the scientific community has worked extensively on the rain estimation using the earth-to-earth microwave as well as optical attenuation, an issue which is still remaining quite challenging. This paper presents a literature survey on this challenging issue focusing on measurements and experimental setups on the microwave and optical wireless communications. Research gaps and future trends are also presented. Furthermore recent measurements at the lowest microwave spectrum are presented and discussed.
Back to TopTop