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Abstract: In massive multiple-input multiple-output (M-MIMO) systems, a detector based on
maximum likelihood (ML) algorithm attains optimum performance, but it exhaustively searches all
possible solutions, hence, it has a very high complexity and realization is denied. Linear detectors are
an alternative solution because of low complexity and simplicity in implementation. Unfortunately,
they culminate in a matrix inversion that increases the computational complexity in high loaded
systems. Therefore, several iterative methods have been proposed to approximate or avoid the
matrix inversion, such as the Neuamnn series (NS), Newton iterations (NI), successive overrelaxation
(SOR), Gauss—Siedel (GS), Jacobi (JA), and Richardson (RI) methods. However, a detector based on
iterative methods requires a pre-processing and initialization where good initialization impresses the
convergence, the performance, and the complexity. Most of the existing iterative linear detectors are
using a diagonal matrix (D) in initialization because the equalization matrix is almost diagonal. This
paper studies the impact of utilizing a stair matrix (S) instead of D in initializing the linear M-MIMO
uplink (UL) detector. A comparison between iterative linear M-MIMO UL detectors with D and S is
presented in performance and computational complexity. Numerical Results show that utilization of
S achieves the target performance within few iterations, and, hence, the computational complexity
is reduced. A detector based on the GS and S achieved a satisfactory bit-error-rate (BER) with the
lowest complexity.

Keywords: Massive MIMO; Neumann series; Newton iteration; successive overrelaxation;
Gauss-5Seidel; Jacobi; Richardson; diagonal matrix; stair matrix

1. Introduction

Nowadays, fifth generation (5G) wireless communications systems have been introduced by
several mobile companies to meet user demands for high data rates (up to 10 Gbps) and quality of
service (QoS). The main target is to obtain an enhanced mobile broadband (eMBB), massive machine
type communications (mMTC), and ultra-reliable and low-latency communications. In 5G, several
technologies are utilized such as the millimeter-wave (mmWave), the Internet of Things (IoT), the
visible light communication (VLC), and the massive multiple-input multiple-output (M-MIMO) [1].
In mmWave, a wide spectral resource can be exploited to support a wide signal bandwidth and high
data throughput. The electromagnetic wave at mmWave band is highly attenuated because of the
path loss and shadowing. However, high antenna gain can be obtained when the mmWave band
is utilized [2]. In the 10T, a large number of devices are connected to process huge data rates, make
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classifications and decisions, and solve problems. It would exploit the artificial intelligence and linked
to cloud networks [3]. In the VLC, a light emitting diode (LED) is utilized in an indoor scenario
for simultaneous wireless communications. In addition, the VLC provides high energy efficiency,
high security, and free of interference [4]. The M-MIMO system is an extension of a small scale
MIMO where a large number of antennas at the base-station (BS) are deployed to serve multiple
user terminals [5]. It contributes positively in spectrum efficiency (SE) and energy efficiency (EE),
increases the degree of freedom, and reduces the latency. However, a large number of antennas requires
advanced signal processing techniques to equalize and estimate the signal. Although a detector based
on the maximum likelihood (ML) obtains the optimum performance, it is banned in implementation
because of the exponential computational complexity [6]. Sphere decoding (SD) is a possible solution
to achieve a quasi-optimum performance. However, it depends on the sphere radius selection and the
complexity increases as the radius increased [7]. Other detectors are also proposed such as detectors
based on successive interference cancellation (SIC) [8], local search [9], and belief propagation (BP)
[10]. The computational complexity of the SIC based detector is high. The local search based detector
depends on the size of the neighborhood. In the BP, the damping factor is required, and it is very hard to
find it. In addition, the convergence is not guaranteed. However, a large number of antennas at the BS
leads to an interesting phenomena called channel hardening where the columns of the channel matrix
are being orthogonal or nearly orthogonal. Thus, a simple linear detector can achieve a satisfactory
performance. Linear minimum mean square error (MMSE) is a possible solution, but it sustains a
significant performance loss in highly loaded systems [11]. It also contains an exact matrix inversion
that increases the computational complexity. In order to avoid the exact matrix inversion, a plethora
of iterative linear M-MIMO detection algorithms have been proposed such as the Neumann series
(NS) [12], Newton iteration (NI) [13], successive over relaxation (SOR) [14], Gauss—Seidel (GS) [15],
Jacobi (JA) [16], and Richardson (RI) [17]. A detector based on the NS and NI methods approximates
the matrix inversion of the Gram matrix instead of computing it. A detector based on the SOR, GS,
JA, and RI methods estimates the signal (X) by avoid a matrix inversion. However, the behavior of
a detector based on iterative methods is greatly influenced by selection of the initial solution (Xo)
where an inappropriate initial solution could increase the number of iterations, and hence increases
the complexity. In contrast, good initialization reduces the number of iterations and hence reduces the
computational complexity.

Most of the existing iterative linear detectors are utilizing the diagonal matrix (D) in estimating
the initial vector because the equalization matrix is diagonally dominant. In some cases, the diagonal
matrix has a slow convergence, or it may not converge. In [18], a stair matrix (S) is proposed as
an alternative solution to replace D in initializing iterative linear detectors based on the NS and JA
methods. This paper aims to study the impact of S and D in initialization of iterative linear M-MIMO
UL detectors where iterative methods are utilized such as the SOR, GS, JA, and RI methods. In addition,
a comparison between the performance-complexity profiles of S and D will be presented. Therefore,
thousands of random channel matrices have been generated to examine the convergence rate using
both S and D.

This paper is organized as follows: Section 2 presents the system model and the definition of a
stair matrix and a diagonal matrix. Section 3 presents the NS, NI, SOR, GS, JA, and RI methods with
the initialization using stair and diagonal matrices. Section 4 provides a comprehensive analysis of the
computational complexity required by each detector. In Section 5, results and discussion are presented.
Section 6 concludes the paper.

2. Background

2.1. System Model

Consider N antennas at the BS are serving simultaneously K user terminals where K < N.
The symbol vector x = [x1, Xp,...... , xk]T is transmitted by users and the symbol vector
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y=1[1, Y2 . , yn]T is received at the BS side. However, it is corrupted by the noise and effects of

the channel. H indicates the channel matrix which is decisive in the input—-output relationship as

y=Hx+w, @

where w is the N x 1 additive white Gaussian noise (AWGN). In the MMSE detector, the transmitted
signal can be estimated based on the equalization matrix (A) as

x=A"yup, 2)

and
A = G+ g, 3)

and
yur = Hy, 4)

where ¢? and Ig are the noise variance and the K x K identity matrix, respectively. G = HH is the
Gram matrix. Recently, several methods have been proposed to reduce the complexity of a linear MMSE
detector by iterative estimation of the signal X without exact computation of A~! as shown in Equation
(2). The diagonal property is predominant in the equalization matrix A. Thus, most of the existing
iterative linear MMSE detectors are employing the diagonal matrix to estimate the signal. However,
limited research shows the utilization of a stair matrix in iterative detectors based M-MIMO [18].

2.2. Definition of a Diagonal Matrix and a Stair Matrix

In linear algebra, a matrix D is called a diagonal matrix if elements outside the main diagonal are
all zero [19]. For instance, a 6 x 6 diagonal matrix can be expressed as:

o O O o o X
o O O O X O
O O O X © O
O O X O o O
O X © o o o
X © © © © o

In order to call a matrix S a stair matrix, one of the following expressions has to be obtained:
- S(i1) =0,8(41) =0, wherei=2,4,...,2 {%J
- S(iii1) = 0,8(;ie1) = O, wherei =1,3,...,2| 1| +1.

From the definition, a stair matrix S is a tri-diagonal matrix where the off-diagonal entries on
either the odd or the even row are zeros [18]. For example, a 6 X 6 stair matrix can be presented as:

O O O O o X
O © © X X X
o O O X © O
o X X X © o
O X © O © O
X X © © o o
o © O O X X
o O O O X O
O © X X X ©
O © X O o O
X X X © o o
X © © © © O

3. Diagonal and Stair Matrices in Iterative Linear M-MIMO UL Detectors

3.1. Linear Detectors Based on Neumann Series and Newton Iteration

The Neumann series (NS) and Newton iteration (NI) methods approximate iteratively the matrix
inversion instead of computing it. They depend on the concept of polynomial expansion where the
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matrix inversion is expanded as a sum of infinite number of terms. The computational complexity
increases when the number of terms and iterations (1) increases. In the NS method, (G) is decomposed
into a diagonal matrix (D) and a non-diagonal matrix E. In the NS method, A™! can be iteratively
approximated as:

ALy = ZO (1-a,'a)" A" 5)
n=

In the NI method, A~! can be presented as

A—l

(1) = A L(21— AAY). (6)

Selection of the initial inversion A(o%

in the NS and NI methods as:

-1

is crucial. In this paper, we investigate the selection of A(O)

° A(*Oﬁ = D!, where D is the diagonal matrix,

° A(_O% = S~ ! where S is the stair matrix.

A(O% is the initial solution to iterations shown in Equations (5) and (6), which converge
quadratically to A1 if
HI - AA@H <1. @)

A(_Ol) is refined iteratively. In order to investigate the condition in Equation (7), 10* channel
matrices are generated where D and S are extracted from each H. Figure 1 shows that the condition in
Equation (7) is always valid for both diagonal and stair matrices.
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Figure 1. ||I — AA(_Ol) || in Equation (7) for 10* channel realizations using (a) a stair matrix and (b) a
diagonal matrix.

The signal X can be estimated as

3.2. Linear Detectors Based on Iterative Methods

In this subsection, the signal X is equalized by avoiding inverse of the matrix using several iterative
methods such as the SOR, the GS, the JA, and the RI. The concept of an iterative method depends on
two major procedures: initial solution and iterative updates. The concept of iterative methods is that
the initial solution is refined iteratively for few iterations to obtain a better and modified estimation.
The iterations are repeated until the best performance is achieved.
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The SOR iterative method depends on the relaxation parameter (w). The estimated signal is

expressed as
X _(p-1¢L o +((1-1)p+ltu)x 9)
(n+1) — w YMmr w W (n) )+

where U and L are the upper and the lower triangular matrices, respectively. Appropriate selection of
w impacts positively the performance and the computational complexity. If w = 1, the SOR method is
called the GS iterative method where the estimated signal is given as

%) = (D=L1) " (yagr + Uk ) - (10)

In general, the SOR and GS methods have a good convergence rate.
In the Rl iterative method, H is utilized to find the estimated signal as

X(n1) = X(n) + @ (YMF - Hf((n)> : (11)

It requires a large number of iterations to converge. Thus, high computational complexity
is required.
In the JA iterative method, the received signal is given as:

R(ue1) = D" (R + (D = A) Xy ) - (12)

In general, the JA method has a low convergence rate in comparison with the SOR and
GS methods.

In this paper, the initial solution depends on D and S and is expressed as one of the
following solutions:

e  Using a stair matrix: X) = S~ 'y
e  Using a diagonal matrix: Xg) = Dy p

X(0) is refined iteratively and the new solution is updated until the best performance is obtained.

4. Complexity Analysis

Complexity is highly affected by the number of multiplications, divisions, and number of
iterations. An inappropriate number of iterations increases or decreases the number of multiplications
and divisions. Therefore, the computational complexity and the performance are greatly affected
by the initial estimation. In order to compute D~! and S}, K real number of divisions is required.
However, the computation of S™! requires an additional 3(K — 1) real number of multiplications.
However, this increment is a small. For instance, in the GS based 32 x 256 MIMO and n = 2, 8192 and
8285 number of multiplications are required if D and S are exploited, respectively. In order to obtain a
good performance, a detector based on S requires a small number of iterations in comparison with a
detector based on D matrix. The required number of multiplications are listed in Table 1.

Table 1. Complexity comparison among initialized detectors based on Diagonal and Stair Matrices.

Method Stair Matrix (S) Diagonal Matrix (D)

NI 2(n —1)K3 + NK?2 + K(N+3) =3 2(n—1)K3+ NK? + NK
RI 4nkK?+K(2n+3) -3 4nK? + 2nK

SOR 4nk?+K(n+3) -3 4nK? + 4nK

GS 4nK? +3(K—1) 4nK?

JA 2nK(2K — 1) n(4K? — 2K)

NS (n—2)K3+NK®>+K(N+3)-3  (n—2)K3+ NK?+NK
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5. Numerical Results

In this section, we investigate the impact of using the diagonal and stair matrices in the
performance and the computational complexity of a detector based on the NI, NS, SOR, GS, JA,
and RI methods. It will be presented in the bit-error-rate (BER), the signal-to-noise ratio (SNR),
and number of multiplications. In simulations, independent and identically distributed (i.i.d) Gaussian
channels are considered, the MIMO sizes is 32 x 256, the modulation scheme is 64QAM, and several
iterations are conducted.

Table 2 shows that the convergence condition in Equation (7) is satisfied for all random 10* S and
D. However, statistical values are smaller in the case of S than the values in the case of D. For instance,
the mean values of the convergence condition are 0.7027 and 0.7255 when using S and D, respectively.

Table 2. Statistics of ||I — AA(_O%H in Equation (7) for 10* channel realizations for 32 x 256
M-MIMO system.

Matrix Mean Median Standard Deviation Prob. Quadratic Convergence
Stair (S) 0.7027  0.7007 0.2776 1
Diagonal (D) 0.7255  0.7233 0.2868 1

Figure 2 presents the performance of the NI, the NS, the SOR, the GS, the JA, and the RI based
detector using both S and D matrices. Detectors initialized by S outperform detectors initialized by D
in each iteration. For example, at n = 1, the BER = 102 is obtained at SNR = 11 dB and SNR = 13 dB
for the GS based detector using S and D, respectively. In the SOR based detector, the target performance
is achieved at n = 1 and n = 2 using S and D, respectively. The worst performance is occurred when a
detector based on the RI and the NS is initialized by D. In other words, all detectors can achieve the
target performance when the number of iterations is large (i.e., n > 5), but the best detector achieves
the target performance with the smallest number of iterations (lowest complexity).
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Figure 2. Performance of a detector based on iterative matrix inversion methods with D and S for

32 x 256 M-MIMO system.

Figure 3 illustrates the relationship between the performance and the computational complexity
to obtain BER = 1073. The lowest computational complexity is achieved by a detector based on the

SNR [dB]

SNR [dB]
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GS and initialized by S when SNR = 14.5 dB. In contrast, a detector based on the NS method and
initialized by D requires the highest computational complexity to achieve the target BER performance.
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Figure 3. Performance-complexity trade-off to achieve BER = 1073.

6. Conclusions

In this paper, the impact of D and S has been studied in M-MIMO UL detectors. It is shown that
the initialization of a detector based on S achieves a good balance between the performance and the
computational complexity. A detector based on the GS method and initialized by S obtained the best
performance—complexity profile. However, a detector based on the NS method and D requires a high
number of iterations to achieve the target performance and hence it has the highest computational
complexity.

Detection techniques for M-MIMO are a hot research topic and utilization of S could be extended
to nonlinear detectors such as the sphere decoding (SD) and successive interference cancellation (SIC)
detectors. In addition, the performance-complexity profile of detectors based on local research and
belief propagation (BP) could be developed by the usage of S. However, the utilization of S should
be investigated in realistic radio channels such as the QUAsi Deterministic Radlo channel GenerAtor
(QuaDRiGa) package.
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