
symmetryS S

Article

Reversible Steganographic Scheme for
AMBTC-Compressed Image Based on (7,4)
Hamming Code

Juan Lin 1,2, Chia-Chen Lin 3,* and Chin-Chen Chang 4,*
1 School of Electronic and Information Engineering, Fuqing Branch of Fujian Normal University,

Fuzhou 350300, China; lj2020229@gmail.com
2 Engineering Research Center for ICH Digitalization and Multi-source Information Fusion, (Fuqing Branch of

Fujian Normal University), Fujian Province University, Fuzhou 350300, China
3 Department of Computer Science and Information Management, Providence University,

Taichung 43301, Taiwan
4 Department of Information Engineering and Computer Science, Feng Chia University,

Taichung 40724, Taiwan
* Correspondence: mhlin3@pu.edu.tw (C.-C.L.); alan3c@gmail.com (C.-C.C.)

Received: 22 August 2019; Accepted: 20 September 2019; Published: 3 October 2019
����������
�������

Abstract: In recent years, compression steganography technology has attracted the attention of
many scholars. Among all image compression method, absolute moment block truncation coding
(AMBTC) is a simple and effective compression method. Most AMBTC-based reversible data hiding
(RDH) schemes do not guarantee that the stego AMBTC compression codes can be translated by the
conventional AMBTC decoder. In other words, they do not belong to Type I AMBTC-based RDH
scheme and easily attract malicious users’ attention. To solve this problem and enhance the hiding
capacity, we used (7,4) hamming code to design a Type I AMBTC-based RDH scheme in this paper.
To provide the reversibility feature, we designed a prediction method and judgement mechanism
to successfully select the embeddable blocks during the data embedding phase and data extraction
and recovery phase. In comparing our approach with other BTC-based schemes, it is confirmed that
our hiding capacity is increased while maintaining the limited size of the compression codes and
acceptable image quality of the stego AMBTC-compressed images.

Keywords: reversible data hiding; AMBTC; (7,4) hamming code

1. Introduction

Data hiding, also called steganography [1], is the study of embedding secret message into
innocuous cover media [2], such as images, audio signals, and videos files, to protect the confidentiality
of the hidden data. Digital images are often used as the cover media because they can be accessed
easily and can provide abundant redundancies for concealing data. According to the recoverability of
the cover image after the extraction of hidden data, data hiding can be classified into two categories,
i.e., conventional data hiding and reversible data hiding (RDH). RDH is crucial for some specific
applications, such as medical imaging, remote sensing, and military communications. The first RDH
was proposed by Barton in 1997 [3]. In Barton’s approach, the bits to be overlaid were compressed
in advance and then added to the secret bit string, after which the generated secret bit string was
embedded into the data blocks of the images. Since then, researchers inspired by Barton’s idea have
proposed various RDH approaches, including difference expansion (DE) [4,5], histogram shifting [6–8],
and prediction-error [9–11]. In 2003, DE was introduced by Tian et al. by embedding the secret message
into the differences between two adjacent pixels [4]. In 2006, Ni et al. developed a different RDH
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approach based on histogram modification. Their approach used the zero or the minimum pixel value
of the histogram of an image as the peak value, and then they slightly modified peak value and shifted
the related pixel values to embed secret data [6]. In 2008, Lin et al. transformed the original image into
a difference image before using the histogram shifting technique to make sure the frequency of peak
value is as largest as possible and ascertained that the hiding capacity was increased significantly [7].
In 2011, Li et al. designed a new hybrid RDH method based on prediction-error expansion (PEE),
adaptive embedding, and pixels’ selection [9]. Subsequently, many scholars used Li et al.’s approach
and designed various improved RDH schemes based on PEE. However, these schemes were designed
for images in the spatial domain rather than images in the compression domain, but the latter demand
of compression techniques has increased gradually as people have become familiar with the capability
of transmitting or sharing image files over the Internet. Therefore, it is essential to explore and design
RDHs for compression-domain images.

Compression techniques are designed to solve the problem of limited bandwidth since multimedia
files, such as image, audio, and video files, are quite large. The general compression techniques include
discrete cosine transform (DCT) [12], discrete wavelet transform (DWT) [13], vector quantization
(VQ) [14], and side match vector quantization (SMVQ) [15]. The latter two famous block-based
image compression techniques, i.e., VQ and SMVQ, attracted the attention of researchers when
they tried to design RDHs for images in the compression domain. In 2005, Yang et al. [16] applied
modified, fast-correlation vector quantization (MFCVQ) to design a reversible watermarking scheme
for VQ-compressed images. However, the weakness of their scheme is their low hiding capacity. To
overcome this disadvantage, Lu et al. [17] proposed an RDH method based on VQ-index residual
value coding technique. In 2006, Chang et al. [18] used a real codeword that could be mapped to an
index in the SMVQ’s codebook and a derived codeword that did not exist in the SMVQ’s codebook to
design their RDH strategy for SMVQ-compressed images. Inspired by Chang et al.’s idea, in 2011,
Chiou et al. [19] proposed an RDH scheme with enhanced hiding capacity that was also based on
SMVQ to improve the hiding capacity and visual quality of steo-image. In Chiou et al.’s scheme, one
secret bit is concealed into each pixel of the residual blocks.

In addition to VQ and SMVQ, block truncation coding (BTC) is the other efficient, lossy, block-based
image compression technique. BTC technique was first proposed by Delp and Mitchell in 1979 [20]
and has been used for compressing Mars Pathfinder’s rover images [21]. Later, Lema and Mitchell [22]
proposed the absolute mean block truncation coding (AMBTC) method to prompt the compression
performance. After learning about the features of BTC and AMBTC, many scholars designed BTC-based
or AMBTC-based RDHs. In general, these RDHs can be classified into two types, i.e., (1) Type I in
which the stego codes can be decoded correctly via a conventional BTC or AMBTC decoder [23–25]
and a recovered image always can be constructed and (2) Type II in which the stego codes have specific
coding structures [26–28] and cannot be translated by standard BTC or AMBTC decoders. In other
words, as long as malicious attackers use BTC or AMBTC decoders to decode the stego codes, those
that cannot be decoded will be identified easily because they carry some valuable information. To
avoid drawing the attention of attackers, in this paper, we tried to design a Type I-RDH scheme for
AMBTC-compressed images.

Inspired by Chang et al.’s high payload data hiding scheme for compressed images with (7,4)
hamming code [29], several data hiding schemes based on (7,4) hamming code were proposed
sequentially [30,31], but they were not reversible. In 2017, Biswapati et al. utilized (7,4) hamming code
to design a partial RDH which allows the restored image to be very similar to its original image [32].
In 2018, the same research team designed a dual image-based RDH scheme using (7,4) hamming
code [33]. According to the lectures we have collected to date, no one has used (7,4) hamming code to
design RDH for a single, AMBTC-compressed image. However, (7,4) hamming code has a unique
feature in that it can hide three secret bits into a seven-bit stream only at the cost of modifying a single
bit. To take advantage of (7,4) hamming code, in this paper we introduce an RDH scheme using (7,4)
hamming code that embeds secret data based on the relationship of the high-low mean tables and also
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into the bitmaps. In other words, the original AMBTC compression codes can be completely restore
once the hidden data has been extracted with our proposed scheme. There is no distortion between
our restored compression codes and the original AMBTC compression codes.

The rest of the paper is organized as follows. Section 2 introduces the AMBTC scheme and (7,4)
hamming code. Section 3 illustrates the use of the proposed scheme for embedding and extracting data
using the high-low mean tables and bitmap. In Section 4, we describe the experiments we conducted
and compare our proposed RDH scheme with other Type I AMBTC-based RDH schemes. Concluding
remarks are given in Section 5.

2. Related Works

In this section, we briefly describe the concepts of AMBTC and (7,4) hamming code and
matrix embedding.

2.1. Absolute Moment Block Truncation Coding (AMBTC)

In 1984, Lema and Mitchell [22] proposed a new compression technique for reconstructing good
images that preserved the local characteristics of the spatial blocks of the image. After dividing an
image into 4 × 4 non-overlapping blocks, for each block, their method computes the mean and the
standard deviation of the sample, i.e.,

η =
1
m

m∑
i=1

xi and σ =
1
m

m∑
i=1

|xi − η| (1)

where m is the total number of pixels in the block, and xi is the gray value of each pixel. Both values
are transmitted along with a bit plane that contains ones in those positions where xi > η and zeros
otherwise. At the recipient, a reconstructed block can be obtained with two quantizers: the low mean
value L for group-0 and the high mean value H for group-1 that preserves the sample mean and
variance [22] according to Equation (2),

L = η−
m× σ

2(m− q)
and H = η+

m× σ
2q

(2)

where q is the number of pixels that are greater than or equal to η.
Figure 1 shows an example of the results of encoding and decoding using the AMBTC compression

method. Note that, in the original AMBTC encoding phase, an image is generally divided into
non-overlapping blocks, and the size of each block is 4 × 7 pixels. However, Figure 1a shows that
the original image block was 4 × 7. This is because a block defined in our proposed RDH scheme
is 4 × 7 pixels. To give readers consistent representation and a better understanding, a block with
the same size is demonstrated in Figure 1a. Even though the size of the block is different from the
conventional AMBTC, the other operations in the encoding and decoding phases are the same as they
are in the conventional AMBTC. The mean value was obtained, i.e., η = 161.28. We computed the
value of L = 159 by averaging the pixel values that were less than 161.28, and the result is rounded
to the nearest integer. Similarly, we computed the value. Subsequently, if the pixel values were less
than 161.28, their corresponding bits were set as “0” in the bitmap; otherwise, their corresponding bits
were set as “1.” Figure 1b shows the corresponding AMBTC bitmap that was derived from a given
block. As shown in Figure 1a, its AMBTC compressed trio is denoted as (L= 159, H = 162, bitmap =

1110101; 1110101; 1110101; 1110101). To decode the compressed trio, the “0” and “1” in the bitmap
were replaced by L = 159 and H = 162, respectively. Finally, a reconstructed image block was generated,
as shown in Figure 1c.
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Figure 1. Example of the absolute moment block truncation coding (AMBTC) compression method:
(a) Original image block; (b)AMBTC bitmap; (c) Reconstructed image block.

2.2. (7,4) Hamming Code

(7,4) hamming code is a kind of linear code for the correction of block errors. It has been used
extensively by researchers because it can identify a single bit error in a block of 7-bits and then correct
it. In this paper, (7,4) hamming coding was used to operate the modification of bits. Four data bits,
i.e.,d = (d1, d2, d3, d4), d were encoded into seven bits by adding three parity bits, i.e., c = (c1, c2, c3).
The encoding rule must satisfy Equation (3).

c1 = d1 ⊕ d2 ⊕ d3,
c2 = d1 ⊕ d3 ⊕ d4,
c3 = d2 ⊕ d3 ⊕ d4,

(3)

where ⊕ is the exclusive-OR operation. By transforming Equation (3) into a matrix, the result is
transposed, i.e.,


c1

c2

c3

 =


1 1 1 0
1 0 1 1
0 1 1 1




d1

d2

d3

d4

⇔
[

d1 d2 d3 d4
]

1 1 0
1 0 1
1 1 1
0 1 1

 =
[

c1 c2 c3
]
. (4)

when the unit identity is added, the form is changed as shown below:

[
d1 d2 d3 d4

]
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

 =
[

d1 d2 d3 d4 d5 d6 d7
]
, (5)

G =
[

Ik Qk×r
]
=


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

, (6)

For decoding, a parity check matrix, H0, is required. This matrix can be obtained from Equation
(7) by changing Equation (3) to Equation (8).

c1 ⊕ d1 ⊕ d2 ⊕ d3 = 0,
c2 ⊕ d1 ⊕ d3 ⊕ d4 = 0,
c3 ⊕ d2 ⊕ d3 ⊕ d4 = 0.

(7)

Then, convert it into a matrix.
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
1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1





d1

d2

d3

d4

c1

c2

c3


=


0
0
0

. (8)

Finally, a parity check matrix H0 =


1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


3×7

is generated.

The four codes and three parity bits are sent to receiver. At the recipient, the received 7-bits
codeword, R = (1000110), is multiplied by the parity check matrix, H0, and, then, modulo 2 is conducted
to determine whether an error occurred. The computed result is called a syndrome. If the syndrome is
“000,” it means there is no error. If a single bit error occurs, the syndrome will not be equal to “000.”
Assume the received codeword R, has one error in the first row of the G matrix, (ex. R = (1100110), the
calculated syndrome is “101,” which is identical to the second column of H0, and R is corrected by
R = (1100110) ⊕ e2 = (1000110) where ei is the ith unit vector of length seven (e2 is a zero vector of
length seven with a 1 located at the second position, e2 = (0100000)). Then, we determine the correct
original data bits by ignoring the last three bits, i.e., d = (1000).

3. Proposed Scheme

In this paper, we propose a (7,4) hamming code-based RDH for AMBTC-compressed images.
Our proposed RDH scheme consists of two phases, i.e., 1) the data embedding phase and 2) the
data extraction and recovery phase. In the data embedding phase, after AMBTC encoding, the cover
image is divided into non-overlapping 4 × 7-sized blocks, where each block contains only different
values of high mean (H), low mean (L), and 4 × 7-bits bitmap. The secret bits can be concealed by
changing the order between H and L, and they also can be embedded into the 4 × 7-bits bitmap
with (7,4) hamming code. In the former, we can extract a secret bit and losslessly reconstruct the
stego image to the AMBTC-compressed image. However, for embedding data on a bitmap with (7,4)
hamming code, three secret bits can be hidden into each 1 × 7-sized bitmap. To ensure that the modified
bit of 1 × 7-bits bitmap can be restored, a prediction method and a judgment mechanism which is
workable during both the data embedding phase and data extraction/recovery phase are designed
in our proposed RDH scheme. The proposed prediction method and judgment mechanism are our
core concept and they are introduced initially in Section 3.1, and the data embedding phase and data
extraction/recovery phases are presented in detail in Sections 3.2 and 3.3, respectively. To give clear
explanations for both phases, an example is provided to demonstrate our proposed data embedding
and data extraction/recovery operations.

3.1. Prediction Method and Selections of Embeddable Blocks

To embed secret data into two quantizers, the prediction method must be used, and it must be
derived from the original neighboring pixels. Here, a simple prediction is conducted, and, first, a 3 ×
3-pixels window is constructed, as shown in Figure 2.
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Figure 2. Reconstructed Yi and its neighboring six reconstructed pixels.

To predict Yi, we define its prediction value, Yi
′, can be derived from its neighboring six pixels as

Yi
′ = λ1X1 + λ2X2 + λ3X3 + λ4X4 + λ5X5 + λ6X6. (9)

where Yi
′ are six neighboring pixels of Yi in the image, and λ1,λ2, · · · ,λ6 are the coefficients of

Xi(i = 1, 2, · · · , 6), respectively. The expression λ1 + λ2 + · · ·+ λ6 = 1 must be satisfied. If the distance
between Yi and each pixel, Xi(i = 1, 2, · · · , 6), is not considered, λi(i = 1, 2, · · · , 6) is always 1/6.
However, if the Euclidean distance between Yi and Xi(i = 1, 2, · · · , 6) is considered, their corresponding
coefficients can be defined as: λ1 : λ2 = 1 :

√
2,λ2 = λ5,λ1 = λ3 = λ4 = λ6, andλ1 +λ2 + · · ·+λ6 = 1.

Thus, six coefficients are obtained as λ1 = λ3 = λ4 = λ6 = 0.1465,λ2 = λ5 = 0.207, as shown in
Figure 3.
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For the pixels that are located in the left border of an image, we define that the prediction value,
Yi
′, only requires its four neighboring pixels, i.e.,

Y′i = λ1X1 + λ2X2 + λ4X4 + λ5X5. (10)

where λ1 = λ4, λ2 = λ5, λ1 : λ2 = 1 :
√

2 and λ1 + λ2 + λ4 + λ5 = 1. Thus, the four coefficients can be
computed as λ1 = λ4 = 0.20, λ2 = λ5 = 0.29. In a similar manner, the prediction pixels Yi

′ located at
the right border of an image can be derived from

Yi
′ = λ2X2 + λ3X3 + λ5X5 + λ6X6. (11)

where the coefficients are defined as λ2 = λ5 = 0.29, λ3 = λ6 = 0.20.
Subsequently, given a constructed image, the embeddable blocks can be determined by Equation

(12) to maintain the reversible feature based on the difference between the reconstructed pixels and
their prediction values ∣∣∣Yi

′
−Yi

∣∣∣< 0.5× (H − L) (H , L) . (12)

Note that the block is defined as a 1× 7-sized block instead of a 4× 7-sized block when determining
whether or not it is embeddable. Since it is a reconstructed image, each 1 × 7-sized block contains, at
most, only two different values, i.e., either L or H. It must be determined whether the blocks located in
the even rows are embeddable or not. Blocks located in the odd rows are treated as reference blocks to
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ensure that all of the embedded blocks can be completely restored to the original AMBTC reconstructed
blocks after the hidden data are extracted. For a 1 × 7-sized block located in an even row, Equation (12)
is used to check seven reconstructed pixels. If Equation (12) is satisfied for all seven reconstructed
pixels, the currently processing block is embeddable. If any pixel in a 1 × 7-sized block does not satisfy
Equation (12), the currently processing block is un-embeddable.

Our proposed prediction method can be used to assist the selection of embeddable blocks
irrespective of whether the process is in the data embedding phase or the data extraction and recovery
phase. Note that the original neighboring pixels are considered to compute the prediction values
during the data embedding phase. By contrast, the reconstructed pixels are considered during the
data extraction and recovery phase. However, even in the data extraction phase, Equation (12) always
holds because we assume that, if Yi is H, then Yi

T is L, and vice versa.

H − L =
∣∣∣Yi

T
−Yi

∣∣∣=∣∣∣Yi
T
−Yi −Yi

′ + Yi
′
∣∣∣.

Therefore, from

160× 0.146 + 160× 0.207 + 155× 0.146 + 157× 0.146 + 157× 0.207 + 153× 0.146 = 157.18

and according to Equation (12), Equation (13) can be derived as∣∣∣Yi
T
−Yi

′
∣∣∣> 0.5× (H − L) (H , L) . (13)

Since the 1 × 7-sized blocks located in the odd rows are treated as reference blocks and since not
all 1 × 7-sized blocks located in the even rows are embeddable for a given AMBTC reconstructed image,
a location map LP recording is required for the blocks located in the even rows. In the location map LP,
“1” indicates that the corresponding block is embeddable; and “0” indicates that the corresponding
block is unembeddable. Then, the location map LP is treated as secret data, and it is embedded into the
bitmap in front of the secret message.

Example of the Selection of Embeddable Blocks

Let us assume that the size of a grayscale image is 512 × 512 pixels and that it is divided into
non-overlapping 4 × 7-sized blocks. Here, we only take the 5×7 reconstructed pixels for example. It is
noted the first four rows map to a 4 × 7-sized block. Therefore, the first four rows only contain two
different values, which map to the same quantizer pair, which is L (= 155) and H (= 160). However,
the last row maps to the other 4 × 7-sized block, and the two values are different, i.e., L (= 153) and
H (= 157).

Equation (12) is satisfied for all pixels located in the second row. Therefore, it is noted as “0” to
indicate that the second row is embeddable in the location map. In contrast, the sixth prediction value
located in the fourth row is derived by Equation (9) as

160× 0.146 + 160× 0.207 + 155× 0.146 + 157× 0.146 + 157× 0.207 + 153× 0.146 = 157.18

The sixth predicted value located in the fourth row does not satisfy Equation (12).

|157 .18− 160| = 2.82 > 1/2× |H− L| = 1/2× (160− 155) = 2.5.

Therefore, it is marked in red as shown in Figure 4b. Since the fourth row has one pixel that
does not satisfy Equation (12), it is noted as “0” in the location map to indicate that the fourth row
is unembeddable.
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3.2. Data Embedding Phase

All 1 × 7-sized blocks are determined to be embeddable or unembeddable by using the location
map. The data embedding phase is described in detail in this subsection. Figure 5 shows the flowchart
of the embedding phase for embeddable blocks.

Input: Original grayscale image.
Output: AMBTC-compressed stego bitstream.

a. Step 1. Partition the original image into n× 7 pixel blocks and conduct AMBTC encoding; a set
of compressed trios, i.e., (H, L, Bmn×7)i, j, is obtained, where H is the high mean table, L is the low
mean table, Bmn×7 is the bitmap, n = 4, and (i, j) is the coordinate of the n× 7 pixel block where
i = 1, 2, · · · , 128 and j = 1, 2, · · · , 73.

b. Step 2. Based on their positions, use the pixels located in the odd rows to predict the pixels
located in the even rows with Equations (9)–(11), respectively. If all of the pixels in a 1 × 7-sized
block satisfy Equation (13), determine the block to be embeddable and denote it as “1” in the
location map, LP. Otherwise, denote it as “0” in the location map, LP.

c. Step 3. After all blocks have been evaluated, concatenate LP and secret data SD as the final secret
message S, where S = LP||SD, and “||” denotes the concatenation of LP and SD.

d. Step 4. Scan all AMBTC-compressed blocks in a zig-zag direction to embed the final secret
message, S, into bitmap Bm. If H = L, 4 × 7 bits of S are selected and used to replace the original
Bm. If not, H is not equal to L, select one bit, s, of S and embed it into the H and L pair by
swapping the order when s = 1. Note that, if H , L and s = 0, then the order of H and L is
not changed.

e. Step 5. After all H and L pairs have been checked, take three bits of the remaining S as m and
embed them into block x, which is marked with “1” in the location map LP by using Equation (14).
The detailed description can be referred to Section 2.2.

syndrome = m⊕H0x and y = Emd(x, m) = x⊕ F(syndrome), (14)

where y is the received stego vector, and F(·) is the value of the ith position of block x that must
be changed.
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Example of Data Embedding

Below, we have provided an example to show our hybrid hiding strategy. First, assume that there
is a secret bitstream as S = 101 010 101 100 011 and an AMBTC-compressed trio (L = 155, H = 160,
Bm = 10001101000110100011 010001001011110), as shown in Figure 6. The first two bits, i.e., “10”,
listed in S indicate that the 1 × 7-sized block located in the second row is embeddable and that the 1
× 7-sized block located in the fourth row is unembeddable. The third bit “1” of S indicates that the
order of L and H should be swapped according to hiding strategy depicted in Step 2. The following
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3-bits “010” is then embedded into the 1 × 7 block located in the second row according to Equation (14).
Since the block located in the second row is determined as embeddable and H , L, seven bits of the
corresponding bitmap are extracted as x = (1 0 0 0 1 1 0). Then, treat the 3-bit secret, “010”, as m and use
parity cheek matrix, H0. Finally, x must be changed as y = (1 0 0 0 1 0 0) to carry the secret bits “010”.
Finally, the modified AMBTC-compressed trios are obtained and then transmitted to the receiver.

Symmetry 2019, 11, 1236 10 of 18 

 

(14). Since the block located in the second row is determined as embeddable and H ≠ L, seven bits of 
the corresponding bitmap are extracted as x = (1 0 0 0 1 1 0). Then, treat the 3-bit secret, “010”, as m 
and use parity cheek matrix, H0. Finally, x must be changed as y  = (1 0 0 0 1 0 0) to carry the secret 
bits “010”. Finally, the modified AMBTC-compressed trios are obtained and then transmitted to the 
receiver. 

.  

Figure 6. Example of data embedding phase. 

3.3. Data Extraction and Recovery Phase 

In data extraction phase, the receiver can perform data extraction with the received AMBTC-
compressed trios, 7 ,( , , )n i jH L Bm × , where ( , )i j  is the coordinate of the n × 7 pixel block, i = 1, 2, ... , 

128, and j = 1, 2,..., 73. The parity cheek matrix, H0, which is like a password, can be used several times 
as long as it is transmitted via a secure channel. Generally, the receiver is aware of the hidden data 
based on the order of L and H. From the extracted data from the L and H, location map LP can be 
derived to indicate which 1 × 7 blocks are embeddable. Finally, not only the secret data are extracted 
but also the original AMBTC-compressed trios can be obtained. The detailed data extraction 
procedure is shown below. 

Input: The stego bitstream with 7 ,( , , )n i jH L Bm × and the parity check matrix H0. 

Output: The original secret message and the reconstructed AMBTC compressed image 
a. Step 1. Scan stego bitstream 7 ,( , , )n i jH L Bm × , and if H = L, extract 1 × 7 secret bits from the Bm. 

If H > L, extract secret bit “0”; otherwise, extract secret bit “1”, and swap H and L. 
b. Step 2. Decide which 1 × 7-sized blocks located in even rows are embeddable or not according to 

the extracted location map, LP. If the current block is an embeddable block, 3 bits are extracted   
from the corresponding 1 × 7 bits of Bm according to Equation (15) [34]. 

Figure 6. Example of data embedding phase.

3.3. Data Extraction and Recovery Phase

In data extraction phase, the receiver can perform data extraction with the received
AMBTC-compressed trios, (H, L, Bmn×7)i, j, where (i, j) is the coordinate of the n × 7 pixel block,
i = 1, 2, . . . , 128, and j = 1, 2, . . . , 73. The parity cheek matrix, H0, which is like a password, can be
used several times as long as it is transmitted via a secure channel. Generally, the receiver is aware of
the hidden data based on the order of L and H. From the extracted data from the L and H, location map
LP can be derived to indicate which 1 × 7 blocks are embeddable. Finally, not only the secret data are
extracted but also the original AMBTC-compressed trios can be obtained. The detailed data extraction
procedure is shown below.

Input: The stego bitstream with (H, L, Bmn×7)i, j and the parity check matrix H0.
Output: The original secret message and the reconstructed AMBTC compressed image.

a. Step 1. Scan stego bitstream (H, L, Bmn×7)i, j, and if H = L, extract 1 × 7 secret bits from the Bm. If
H > L, extract secret bit “0”; otherwise, extract secret bit “1”, and swap H and L.
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b. Step 2. Decide which 1 × 7-sized blocks located in even rows are embeddable or not according to
the extracted location map, LP. If the current block is an embeddable block, 3 bits are extracted
from the corresponding 1 × 7 bits of Bm according to Equation (15) [34].

m′ = H0y (15)

If the current block is unembeddable, go to Step 4.
c. Step 3. Use Equation (12) to check each pixel of the embeddable block to see it is satisfied. If one

pixel is not satisfied, modify its bit value to its complementary bit value, i.e., if the current bit
value is “0”, change it to “1” and vice versa.

d. Step 4. Check the next embeddable block until all blocks are preceded. Output all extracted
secret data and replace the corrected bitmaps with the corresponding Hs and Ls to obtain the
reconstructed AMBTC-image.

Example of the Data Extraction and Recovery Phase

As shown in Figure 7, we demonstrate our proposed data extraction and recovery operation in
this subsection. Here, we skip the data extraction and recovery operations for extracting the hidden
data of the two quantizers and restoring the order of L and H. In this example, we focus only on how
to extract the hidden data from the 1 × 7-sized block of Bm and restore the modified bit value. Based
on the extracted location map, LP, the blocks of which are located in the even blocks can be easily
to be identified. Therefore, the receiver knows which 1 × 7-sized block located in the second row is
embeddable and which 1 × 7-sized block located in the second row should be treated as unembeddable.
However, for the sixth pixel located in the second row, its prediction pixel value is 158.53 according to
Equation (9), and the following equation does not hold. Such a situation is not consistent with the rule
for the selection of an embeddable block as defined in Equation (12).
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|158.53− 155|> 1/2|160− 155|.

Therefore, we can conclude that the sixth pixel marked in red should be changed from “0” to “1.”
With our designed justified rule, the original 1 × 7-sized bitmap is guaranteed to be restored.
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4. Experimental Results

In this section, we describe the series of experiments and analyses that were performed to
demonstrate the performance of the proposed scheme. All of the experiments were implemented in
MATLAB R2014b on a PC with Intel® Core (TM) i7-8750H CPU @2.20 GHz, 16 GB RAM. The eight
classic grayscale images, shown in Figure 8, with sizes of 512 × 512, i.e., Lena, Airplane, Barbara,
Goldhill, Wine, Bird, Zelda, and Boat, were selected from the USC-SIPI data [35] and served as the test
images. All of the test images were compressed using the AMBTC compression technique with the
size of 2 × 7 and 4 × 7 pixels, respectively.

PSNR = 10 log10(
2552

MSE
)(dB), (16)

MSE =
HT∑
i=1

WH∑
j=1

(xi, j − x′i, j)2/(HT ×WH), (17)
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We defined Type I as the stego codes that can be correctly decoded via a standard BTC or AMBTC
decoder [27]. In this section, we performed 2 × 7 and 4 × 7 experiments to demonstrate the performance
of the proposed scheme and to compare the results with other related type I works, including the
work of Chen et al. [23]. In Chen et al.’s scheme, the relationship of H and L was used to embed the
secret bits.

In the first experiment, the peak signal-to-noise ratio (PSNR) was used to estimate the visual quality
of the AMBTC-compressed image, which is defined in Equation (16), where the mean-square-error
(MSE) is shown in Equation (17) and where xi, j and x′i, j indicate the pixel values for the position (i, j) of
the original image and of the AMBTC-compressed image or steganography image, respectively. HT
and WH represent the height and width of an image, respectively.

To examine the occurrence of secret bits in the stego bitstream codes, we used the embedding
efficient rate (ER), which was calculated by Equation (18) It is noted the stego bitstream codes mentioned
in this section is the stego AMBTC compression codes generated by our proposed scheme.
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ER =
HC
CS

(18)

Both HC and CS are the total secret bits embedded and the size of the stego bitstream codes,
respectively. An embedding method with higher efficiency indicated that our proposed RDH scheme
offers a larger payload for the same size of stego bitstream codes.

In our proposed RDH scheme, when L = H, no secret bits can be embedded into two quantizers L
and H by swapping the order of L and H. In addition, no secret bits can be embedded into the 1 × 7
blocks located in the even rows. Table 1 indicates that there is no such scenario for “Lena,” “Barbara,”
“Zelda,” and “Boat”, irrespective of whether the partition strategy was set as 2 × 7 or 4 × 7. For
“Airplane” and “Bird,” there was a single block the two quantizers of which were the same when the
partition strategy was set as 2 × 7 By contrast, there are 398 blocks and 89 blocks which can be used for
swapping the order of L and H to carry secret data in the “Wine” image.

Table 1. Amount blocks in which the high mean was equal to the low mean for 2 × 7 and 4 × 7
partition strategies.

Image Lana Airplane Barbara Goldhill Wine Bird Zelda Boat

2 × 7 0 1 0 6 398 8 0 0
4 × 7 0 0 0 1 89 0 0 0

Table 2 shows the embaddable blocks in eight test images for 2 × 7 partition. The total number of
blocks is 512 × 511/2/7 = 18,688. The average number of embeddable blocks is 3,869, and the average
of ratio is 0.208. The number of blocks with one bit changed and the number of blocks without bits
changed are also shown in Table 2. In other words, our designed prediction mechanism which is
defined in data embedding phase and justify mechanism defined in data extraction and recovery phase
is required.

Table 2. Embeddable blocks in eight test images for 2 × 7 partition.

Image Lana Airplane Barbara Goldhill Wine Bird Zelda Boat

Number of embeddable
blocks 3980 3482 3924 3037 5314 3676 4386 3155

Number of blocks with one
bit changed 3614 3134 3556 2686 5060 3332 4006 2821

Number of blocks without
bits changed 366 348 368 351 254 344 380 334

Ratio 1 0.21 0.19 0.21 0.16 0.29 0.20 0.24 0.17
1 Where Ratio = number of embeddable blocks/total number of odd blocks.

When Tables 3 and 4 were compared, it was obvious that the total hiding capacity with the 2 × 7
partition was larger than that with the 4 × 7 partitions in our proposed scheme. The comparison of the
different partition indicated that the PSNR and HLC and THC, IC are reduced when the partition size
becomes larger. It is noted that the PSNR the computed from the stego compression codes generated
by our proposed scheme and the original image. Because our proposed scheme is reversible data
hiding scheme, the original AMBTC compression codes can be completely restored. In other words,
the PSNR of our proposed scheme after extraction the hidden data will be the same as those listed in
the first column in Table 4. Basically, there is no fixed rule between HC and EHC. In general, the more
complex the image is, the less its embedding capacity is. As Table 1 indicates that only “Wine” has the
largest hiding capacity in the 4 × 7 and 2 × 7 partitions when H = L. Although the effective hiding
capacity (EHC) in the 2 × 7 case is less than that in the 4 × 7 partition for bitmap embedding, it offers
more quantizer pairs to carry secret data. Therefore, in general, the total hiding capacity is increased.
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Table 3. Peak signal-to-noise ratios (PSNRs) and hiding capacity (HC) of our proposed reversible data
hiding (RDH) scheme for the 2 × 7partition.

2 × 7
(18,688)
Criteria

AMBTC
PSNR
(dB)

PSNR
(dB)

H , L
HC

(bits)

Proposed
Scheme
H , L

IC
(bits)

H , L
EHC
(bits)

H = L
HLC
(bits)

Total of
HC 1

(bits)

Lena 32.05 29.88 11,940 8612 3328 0 22,016
Airplane 31.9 29.17 10,446 7953 2493 14 21,194
Barbara 28.9 27.66 11,772 8266 3506 0 22,194
Goldhill 32.52 31.07 9111 7020 2091 84 20,857

Wine 32.02 29.9 15,942 10,456 5486 5572 29,348
Bird 29.57 28.3 11,028 8821 2207 112 20,999

Zelda 35.67 33.96 13,158 9794 3364 0 22,052
Boat 30.72 28.73 9465 7096 2369 0 21,057

Average 31.66 29.83 11,607 8502 3105 720 22,464
1 Here HC is the data embedding capacity in the bitmap with the (7,4) hamming code. IC is the number of remarks
concerning which the block is “1” or “0.” EHC is the effective hiding capacity, where EHC = HC − IC. HLC is the
data embedding capacity, when H = L, and THC is the total data hiding capacity, where THC = EHC, THC = EHC +
HLC + (18688-HLC/14).

Table 4. PSNRs and hiding capacity (HC) of our proposed RDH scheme for the 4 × 7 partition.

2 × 7
(9344)

Criteria

AMBTC
PSNR
(dB)

PSNR
(dB)

H , L
HC

(bits)

Proposed
Scheme
H , L

IC
(bits)

H , L
EHC
(bits)

H = L
HLC
(bits)

Total of
HC 1

(bits)

Lena 31.29 29.45 11,907 8902 3005 0 12,349
Airplane 30.49 28.21 12,159 8873 3286 0 12,630
Barbara 28.25 27.17 12,102 8553 3549 0 12,893
Goldhill 31.35 30.03 11,286 8063 3223 28 12,594

Wine 30.84 29.02 17,511 11,280 6231 2492 17,978
Bird 28.46 27.43 11,685 9352 2333 0 11,677

Zelda 34.66 33.25 13,440 10,223 3217 0 12,561
Boat 29.60 27.99 10,983 8037 2946 0 12,290

Average 30.61 29.06 12,634 9160 3474 315 13,121
1 Here HC is the data embedding capacity in the bitmap with the (7,4) hamming code. IC is the number of remarks
concerning which the block is “1” or “0.” EHC is the effective hiding capacity, where EHC = HC − IC. HLC is the
data embedding capacity, when H = L, and THC is the total data hiding capacity, where THC = EHC + HLC +
(9344-HLC/28).

To further demonstrate the performance of our proposed RDH scheme, we compared it with the
conventional AMBTC and with Chen et al.’s scheme [23], which is presented in Table 5. It is noted that
the PSNR listed in Chen et al.’s scheme is demonstrated the PSNR.

Table 5. Comparisons of the performances of the proposed scheme and Chen et al.’s scheme.

Performance Scheme Lena Airplane Barbara Goldhill Wine Bird Zelda Boat

PSNR AMBTC 32.05 31.9 28.9 32.52 32.02 29.57 35.67 30.72
Chen [23] 32.05 31.9 28.9 32.52 32.02 29.57 35.67 30.72
Proposed 29.88 29.17 27.66 31.07 29.9 28.3 33.96 28.73

HC Chen [23] 18,688 18,701 18,688 18,766 23,864 18,688 18,688 18,792
Proposed 22,016 21,194 22,194 20,857 29,348 20,999 22,052 21,057

CS 1 Chen [23] 564,736 564,736 564,736 564,736 564,736 564,736 564,736 564,736
Proposed 564,736 564,736 564,736 564,736 564,736 564,736 564,736 564,736

ER Chen [23] 0.033 0.033 0.033 0.033 0.042 0.033 0.033 0.033
Proposed 0.039 0.038 0.039 0.037 0.052 0.037 0.039 0.037

1 Note: CS is the size of the, ER = HC/CS.



Symmetry 2019, 11, 1236 15 of 17

Compared with Chen et al.’s scheme, which only embeds one-bit of secret data into a pair of
quantization values by swapping them when two quantizers are not the same. Therefore, the sizes of
the compression codes of the two schemes were the same. Therefore, the ER of our proposed RDH
scheme for the 2 × 7 partition was higher than that of Chen et al.’s scheme. In general, the hiding
capacity of our proposed RDH scheme for the 2 × 7 partition was higher than that of Chen et al.’s
scheme at the cost of slightly less quality of the images than conventional AMBTC and Chen et al.’s
scheme. This is because our proposed RDH scheme embeds both secret data and bitmaps into the
quantizer pairs. Even the image quality of the stego compression codes with our proposed scheme is
slightly less than that of Chen et al.’s scheme [23]. It is noted that both of our schemes are reversible
data hiding. In other words, the original AMBTC compression codes are always completely restored
after the extraction of the hidden data. The size of the stego compression codes is always the same as
that of Chen et al.’s scheme [23] and the original AMBTC compression codes. Therefore, no matter
from the size and structure of stego compression codes, our stego compression codes would not attract
attackers’ attention even the size of hidden data is larger than that of Chen et al.’s scheme [23].

To further prove the performance of our proposed RDH scheme on visual quality and hiding
capacity outperforms other schemes, the comparisons of our proposed RDH scheme and five
representative BTC/AMBTC-based RDH schemes are presented in Table 6.

Table 6. Comparisons of the performances of the proposed scheme and five representative block
truncation coding (BTC)/AMBTC-based RDH schemes.

Schemes Types Average
PSNRs

max
PSNR/

min PSNR

Average
HC

max HC/
min HC

Average
ER

max ER/
min ER

Proposed I(code) 29.83 33.96/27.66 22,464 29,348/20,999 0.04 0.052/0.037
Chen et al. [23] I(code) 32.28 35.67/28.90 19,359 23,864/18,688 0.037 0.042/0.033

Lo et al. [24] I(code) 33.1 33.23/32.97 3615 4570/2660 0.006 0.008/0.005
Chang et al. [25] I(code) 31.74 32.89/30.59 16,381 12,683/20,080 0.031 0.024/0.038

Sun et al. [26] II(code) 29.7 33.40/26.0 64,008 64,008/64,008 0.122 0.122/0.122
Hong et al. [27] II(code) 30.19 33.39/26.91 64,516 64,516/64,516 0.12 0.116/0.125

Lin et al. [28] II(code) 33.36 37.23/30.91 90489 114,533/70,889 0.240 0.241/0.217

From Table 6, we can see BTC/AMBTC-based RDH schemes [26–28] usually offer high hiding
capacity at the cost of their stego-compression codes cannot be correctly decoded by the conventional
BTC/AMBTC decoders. In other words, attackers can guess there is valuable information has been
hidden out there. It could make the hidden conventional data insecure. By contrast, our proposed
RDH scheme belongs to Type I AMBTC-based RDH scheme, and the stego-compression codes can
be always decoded by the conventional AMBTC decoder. That means the stgo-compression codes
could not attract malicious attackers’ attention and the security of hidden data is better than that
of RDH schemes which belong to Type II BTC/AMBTC-based RDH schemes [26–28]. To make sure
the stego-compression codes is decodable by conventional AMBTC decoder; the hiding capacity is
relatively limited. However, from Table 6, we can see the hiding capacity of our proposed RDH scheme
is only less than that of schemes of Sun et al. [26] and Hong et al. [27]. As for Lin et al.’s scheme [28],
even their hiding capacity is significantly higher than ours, their scheme is Type II and they hided
secret data into spatial domain of image by referring the features derived from AMBTC. In other words,
they did not conceal secret data into structure of AMBTC compression codes but into the pixels of
images. However, their scheme still points out the other possible direction which we shall explore and
set as our research topic in the future.

5. Discussion and Conclusions

In this paper, we proposed RDH based on AMBTC with (7,4) hamming code. We embedded secret
bits into the relationship of HL and into the bitmap. Before embedding the secret bits, we determined
which blocks were embeddable, and we embedded the secret bits into this embeddable block with (7,4)
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hamming code. Compared with Type I AMBTC-based RDH scheme, experimental results confirm
that our proposed RDH scheme has its merit in the capacity of the bitmap. Moreover, the hiding
capacity offered by our proposed RDH scheme is significantly higher than that of schemes of Chen
et al. [23], Lo et al. [24], and Chang et al. [25]. However, we also found even our proposed RDH
scheme has enhanced the hiding capacity than other existing Type I BTC/AMBTC-based RDH schemes,
but it is still less than that of Type II BTC/AMBTC-based RDH schemes. It will be our next research
topic to allow our proposed RDH scheme to be supportive for various applications while maintaining
security of the hidden data. Moreover, the data hiding method based on neural networks [36] and
other methods [37–41] will be included to improve the hiding capacity in the future.
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