polymers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

10 pages, 3688 KiB  
Article
Manipulation of Elastic Instability of Viscoelastic Fluid in a Rhombus Cross Microchannel
by Meng Zhang, Zihuang Wang, Yanhua Zheng, Bifeng Zhu, Bingzhi Zhang, Xiaohui Fang, Wenli Shang and Wu Zhang
Polymers 2022, 14(11), 2152; https://doi.org/10.3390/polym14112152 - 25 May 2022
Cited by 1 | Viewed by 1566
Abstract
This paper reports the manipulation of elastic instability of the viscoelastic fluid in a rhombus cross microchannel (RCM) structure. The bistable instability and unsteady instability of the flow is firstly demonstrated in a standard cross microchannel (SCM) for reference. We then keep the [...] Read more.
This paper reports the manipulation of elastic instability of the viscoelastic fluid in a rhombus cross microchannel (RCM) structure. The bistable instability and unsteady instability of the flow is firstly demonstrated in a standard cross microchannel (SCM) for reference. We then keep the bi-stable instability over a much wider injection rate range in the RCM, which is attributed to the stabilizing effect of the rhombus structure. A semi-bistable instability was also established in the RCM at a high enough injection rate. In addition, the unsteady elastic instability is realized in the RCM through an asymmetric injection rate condition. Full article
Show Figures

Figure 1

17 pages, 5107 KiB  
Article
Heat Analysis of Thermal Conductive Polymer Composites: Reference Temperature History in Pure Polymer Matrices
by Fethi Guesmi, Makram Elfarhani, Ali Mkaddem, Sami Ghazali, Abdullah S. Bin Mahfouz and Abdessalem Jarraya
Polymers 2022, 14(10), 2084; https://doi.org/10.3390/polym14102084 - 20 May 2022
Cited by 2 | Viewed by 2077
Abstract
This attempt aims at assessing heat generation in thermal conductive polymer (TCP) composites widely used in aerospace sectors. Temperature histories were investigated in both nonreinforced and glass-fiber-reinforced TCPs during abrasive milling. Glass/epoxy and glass/polyester composites with 30% unidirectional glass fiber content were prepared [...] Read more.
This attempt aims at assessing heat generation in thermal conductive polymer (TCP) composites widely used in aerospace sectors. Temperature histories were investigated in both nonreinforced and glass-fiber-reinforced TCPs during abrasive milling. Glass/epoxy and glass/polyester composites with 30% unidirectional glass fiber content were prepared according to appropriate curing cycles. Type K thermocouples connected to a data acquisition system ensured the recording of temperature history along the trim plan during milling. Unexpectedly, when milling TCP composites parallel to fibers, peak temperature was found to be slightly lower than that recorded in nonreinforced polymers. The lateral surface of fibers acts to favor sliding friction, which limits heat generation at interfaces, while relatively low specific heat capacity and thermal conductivity of glass fiber disadvantage heat transfer. However, when milling perpendicular to fibers, the contact area between the tool and the transverse failure area of fibers increases drastically, hence involving severe friction at interfaces. This yields peak temperatures sensitively higher than those obtained in nonreinforced polymers. SEM inspections highlighted the failure modes dominating the material removal process in both nonreinforced and glass-fiber-reinforced polymers. The microcracks and debris observed at the trim plan explain, in part, the heat generation detected on temperature rate plots. Thus, heat conduction between phases governs sensitive surface finish integrity and tool lifetime and, hence, has great economic impact on the manufacturing steps. Full article
(This article belongs to the Special Issue Advanced Applications of Conductive Polymer Nanocomposites)
Show Figures

Figure 1

18 pages, 4895 KiB  
Article
Bio-Inspired 4D Printing of Dynamic Spider Silks
by Guiwei Li, Qi Tian, Wenzheng Wu, Shida Yang, Qian Wu, Yihang Zhao, Jiaqing Wang, Xueli Zhou, Kunyang Wang, Luquan Ren, Ji Zhao and Qingping Liu
Polymers 2022, 14(10), 2069; https://doi.org/10.3390/polym14102069 - 19 May 2022
Cited by 7 | Viewed by 2667
Abstract
Spider silks exhibit excellent mechanical properties and have promising application prospects in engineering fields. Because natural spider silk fibers cannot be manufactured on a large scale, researchers have attempted to fabricate bio-inspired spider silks. However, the fabrication of bio-inspired spider silks with dynamically [...] Read more.
Spider silks exhibit excellent mechanical properties and have promising application prospects in engineering fields. Because natural spider silk fibers cannot be manufactured on a large scale, researchers have attempted to fabricate bio-inspired spider silks. However, the fabrication of bio-inspired spider silks with dynamically tunable mechanical properties and stimulation–response characteristics remains a challenge. Herein, the 4D printing of shape memory polyurethane is employed to produce dynamic bio-inspired spider silks. The bio-inspired spider silks have two types of energy-absorbing units that can be adjusted, one by means of 4D printing with predefined nodes, and the other through different stimulation methods to make the bio-inspired spider silks contract and undergo spiral deformation. The shape morphing behaviors of bio-inspired spider silks are programmed via pre-stress assemblies enabled by 4D printing. The energy-absorbing units of bio-inspired spider silks can be dynamically adjusted owing to stress release generated with the stimuli of temperature or humidity. Therefore, the mechanical properties of bio-inspired spider silks can be controlled to change dynamically. This can further help in developing applications of bio-inspired spider silks in engineering fields with dynamic changes of environment. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Figure 1

11 pages, 3269 KiB  
Article
Relating Amorphous Structure to the Tear Strength of Polylactic Acid Films
by Yutaka Kobayashi, Akira Ishigami and Hiroshi Ito
Polymers 2022, 14(10), 1965; https://doi.org/10.3390/polym14101965 - 11 May 2022
Cited by 5 | Viewed by 2147
Abstract
Compared with polyolefins that are used as single-use plastics, polylactic acid (PLA) has a lower tear strength in films. The relationship between the tear strength and the higher-order structure of films was investigated using PLA films that absorbed moisture at 30 °C and [...] Read more.
Compared with polyolefins that are used as single-use plastics, polylactic acid (PLA) has a lower tear strength in films. The relationship between the tear strength and the higher-order structure of films was investigated using PLA films that absorbed moisture at 30 °C and 95% relative humidity (RH) or that had been annealed under reduced pressure conditions. Although the mobile amorphous (MAm) amount did not change under high humidity, the film became brittle due to enthalpy relaxation. The crystallization by annealing also caused embrittlement, and the MAm amount decreased to 10%. The displacement until tearing is lowered from 2.5 to 0.5 mm in both cases. However, in situ retardation measurements revealed that there was a significant difference in the fracture morphology of the torn tip. When crystallized, the molecular chains and crystals are oriented in the tensile direction of the film, and a fragmented structure is observed in the ligament. Embrittlement due to enthalpy relaxation caused a weak orientation perpendicular to the tensile direction of the film, and cracks occurs along with this orientation. Full article
Show Figures

Graphical abstract

15 pages, 7776 KiB  
Article
Molecular Dynamics Study of Cellulose Nanofiber Alignment under an Electric Field
by Ruth M. Muthoka, Pooja S. Panicker and Jaehwan Kim
Polymers 2022, 14(9), 1925; https://doi.org/10.3390/polym14091925 - 9 May 2022
Cited by 6 | Viewed by 2642
Abstract
The alignment of cellulose by an electric field is an interesting subject for cellulose material processing and its applications. This paper reports an atomistic molecular dynamics simulation of the crystalline cellulose nanofiber (CNF) model in varying electric field directions and strengths. GROMACS software [...] Read more.
The alignment of cellulose by an electric field is an interesting subject for cellulose material processing and its applications. This paper reports an atomistic molecular dynamics simulation of the crystalline cellulose nanofiber (CNF) model in varying electric field directions and strengths. GROMACS software was used to study crystalline cellulose 1β consisting of 18 chains in an aqueous environment at room temperature, and an electric field was applied along the cellulose chain direction and the perpendicular direction with varying field strength. The root-mean-square displacement, radius of gyration, end-to-end length, and hydrogen bond population of the crystalline CNF model were analyzed to determine the effects of the applied electric field on the structure of the CNF model. The results suggest that the nanosecond electric field can induce the orientation of the CNF along the applied electric field direction. The alignment rate and ability to maintain the alignment depend on the electric field strength. Analysis of the radius of gyration, end-to-end length, and bond lengths for intrachain and interchain hydrogen bonds revealed no significant effect on the cellulose structure. Cellulose alignment in an electric field has the potential to broaden the design of electric field-induced processing techniques for cellulose filaments, thin films, and electro-active cellulose composites. Full article
(This article belongs to the Topic Computational Materials Science for Polymers)
Show Figures

Graphical abstract

16 pages, 2916 KiB  
Article
pH- and Thermo-Responsive Water-Soluble Smart Polyion Complex (PIC) Vesicle with Polyampholyte Shells
by Thu Thao Pham, Tien Duc Pham and Shin-ichi Yusa
Polymers 2022, 14(9), 1659; https://doi.org/10.3390/polym14091659 - 20 Apr 2022
Cited by 6 | Viewed by 2609
Abstract
A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) [...] Read more.
A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) were prepared via a reversible addition−fragmentation chain transfer radical polymerization. Scrips V, S, and A represent VBTAC, NaSS, and PAPTAC blocks, respectively. Water-soluble polyion complex (PIC) vesicles were formed by mixing P(VS)17A50 and PAAc49 in water under basic conditions through electrostatic interactions between the cationic PAPTAC block and PAAc49 with the deprotonated pendant carboxylate anions. The PIC vesicle collapsed under an acidic medium because the pendant carboxylate anions in PAAc49 were protonated to delete the anionic charges. The PIC vesicle comprises an ionic PAPTAC/PAAc membrane coated with amphoteric random copolymer P(VS)17 shells. The PIC vesicle showed upper critical solution temperature (UCST) behavior in aqueous solutions because of the P(VS)17 shells. The pH- and thermo-responsive behavior of the PIC vesicle were studied using 1H NMR, static and dynamic light scattering, and percent transmittance measurements. When the ratio of the oppositely charged polymers in PAPTAC/PAAc was equal, the size and light scattering intensity of the PIC vesicle reached maximum values. The hydrophilic guest molecules can be encapsulated into the PIC vesicle at the base medium and released under acidic conditions. It is expected that the PIC vesicles will be applied as a smart drug delivery system. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Figure 1

15 pages, 3149 KiB  
Article
Synthesis and Characterization of Cyclodextrin-Based Polyhemiaminal Composites with Enhanced Thermal Stability
by Hoque Mohammed Jabedul, Mitsuo Toda and Nobuyuki Mase
Polymers 2022, 14(8), 1562; https://doi.org/10.3390/polym14081562 - 11 Apr 2022
Cited by 2 | Viewed by 2290
Abstract
Polyhemiaminal (PHA) polymers are a new class of thermosetting polymers that have recently gained attention owing to their high mechanical strength and excellent recycling behavior. However, low thermal stability is a common issue in PHA polymers due to the thermally labile crosslinked knots. [...] Read more.
Polyhemiaminal (PHA) polymers are a new class of thermosetting polymers that have recently gained attention owing to their high mechanical strength and excellent recycling behavior. However, low thermal stability is a common issue in PHA polymers due to the thermally labile crosslinked knots. Herein, crosslinked PHA polymer composites were synthesized by reacting formaldehyde with a precursor solution of 4,4ʹ-oxydianiline (ODA) and cyclodextrins (CDs) (α-, β-, and γ-). The material obtained under optimal conditions (ODA:CD molar ratio of 1:0.5, 37% aqueous solution of formaldehyde (formalin)) exhibited good film formability and high thermal stability with two characteristic decomposition phenomena and a high char yield. The early decomposition of CDs and char formation led to high thermal stability. Time-resolved NMR analysis was conducted to study hemiaminal bond formation via a condensation reaction between ODA and formaldehyde. Furthermore, PHA matrix formation was confirmed by the dissolution of the deposited CD layer in a solution of N-methyl-2-pyrrolidinone containing 8–9 wt.% LiBr at 80 °C and FTIR analysis. Based on the elemental analysis results, PHA network formation was confirmed by considering a single unit of the PHA network with CD composition, including the solvent and water. Full article
Show Figures

Graphical abstract

15 pages, 3412 KiB  
Article
Sequencing Biodegradable and Potentially Biobased Polyesteramide of Sebacic Acid and 3-Amino-1-propanol by MALDI TOF-TOF Tandem Mass Spectrometry
by Paola Rizzarelli, Stefania La Carta, Emanuele Francesco Mirabella, Marco Rapisarda and Giuseppe Impallomeni
Polymers 2022, 14(8), 1500; https://doi.org/10.3390/polym14081500 - 7 Apr 2022
Cited by 3 | Viewed by 2369
Abstract
Biodegradable and potentially biobased polyesteramide oligomers (PEA-Pro), obtained from melt condensation of sebacic acid and 3-amino-1-propanol, were characterized by nuclear magnetic resonance (NMR), matrix assisted laser desorption/ionization-time of flight/time of flight-mass spectrometry/mass spectrometry (MALDI-TOF/TOF-MS/MS), thermogravimetric analysis (TGA), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). NMR [...] Read more.
Biodegradable and potentially biobased polyesteramide oligomers (PEA-Pro), obtained from melt condensation of sebacic acid and 3-amino-1-propanol, were characterized by nuclear magnetic resonance (NMR), matrix assisted laser desorption/ionization-time of flight/time of flight-mass spectrometry/mass spectrometry (MALDI-TOF/TOF-MS/MS), thermogravimetric analysis (TGA), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). NMR analysis showed the presence of hydroxyl and amino terminal groups as well as carboxylic groups of the sebacate moiety. Hydroxyl and carboxyl termination had the same abundance, while the amine termination was 2.7-times less frequent. Information regarding the fragmentation pathways and ester/amide bond sequences was obtained by MALDI-TOF/TOF-MS/MS analysis performed on sodiated adducts of cyclic species and linear oligomers. Different end groups did not influence the observed fragmentation. Three fragmentation pathways were recognized. The β-hydrogen-transfer rearrangement, which leads to the selective scission of the –O–CH2– bonds, was the main mechanism. Abundant product ions originating from –CH2–CH2– (β–γ) bond cleavage in the sebacate moiety and less abundant ions formed by –O–CO– cleavages were also detected. TGA showed a major weight loss (74%) at 381 °C and a second degradation step (22% weight loss) at 447 °C. Py-GC/MS performed in the temperature range of 350–400 °C displayed partial similarity between the degradation products and the main fragments detected in the MALDI-TOF/TOF-MS/MS experiments. Degradation products derived from amide bonds were related to the formation of CN groups, in agreement with the literature. Full article
Show Figures

Figure 1

16 pages, 6201 KiB  
Article
Basalt Fiber Hybridization Effects on High-Performance Sisal-Reinforced Biocomposites
by Bernardo Zuccarello, Francesco Bongiorno and Carmelo Militello
Polymers 2022, 14(7), 1457; https://doi.org/10.3390/polym14071457 - 3 Apr 2022
Cited by 7 | Viewed by 2317
Abstract
The increasing attention given to environmental protection, largely through specific regulations on environmental impact and the recycling of materials, has led to a considerable interest of researchers in biocomposites, materials consisting of bio-based or green polymer matrixes reinforced by natural fibers. Among the [...] Read more.
The increasing attention given to environmental protection, largely through specific regulations on environmental impact and the recycling of materials, has led to a considerable interest of researchers in biocomposites, materials consisting of bio-based or green polymer matrixes reinforced by natural fibers. Among the various reinforcing natural fibers, sisal fibers are particularly promising for their good mechanical properties, low specific weight and wide availability on the current market. As proven in literature by various authors, the hybridization of biocomposites by synthetical fibers or different natural fibers can lead to an interesting improvement of the mechanical properties or, in turn, of the strength against environmental agents. Consequently, this can lead to a significant enlargement of their practical applications, in particular from quite common non-structural applications (dashboards, fillings, soundproofing, etc.) towards semi-structural (panels, etc.) and structural applications (structural elements of civil construction and/or machine components). Hybridizations with natural fibers or with ecofriendly basalt fibers are the most interesting ones, since they permit the improvement of the biocomposite’s performance without an appreciable increment on environmental impact, as occurs instead for synthetic fiber hybridizations that are also widely proposed in the literature. In order to further increase the mechanical performance and, above all, to reduce the aging effects on high-performance sisal-reinforced biocomposites due to environmental agents, the hybridization of such biocomposites with basalt fibers are studied with tensile, compression and delamination tests performed by varying the exposition to environmental agents. In brief, the experimental analysis has shown that hybridization can lead to further enhancements of mechanical performance (strength and stiffness) that increase with basalt volume fraction and can lead to appreciable reductions in the aging effects on mechanical performance by simple hybridization of the surface laminae. Therefore, such a hybridization can be advantageously used in all practical outdoor applications in which high-performance sisal biocomposites can be exposed to significant environmental agents (temperature, humidity, UV). Full article
(This article belongs to the Special Issue High-Performance Biocomposite Reinforced by Natural Fibers)
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
Threonine-Based Stimuli-Responsive Nanoparticles with Aggregation-Induced Emission-Type Fixed Cores for Detection of Amines in Aqueous Solutions
by Keita Kataoka, Kazuhiro Nakabayashi, Chen-Tsyr Lo and Hideharu Mori
Polymers 2022, 14(7), 1362; https://doi.org/10.3390/polym14071362 - 27 Mar 2022
Cited by 2 | Viewed by 2076
Abstract
Stimuli-responsive polymeric nanoparticles (NPs) exhibit reversible changes in the dispersion or aggregation state in response to external stimuli. In this context, we designed and synthesized core-shell NPs with threonine-containing weak polyelectrolyte shells and fluorescent cross-linked cores, which are applicable for the detection of [...] Read more.
Stimuli-responsive polymeric nanoparticles (NPs) exhibit reversible changes in the dispersion or aggregation state in response to external stimuli. In this context, we designed and synthesized core-shell NPs with threonine-containing weak polyelectrolyte shells and fluorescent cross-linked cores, which are applicable for the detection of pH changes and amine compounds in aqueous solution. Stable and uniform NP(dTh) and NP(Fl), consisting of fluorescent symmetric diphenyl dithiophene (dTh) and diphenyl fluorene (Fl) cross-linked cores, were prepared by site-selective Suzuki coupling reactions in self-assembled block copolymer. NP(Fl) with the Fl unit in the core showed a high fluorescence intensity in different solvents, which is regarded as an aggregation-induced emission-type NP showing strong emission in aggregated states in the cross-linked core. Unimodal NPs were observed in water at different pH values, and the diameter of NP(Fl) changed from 122 (pH = 2) to 220 nm (pH = 11). Furthermore, pH-dependent changes of the fluorescence peak positions and intensities were detected, which may be due to the core aggregation derived from the deprotonation of the threonine-based shell fragment. Specific interactions between the threonine-based shell of NP(Fl) and amine compounds (triethylamine and p-phenylenediamine) resulted in fluorescence quenching, suggesting the feasibility of fluorescent amine detection. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Graphical abstract

12 pages, 2178 KiB  
Article
Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures
by Eider Berganza, Gurunath Apte, Srivatsan K. Vasantham, Thi-Huong Nguyen and Michael Hirtz
Polymers 2022, 14(7), 1327; https://doi.org/10.3390/polym14071327 - 25 Mar 2022
Cited by 5 | Viewed by 3504
Abstract
Three-dimensional printing at the micro-/nanoscale represents a new challenge in research and development to achieve direct printing down to nanometre-sized objects. Here, FluidFM, a combination of microfluidics with atomic force microscopy, offers attractive options to fabricate hierarchical polymer structures at different scales. However, [...] Read more.
Three-dimensional printing at the micro-/nanoscale represents a new challenge in research and development to achieve direct printing down to nanometre-sized objects. Here, FluidFM, a combination of microfluidics with atomic force microscopy, offers attractive options to fabricate hierarchical polymer structures at different scales. However, little is known about the effect of the substrate on the printed structures and the integration of (bio)functional groups into the polymer inks. In this study, we printed micro-/nanostructures on surfaces with different wetting properties, and integrated molecules with different functional groups (rhodamine as a fluorescent label and biotin as a binding tag for proteins) into the base polymer ink. The substrate wetting properties strongly affected the printing results, in that the lateral feature sizes increased with increasing substrate hydrophilicity. Overall, ink modification only caused minor changes in the stiffness of the printed structures. This shows the generality of the approach, as significant changes in the mechanical properties on chemical functionalization could be confounders in bioapplications. The retained functionality of the obtained structures after UV curing was demonstrated by selective binding of streptavidin to the printed structures. The ability to incorporate binding tags to achieve specific interactions between relevant proteins and the fabricated micro-/nanostructures, without compromising the mechanical properties, paves a way for numerous bio and sensing applications. Additional flexibility is obtained by tuning the substrate properties for feature size control, and the option to obtain functionalized printed structures without post-processing procedures will contribute to the development of 3D printing for biological applications, using FluidFM and similar dispensing techniques. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Graphical abstract

13 pages, 3435 KiB  
Article
One-Pot Green Preparation of Fluorescent Cellulose Nanofibers
by Qilin Lu, Jiayin Wu, Hanchen Wang and Biao Huang
Polymers 2022, 14(7), 1313; https://doi.org/10.3390/polym14071313 - 24 Mar 2022
Cited by 6 | Viewed by 2515
Abstract
Fluorescent cellulose nanofibers (FCNFs), with a high yield, were prepared via one-pot hydrolysis and the grafting reaction of cellulose with thiazolipyridine carboxylic acid (TPCA). The hydrolysis and Fischer esterification of cellulose were conducted under microwave-hydrothermal conditions; meanwhile, TPCA formation was induced by the [...] Read more.
Fluorescent cellulose nanofibers (FCNFs), with a high yield, were prepared via one-pot hydrolysis and the grafting reaction of cellulose with thiazolipyridine carboxylic acid (TPCA). The hydrolysis and Fischer esterification of cellulose were conducted under microwave-hydrothermal conditions; meanwhile, TPCA formation was induced by the dehydration reaction between L-cysteine and citric acid. The effects of the reaction temperature and reaction time on the yield and performance of FCNF were investigated. The morphology and size, surface chemical property, crystal structure, thermostability, and fluorescent performance of FCNF were characterized. The results revealed that the yield of FCNF reached 73.2% under a microwave power of 500 W, reaction temperature of 110 °C, and reaction time of 5 h. The FCNF obtained presents a short rod-like morphology. The crystallinity of the FCNFs is 80%, and their thermal stability did not decline significantly. Additionally, the fluorescent performance of the FCNFs is excellent, which results in them having good sensitivity to chloride ions. The good fluorescent performance and significant responsiveness to chloride ions of FCNFs lead to them having broad prospects in bio-labeling, biosensing, information storage, chloride ion detection, among others. Full article
(This article belongs to the Special Issue Synthesis and Application of Cellulose-Based Composites)
Show Figures

Figure 1

17 pages, 4483 KiB  
Article
Development and Evaluation of Nanoparticles-in-Film Technology to Achieve Extended In Vivo Exposure of MK-2048 for HIV Prevention
by Xin Tong, Sravan Kumar Patel, Jing Li, Dorothy Patton, Elaine Xu, Peter L. Anderson, Urvi Parikh, Yvonne Sweeney, Julie Strizki, Sharon L. Hillier and Lisa C. Rohan
Polymers 2022, 14(6), 1196; https://doi.org/10.3390/polym14061196 - 16 Mar 2022
Cited by 2 | Viewed by 2586
Abstract
MK-2048 is a second-generation integrase inhibitor active against HIV, which has been applied vaginally using ring formulations. In this work, a nanoparticle-in-film technology was developed as a discrete pre-exposure prophylactic product option against HIV for an extended duration of use. A film platform [...] Read more.
MK-2048 is a second-generation integrase inhibitor active against HIV, which has been applied vaginally using ring formulations. In this work, a nanoparticle-in-film technology was developed as a discrete pre-exposure prophylactic product option against HIV for an extended duration of use. A film platform loaded with poly (lactic-co-glycolic acid) nanoparticles (PNP) encapsulating MK-2048 was engineered. MK-2048 PNPs were loaded into films that were manufactured via the solvent casting method. Physicochemical and mechanical properties, in vitro efficacy, Lactobacillus compatibility, in vitro and ex vivo permeability, and in vivo pharmacokinetics in macaques were evaluated. PNPs with a mean diameter of 382.2 nm and −15.2 mV zeta potential were obtained with 95.2% drug encapsulation efficiency. PNP films showed comparable in vitro efficacy to free MK-2048 (IC50 0.46 vs. 0.54 nM) and were found to have no impact on Lactobacillus. MK-2048 encapsulated in PNPs showed an increase in permeability (>4-fold) compared to the free MK-2048 in MDCKII cell lines. Furthermore, PNPs had higher ectocervical tissue permeability (1.7-fold) compared to free MK-2048. PNP films showed sustained drug levels for at least 3 weeks in the macaque vaginal fluid. This work demonstrates the synergy of integrating nanomedicine and polymeric film technology to achieve sustained vaginal drug delivery. Full article
Show Figures

Figure 1

16 pages, 2929 KiB  
Article
Evaluation of the Performance of a ZnO-Nanoparticle-Coated Hydrocolloid Patch in Wound Healing
by Van Anh Thi Le, Tung X. Trinh, Pham Ngoc Chien, Nguyen Ngan Giang, Xin-Rui Zhang, Sun-Young Nam and Chan-Yeong Heo
Polymers 2022, 14(5), 919; https://doi.org/10.3390/polym14050919 - 25 Feb 2022
Cited by 18 | Viewed by 3644
Abstract
Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide [...] Read more.
Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide nanoparticles (ZnO-NPs) with hydrocolloids for a less expensive and more effective UV-blocking treatment of wounds. Using Sprague–Dawley rat models, we showed that, during 10-day treatment, a hydrocolloid patch covered with ZnO-NPs (ZnO-NPs-HC) macroscopically and microscopically stimulated the wound healing rate and improved wound healing in the inflammation phase as shown by reducing of pro-inflammatory cytokines (CD68, IL-8, TNF-α, MCP-1, IL-6, IL-1β, and M1) up to 50%. The results from the in vitro models (RAW264.7 cells) also supported these in vivo results: ZnO-NPs-HCs improved wound healing in the inflammation phase by expressing a similar level of pro-inflammatory mediators (TNF-α and IL-6) as the negative control group. ZnO-NPs-HCs also encouraged the proliferation phase of the healing process, which was displayed by increasing expression of fibroblast biomarkers (α-SMA, TGF-β3, vimentin, collagen, and M2) up to 60%. This study provides a comprehensive analysis of wound healing by measuring the biomarkers in each phase and suggests a cheaper method for wound dressing. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 782 KiB  
Article
Bioactive Films Based on Starch from White, Red, and Black Rice to Food Application
by Luan Ramos da Silva, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2022, 14(4), 835; https://doi.org/10.3390/polym14040835 - 21 Feb 2022
Cited by 6 | Viewed by 3161
Abstract
Packages from renewable sources have been the focus of many studies, due to the consumer needs for high-quality food, environmental concern related to the inadequate discard of packaging, low percentage of packaging recycling, and starch application by a viable method. Thus, this work [...] Read more.
Packages from renewable sources have been the focus of many studies, due to the consumer needs for high-quality food, environmental concern related to the inadequate discard of packaging, low percentage of packaging recycling, and starch application by a viable method. Thus, this work aimed to develop bioactive packages based on white, red, and black rice starch and analyze the influence of macromolecule and plasticizer type, even its blends, on the characteristics of films. Films were characterized by color, opacity, thickness, water solubility, water vapor permeability, and bioactive properties. The use of rice starch in the development of edible and/or biodegradable films was feasible, with all the formulations tested presenting a homogeneous matrix and the films obtained varying in hue, to the naked eye, as a function of the starch used. Variation of the type of starch and plasticizer, as well as the concentrations of the same, resulted in films with differences in all studied properties. Films prepared with 5% of starch and 30% of sorbitol showed phenolic compounds and antioxidant capacity, using the DPPH and ABTS methods, indicating that these can be considered bioactive packages and also suitable for food application. Full article
(This article belongs to the Special Issue Biopolymers from Renewable Sources and Their Applications)
Show Figures

Graphical abstract

17 pages, 3431 KiB  
Article
Poly(vinyl pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Properties
by Katerina Mavronasou, Alexandra Zamboulis, Panagiotis Klonos, Apostolos Kyritsis, Dimitrios N. Bikiaris, Raffaello Papadakis and Ioanna Deligkiozi
Polymers 2022, 14(4), 804; https://doi.org/10.3390/polym14040804 - 19 Feb 2022
Cited by 18 | Viewed by 8408
Abstract
A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical [...] Read more.
A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical properties of the copolymers, and notably the solvation properties, was further studied. The structure of the synthesized polymers and the quaternization degrees were determined by infrared and nuclear magnetic spectroscopies, while their thermal characteristics were studied by differential scanning calorimetry and their thermal stability and degradation by thermogravimetric analysis (TG-DTA). Attention was given to their optical properties, where UV-Vis and diffuse reflectance spectroscopy (DRS) measurements were carried out. The optical band gap of the polymers was calculated and correlated with the degree of quaternization. The study was further orientated towards the solvation properties of the polymers in binary solvent mixtures that strongly depend on the degree of quaternization, enabling a better understanding of the key polymer (solute)-solvent interactions. The assessment of the underlying solvation phenomena was performed in a system of different ratios of DMSO/H2O and the solvatochromic indicator used was Reichardt’s dye. Solvent polarity parameters have a significant effect on the visible spectra of the nitrogen quaternization of PVP studied in this work and a detailed path towards this assessment is presented. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers)
Show Figures

Figure 1

13 pages, 2135 KiB  
Article
Thermally Degradable Poly(n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling
by Michael R. Martinez, Ziye Zhuang, Megan Treichel, Julia Cuthbert, Mingkang Sun, Joanna Pietrasik and Krzysztof Matyjaszewski
Polymers 2022, 14(4), 713; https://doi.org/10.3390/polym14040713 - 12 Feb 2022
Cited by 2 | Viewed by 3441
Abstract
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups [...] Read more.
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment. Full article
(This article belongs to the Collection State-of-the-Art Polymer Science and Technology in Poland)
Show Figures

Graphical abstract

24 pages, 59957 KiB  
Article
Multi-Analytical Investigations of Andy Warhol’s “Orange Car Crash”: Polymeric Materials in Modern Paints
by Valentina Pintus, Anthony J. Baragona, Federica Cappa, Christa Haiml, Christina Hierl, Katja Sterflinger and Manfred Schreiner
Polymers 2022, 14(3), 633; https://doi.org/10.3390/polym14030633 - 7 Feb 2022
Cited by 4 | Viewed by 3452
Abstract
This work presents strategic multi-analytical investigations performed on “Orange Car Crash” by Andy Warhol in order to make a well-informed conservation decision. For determining the type of binding medium used in the artwork, Pyrolysis–Gas Chromatography/Mass Spectrometry (Py–GC/MS) and Thermally Assisted Hydrolysis [...] Read more.
This work presents strategic multi-analytical investigations performed on “Orange Car Crash” by Andy Warhol in order to make a well-informed conservation decision. For determining the type of binding medium used in the artwork, Pyrolysis–Gas Chromatography/Mass Spectrometry (Py–GC/MS) and Thermally Assisted Hydrolysis and Methylation of GC/MS (THM–GC/MS) were employed. The presence of a coating was investigated by Py–GC/MS. Moreover, the comprehension and elucidation of the paint stratigraphy were studied by examining cross-sections of samples taken from both canvases with Optical Microscopy (OM) under reflected visible (Vis) and ultraviolet light (UV) and by Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM–EDX). The investigation of possible synthetic organic pigments (SOPs) and extenders was performed by µ-Raman spectroscopy, while micro-Attenuated Total Reflection of Fourier-Transform Attenuated Total Reflection (µ-ATR–FTIR) allowed us to assign each component detected by Py–GC/MS or THM–GC/MS to a specific layer. The data collected from “Orange Car Crash” show mostly the application of acrylic-based paint as well as alkyd with rosin acids-based ink, thus providing fundamental information about the paint stratigraphy and chemical composition of each layer. In addition to the goal of informing an appropriate conservation–restoration strategy, this work represents a rare scientific study of a work by Andy Warhol. Full article
(This article belongs to the Special Issue Polymeric Materials in Modern-Contemporary Art)
Show Figures

Figure 1

12 pages, 1357 KiB  
Article
Enhancing Mechanical Properties of Graft-Type Nanocomposites Using Organically Modified SiO2 and Polypropylene Containing Reactive Methoxy Groups
by Dongzhi Zhu, Eiji Kurahashi, Hui You, Toru Wada, Patchanee Chammingkwan and Toshiaki Taniike
Polymers 2022, 14(3), 563; https://doi.org/10.3390/polym14030563 - 30 Jan 2022
Cited by 10 | Viewed by 3307
Abstract
In situ grafting of a reactive matrix and nanofillers is a promising strategy to fabricate graft-type polypropylene (PP)-based nanocomposites, where the grafting efficiency is affected by the initial dispersion of nanofillers in the matrix. In this work, influences of surface organic modification of [...] Read more.
In situ grafting of a reactive matrix and nanofillers is a promising strategy to fabricate graft-type polypropylene (PP)-based nanocomposites, where the grafting efficiency is affected by the initial dispersion of nanofillers in the matrix. In this work, influences of surface organic modification of nanofillers were investigated on properties of PP/SiO2 nanocomposites using poly(propylene-co-octenyltrimethoxysilane) as a reactive matrix. The surface modification of SiO2, especially with longer alkyl chains, led to improved dispersion of nanoparticles, thus promoting the grafting reaction and mechanical properties. The combination of in situ grafting and surface modification of nanofillers provided several benefits, most notably in balancing the strength and the toughness, which could not be achieved by the grafting alone. Full article
(This article belongs to the Special Issue Polyolefins: The Ever-Thriving Thermoplastics)
Show Figures

Graphical abstract

17 pages, 2730 KiB  
Article
Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications
by Artyom S. Pryadko, Vladimir V. Botvin, Yulia R. Mukhortova, Igor Pariy, Dmitriy V. Wagner, Pavel P. Laktionov, Vera S. Chernonosova, Boris P. Chelobanov, Roman V. Chernozem, Maria A. Surmeneva, Andrei L. Kholkin and Roman A. Surmenev
Polymers 2022, 14(3), 529; https://doi.org/10.3390/polym14030529 - 28 Jan 2022
Cited by 26 | Viewed by 4045
Abstract
Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 [...] Read more.
Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio–0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168–169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Graphical abstract

16 pages, 3852 KiB  
Article
Synthesis of Polyacids by Copolymerization of l-Lactide with MTC-COOH Using Zn[(acac)(L)H2O] Complex as an Initiator
by Joanna Jaworska, Michał Sobota, Małgorzata Pastusiak, Michał Kawalec, Henryk Janeczek, Piotr Rychter, Kamila Lewicka and Piotr Dobrzyński
Polymers 2022, 14(3), 503; https://doi.org/10.3390/polym14030503 - 27 Jan 2022
Cited by 3 | Viewed by 2283
Abstract
This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side [...] Read more.
This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of l-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn[(acac)(L)H2O] (where: L—N-(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator. The differences in the kinetics of both reactions and their courses were pictured. The reactivity of the MTC-COOH monomer without a blocking group in the studied co-polymerization was much higher, even slightly higher than l-lactide, which allowed the practically complete conversion of the comonomers in a much shorter time. The basic final properties of the obtained copolymers and the microstructures of their chains were determined. The single-step synthesis of biodegradable polyacids was much simpler. Contrary to the conventional method, this made it possible to obtain copolymers containing all carbonate units with carboxyl groups, without even traces of the heavy metals used in the deprotection of the carboxyl groups, the presence of which is known to be very difficult to completely remove from the copolymers obtained in the two-step process. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Graphical abstract

12 pages, 2227 KiB  
Article
Lignin Distribution on Cell Wall Micro-Morphological Regions of Fibre in Developmental Phyllostachys pubescens Culms
by Bo Liu, Lina Tang, Qian Chen, Liming Zhu, Xianwu Zou, Botao Li, Qin Zhou, Yuejin Fu and Yun Lu
Polymers 2022, 14(2), 312; https://doi.org/10.3390/polym14020312 - 13 Jan 2022
Cited by 10 | Viewed by 1898
Abstract
Bamboo is a natural fibre reinforced composite with excellent performance which is, to a certain extent, an alternative to the shortage of wood resources. The heterogeneous distribution and molecular structure of lignin is one of the factors that determines its performance, and it [...] Read more.
Bamboo is a natural fibre reinforced composite with excellent performance which is, to a certain extent, an alternative to the shortage of wood resources. The heterogeneous distribution and molecular structure of lignin is one of the factors that determines its performance, and it is the key and most difficult component in the basic research into the chemistry of bamboo and in bamboo processing and utilization. In this study, the distribution of lignin components and lignin content in micro-morphological regions were measured in semi-quantitative level by age and radial location by means of visible-light microspectrophotometry (VLMS) coupled with the Wiesner and Maule reaction. There as guaiacyl lignin and syringyl lignin in the cell wall of the fibre. Lignin content of the secondary cell wall and cell corner increased at about 10 days, reached a maximum at 1 year, and then decreased gradually. From 17 days to 4 years, the lignin content of the secondary cell wall in the outer part of bamboo is higher than that in the middle part (which is, in turn, higher than that in the inner part of the bamboo). VLSM results of the micro-morphological regions showed that bamboo lignification developed by aging. Guaiacyl and syringl lignin units can be found in the cell wall of the fibre, parenchyma, and vessel. There was a difference in lignin content among different ages, different radial location, and different micro-morphological regions of the cell wall. The fibre walls were rich in guaiacyl lignin in the early stage of lignification and rich in syringyl units in the later stage of lignification. The guaiacyl and syringyl lignin deposition of bamboo green was earlier than that of the middle part of bamboo culm, and that of the middle part of bamboo culm was earlier than that of bamboo yellow. The single molecule lignin content of the thin layer is higher than that of thick layers, while the primary wall is higher than the secondary cell wall, showing that lignin deposition is consistent with the rules of cell wall formation. The obtained cytological information is helpful to understand the origin of the anisotropic, physical, mechanical, chemical, and machining properties of bamboo. Full article
(This article belongs to the Special Issue Eco Polymeric Materials and Natural Polymer)
Show Figures

Graphical abstract

15 pages, 2138 KiB  
Article
Anomalous Thermal Characteristics of Poly(ionic liquids) Derived from 1-Butyl-2,3-dimethyl-4-vinylimidazolium Salts
by Fan Yang, Meng Zhao, Darren Smith, Peggy Cebe, Sam Lucisano, Thomas Allston and Thomas W. Smith
Polymers 2022, 14(2), 254; https://doi.org/10.3390/polym14020254 - 8 Jan 2022
Cited by 1 | Viewed by 2141
Abstract
The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. [...] Read more.
The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. The methyl substituent at the 2-position also served to expose the importance of H-bonding for the attractive potential between imidazolium moiety and anions in polymers without a methyl group at the 2-position. The thermal characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts and corresponding poly(1-ethyl-3-methyl-4-vinylimidazolium) salts were evaluated. While the mid-point glass transition temperatures, Tg-mid, for 1-ethyl-3-methyl-4-vinylimidazolium polymers with CF3SO3, (CF3SO2)2N and PF6 counterions, were 153 °C, 88 °C and 200 °C, respectively, the Tg-mid values for 1-butyl-2,3-dimethyl-4vinylimidazolium polymers with corresponding counter-ions were tightly clustered at 98 °C, 99 °C and 84 °C, respectively. This dramatically reduced influence of the anion type on the glass transition temperature was attributed to the increased distance between the center of the anions and cations in the 1-butyl-2,3-dimethyl-4-vinylimidazolium polymer set, and minimal H-bonding interactions between the respective anions and the 1-butyl-2,3-dimethyl-4-vinylimidazolium moiety. It is believed that this is the first observation of substantial independence of the glass transition of an ionic polymer on the nature of its counterion. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

13 pages, 13478 KiB  
Article
Construction of a (NNN)Ru-Incorporated Porous Organic Polymer with High Catalytic Activity for β-Alkylation of Secondary Alcohols with Primary Alcohols
by Yao Cui, Jixian Wang, Lei Yu, Ying Xu, David J. Young, Haiyan Li and Hongxi Li
Polymers 2022, 14(2), 231; https://doi.org/10.3390/polym14020231 - 7 Jan 2022
Cited by 4 | Viewed by 2083
Abstract
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols [...] Read more.
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions. Full article
(This article belongs to the Special Issue High Performance Porous Polymers)
Show Figures

Figure 1

14 pages, 6932 KiB  
Article
Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding
by Antonio Pantano, Carmelo Militello, Francesco Bongiorno and Bernardo Zuccarello
Polymers 2022, 14(1), 154; https://doi.org/10.3390/polym14010154 - 31 Dec 2021
Cited by 13 | Viewed by 1888
Abstract
The use of natural fiber-based composites is on the rise in many industries. Thanks to their eco-sustainability, these innovative materials make it possible to adapt the production of components, systems and machines to the increasingly stringent regulations on environmental protection, while at the [...] Read more.
The use of natural fiber-based composites is on the rise in many industries. Thanks to their eco-sustainability, these innovative materials make it possible to adapt the production of components, systems and machines to the increasingly stringent regulations on environmental protection, while at the same time reducing production costs, weight and operating costs. Optimizing the mechanical properties of biocomposites is an important goal of applied research. In this work, using a new numerical approach, the effects of the volume fraction, average length, distribution of orientation and curvature of fibers on the Young’s modulus of a biocomposite reinforced with short natural fibers were studied. Although the proposed approach could be applied to any biocomposite, sisal fibers and an eco-sustainable thermosetting matrix (green epoxy) were considered in both simulations and the associated experimental assessment. The results of the simulations showed the following effects of the aforementioned parameters on Young’s modulus: a linear growth with the volume fraction, nonlinear growth as the length of the fibers increased, a reduction as the average curvature increased and an increase in stiffness in the x-y plane as the distribution of fiber orientation in the z direction decreased. Full article
(This article belongs to the Special Issue High-Performance Biocomposite Reinforced by Natural Fibers)
Show Figures

Figure 1

11 pages, 3830 KiB  
Article
Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants
by Hyelim Kim, Ji-Su Kim and Wonyoung Jeong
Polymers 2022, 14(1), 42; https://doi.org/10.3390/polym14010042 - 23 Dec 2021
Cited by 3 | Viewed by 2731
Abstract
Antimony oxide (ATO) is used mainly as a flame retardant, but it is classified as a hazardous substance. Therefore, regulations on the use of antimony trioxide (ATO(3)) and antimony pentoxide (ATO(5)) in textile products are being developed. Accordingly, there is a need for [...] Read more.
Antimony oxide (ATO) is used mainly as a flame retardant, but it is classified as a hazardous substance. Therefore, regulations on the use of antimony trioxide (ATO(3)) and antimony pentoxide (ATO(5)) in textile products are being developed. Accordingly, there is a need for alternative flame retardants. In this study, antimony tetroxide (ATO(4)), which has higher thermal stability and resistance to acids and alkalis than ATO(3) or ATO(5), was selected to assess its use as an alternative flame retardant. First, ATO(3) or ATO(4) were added to poly(acrylonitrile-co-vinylidene chloride) (PANVDC), and the film and wet-spun fiber were prepared. The PANVDC film with flame retardants was prepared to evaluate the flame retardancy and the mechanism of action of the flame retardants. Flame retardancy analysis showed that a limiting oxygen index of 31.2% was obtained when ATO(4) was added, which was higher than when ATO(3) was used. Subsequently, PANVDC fibers with antimony oxide were manufactured and showed improved mechanical and thermal properties when ATO(4) was used, compared to when ATO(3) was tested. In addition, migration analysis due to antimony in the fiber confirmed that the elution amount was below the acceptable standard when PANVDC fibers with ATO(4) were added. Therefore, based on these results, the flame-retardant and thermal properties of antimony tetroxide were superior to antimony trioxide, and it was confirmed that ATO(4) could be used as an alternative flame retardant to ATO(3). Full article
(This article belongs to the Special Issue Fire-Safe Polymer Composites: Structure and Application)
Show Figures

Figure 1

17 pages, 4555 KiB  
Article
Chitosan Membrane Containing Copaiba Oil (Copaifera spp.) for Skin Wound Treatment
by Sheila Barbosa Paranhos, Elisângela da Silva Ferreira, Caio Augusto de Almeida Canelas, Simone Patrícia Aranha da Paz, Marcele Fonseca Passos, Carlos Emmerson Ferreira da Costa, Alisson Clay Rios da Silva, Sergio Neves Monteiro and Verônica Scarpini Candido
Polymers 2022, 14(1), 35; https://doi.org/10.3390/polym14010035 - 23 Dec 2021
Cited by 12 | Viewed by 3702
Abstract
The interaction of copaiba oil in the polymer matrix of chitosan can produce a favorable synergistic effect and potentiate properties. Indeed, the bioactive principles present in copaiba oil have anti-inflammatory and healing action. In the present work, chitosan membranes containing different contents of [...] Read more.
The interaction of copaiba oil in the polymer matrix of chitosan can produce a favorable synergistic effect and potentiate properties. Indeed, the bioactive principles present in copaiba oil have anti-inflammatory and healing action. In the present work, chitosan membranes containing different contents of copaiba oil copaíba (0.1, 0.5, 1.0 and 5.0% (v/v)) were for the first time investigated. The membranes were developed by the casting method and analyzed for their morphology, degree of intumescence, moisture content, contact angle, Scanning Electron Microscope, and X-ray diffractometry. These chitosan/copaiba oil porous membranes disclosed fluid absorption capacity, hydrophilic surface, and moisture. In addition, the results showed that chitosan membranes with the addition of 1.0% (v/v) of copaiba oil presented oil drops with larger diameters, around 123.78 μm. The highest fluid absorption indexes were observed in chitosan membranes containing 0.1 and 0.5% (v/v) of copaiba oil. In addition, the copaiba oil modified the crystalline structure of chitosan. Such characteristics are expected to favor wound treatment. However, biological studies are necessary for the safe use of chitosan/copaiba oil membrane as a biomaterial. Full article
Show Figures

Graphical abstract

13 pages, 2383 KiB  
Article
Dielectric Elastomer Fiber Actuators with Aqueous Electrode
by Keita Shimizu, Toshiaki Nagai and Jun Shintake
Polymers 2021, 13(24), 4310; https://doi.org/10.3390/polym13244310 - 9 Dec 2021
Cited by 13 | Viewed by 4248
Abstract
Dielectric elastomer actuators (DEAs) are one of the promising actuation technologies for soft robotics. This study proposes a fiber-shaped DEA, namely dielectric elastomer fiber actuators (DEFAs). The actuator consisted of a silicone tube filled with the aqueous electrode (sodium chloride solution). Furthermore, it [...] Read more.
Dielectric elastomer actuators (DEAs) are one of the promising actuation technologies for soft robotics. This study proposes a fiber-shaped DEA, namely dielectric elastomer fiber actuators (DEFAs). The actuator consisted of a silicone tube filled with the aqueous electrode (sodium chloride solution). Furthermore, it could generate linear and bending actuation in a water environment, which acts as the ground side electrode. Linear-type DEFA and bending-type DEFA were fabricated and characterized to prove the concept. A mixture of Ecoflex 00–30 (Smooth-On) and Sylgard 184 (Dow Corning) was employed in these actuators for the tube part, which was 75.0-mm long with outer and inner diameters of 6.0 mm and 5.0 mm, respectively. An analytical model was constructed to design and predict the behavior of the devices. In the experiments, the linear-type DEFA exhibited an actuation strain and force of 1.3% and 42.4 mN, respectively, at 10 kV (~20 V/µm) with a response time of 0.2 s. The bending-type DEFA exhibited an actuation angle of 8.1° at 10 kV (~20 V/µm). Subsequently, a jellyfish-type robot was developed and tested, which showed the swimming speed of 3.1 mm/s at 10 kV and the driving frequency of 4 Hz. The results obtained in this study show the successful implementation of the actuator concept and demonstrate its applicability for soft robotics. Full article
(This article belongs to the Special Issue Elastomers in Electronic Applications in 2022)
Show Figures

Graphical abstract

15 pages, 2341 KiB  
Article
Composites Based on Natural Polymers and Microbial Biomass for Biosorption of Brilliant Red HE-3B Reactive Dye from Aqueous Solutions
by Daniela Suteu, Alexandra Cristina Blaga, Ramona Cimpoesu, Adrian Cătălin Puiţel and Ramona-Elena Tataru-Farmus
Polymers 2021, 13(24), 4314; https://doi.org/10.3390/polym13244314 - 9 Dec 2021
Cited by 11 | Viewed by 2553
Abstract
Natural polymers have proven to be extremely interesting matrices for the immobilization of microbial biomasses, via various mechanisms, in order to bring them into a form easier to handle—the form of composites. This article aimed to study composites based on a residual microbial [...] Read more.
Natural polymers have proven to be extremely interesting matrices for the immobilization of microbial biomasses, via various mechanisms, in order to bring them into a form easier to handle—the form of composites. This article aimed to study composites based on a residual microbial biomass immobilized in sodium alginate via an encapsulation technique as materials with adsorbent properties. Thus, this study focused on the residual biomass resulting from beer production (Saccharomyces pastorianus yeast, separated after the biosynthesis process by centrifugation and dried at 80 °C)—an important source of valuable compounds, used either as a raw material or for transformation into final products with added value. Thus, the biosorptive potential of this type of composite was tested—presenting in the form of spherical microcapsules 900 and 1500 μm in diameter—in a biosorption process applied to aqueous solutions containing the reactive dye Brilliant Red HE-3B (16.88–174.08 mg/L), studied in a batch system. The preparation and characterization of the obtained polymeric composites (pHPZC, SEM, EDS and FTIR spectra) and an analysis of different equilibrium isotherms (Langmuir, Freundlich and Dubinin-Radushkevich—D–R) were investigated in order to estimate the quantitative characteristic parameters of the biosorption process, its thermal effects, and its possible mechanisms of action. The modelling of the experimental data led to the conclusion that the studied biosorption process took place after reaching the Langmuir isotherm (LI), and that the main mechanism was possibly physical, being spontaneous and probably exothermic according to the values obtained for the free energy of biosorption (E = 8.45–13.608 kJ/mol, from the DR equation), as well as the negative values for the Gibbs free energy and the enthalpy of biosorption (ΔH0 = −87.795 kJ/mol). The results obtained lead to the conclusion that encapsulation of this residual microbial biomass in sodium alginate leads to an easier-to-handle form of biomass, thus being an efficient biosorbent for static or dynamic operating systems for effluents containing moderate concentrations of reactive organic dyes. Full article
Show Figures

Graphical abstract

15 pages, 3107 KiB  
Article
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release
by He Lv, Shiri Guo, Gaoyi Zhang, Wanli He, Yonghui Wu and Deng-Guang Yu
Polymers 2021, 13(24), 4286; https://doi.org/10.3390/polym13244286 - 7 Dec 2021
Cited by 78 | Viewed by 4335
Abstract
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning [...] Read more.
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning processes. The developed acyclovir-polyacrylonitrile at the acyclovir nanohybrids was loaded with various amounts of acyclovir, which could be realized simply by adjusting the sheath fluid flow rates. Compared with the electrospun composite nanofibers from a single-fluid blending process, the nanohybrids showed advantages of modifying the acyclovir release profiles in the following aspects: (1) the initial release amount was more accurately and intentionally controlled; (2) the later sustained release was nearer to a zero-order kinetic process; and (3) the release amounts at different stages could be easily allocated by the sheath fluid flow rate. X-ray diffraction results verified that the acyclovir nanoparticles were in a crystalline state, and Fourier-transform infrared spectra verified that the drug acyclovir and the polymer polyacrylonitrile had a good compatibility. The protocols reported here could pave the way for developing new types of functional nanostructures. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

12 pages, 2350 KiB  
Article
Efficiency of High-Frequency Pressing of Spruce Laminated Timber Bonded with Casein Adhesives
by Andreas Herzog, Tobias Kerschbaumer, Ronald Schwarzenbrunner, Marius-Cătălin Barbu, Alexander Petutschnigg and Eugenia Mariana Tudor
Polymers 2021, 13(23), 4237; https://doi.org/10.3390/polym13234237 - 3 Dec 2021
Cited by 5 | Viewed by 2678
Abstract
This study identifies the importance of reducing press times by employing high-frequency pressing of spruce-laminated timber bound with sustainable casein adhesives. Spruce lamellas with dimensions of 12 × 10 × 75 cm were bonded into five-layered laminated timber and then separated into single-layer [...] Read more.
This study identifies the importance of reducing press times by employing high-frequency pressing of spruce-laminated timber bound with sustainable casein adhesives. Spruce lamellas with dimensions of 12 × 10 × 75 cm were bonded into five-layered laminated timber and then separated into single-layer solid wood panels. Three types of casein (acid casein from two sources and rennin) were used. To compare the effectiveness of the casein formulation, two control samples bonded with polyvinyl acetate (PVAc) adhesive were pressed at room temperature (20 °C) and also with high-frequency equipment. The tests included compression shear strength, modulus of rupture, modulus of elasticity and screw withdrawal resistance on the wood panel surface and in the glue line. The average values of casein-bonded samples compression strengths ranged from 1.16 N/mm2 and 2.28 N/mm2, for modulus of rupture (MOR) were measured 85 N/mm2 to 101 N/mm2 and for modulus of elasticity (MOE) 12,200 N/mm2 to 14,300 N/mm2. The screw withdrawal resistance (SWR) on the surface of the wood panels ranged from 91 N/mm to 117 N/mm and in the adhesive line from 91 N/mm to 118 N/mm. Control samples bonded with PVAc adhesive did not perform better for compression shear strength, MOR and MOE, but for SWR in the adhesive line with 114 N/mm. Casein-bonded spruce timber pressed with HF equipment represents a sustainable new product with reduced press times, hazardous emissions and improved workability. Full article
(This article belongs to the Collection Wood Composites)
Show Figures

Graphical abstract

14 pages, 662 KiB  
Article
Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits
by Nesrein M. Hashem, Nourhan S. Hosny, Nagwa I. El-Desoky and Mohamed G. Shehata
Polymers 2021, 13(23), 4191; https://doi.org/10.3390/polym13234191 - 30 Nov 2021
Cited by 14 | Viewed by 2940
Abstract
A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate [...] Read more.
A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate the quality of the nanofabricated synbiotic. The in vivo study was conducted using 40-day-old male growing rabbits (n = 16 rabbits/group) to evaluate the effect of the nanofabricated synbiotic on the health and growth performance of examined rabbits. Rabbits were equally allocated into four groups; (a) NCS, which received a basal diet supplemented with a noncapsulated 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, (b) LCS: those receiving a nanoencapsulated 5.5 × 1012 CFU SCY + 0.075 g MOLE/kg diet, (c) HCS: those receiving an 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, and (d) CON: those receiving a basal diet without treatment (control). The treatments continued from day 40 to day 89 of age. During the experimental period, growth performance variables, including body weight (BW), feed consumption, BW gain, and feed conversion ratio were recorded weekly. Blood samples were collected on day 40 of age and immediately before the start of the treatments to confirm the homogeneity of rabbits among groups. On day 89 of age, blood samples, intestinal, and cecal samples were individually collected from eight randomly selected rabbits. The size and polydispersity index of the nanofabricated synbiotic were 51.38 nm and 0.177, respectively. Results revealed that the encapsulation process significantly improved yeast survival through the gastrointestinal tract, specifically in stomach acidic conditions, and significantly increased in vitro inhibitory activities against tested pathogens. Furthermore, treatments had no negative effects on hematobiochemical variables but significantly improved levels of blood plasma, total protein, and insulin-like growth factor-l. Compared to the CON, NCS, and LCS treatments, the HCS treatment increased the amount of intestinal and cecal yeast cells (p < 0.05) and Lactobacillus bacteria (p < 0.05) and decreased number of Salmonella (p < 0.05) and Coliform (p = 0.08) bacteria. Likewise, both LCS and HCS significantly improved the small intestine and cecum lengths compared to CON and NCS. The HCS treatment also significantly improved BW gain and feed conversion compared to CON treatment, whereas the NCS and LCS treatments showed intermediate values. Conclusively, the nanoencapsulation process improved the biological efficiency of the innovative synbiotic used in this study. A high dose of encapsulated synbiotic balanced the gut microflora, resulting in the growth of rabbits during the fattening period. Full article
(This article belongs to the Special Issue Functional Alginate-Based Materials)
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
Study of Aquilaria crassna Wood as an Antifungal Additive to Improve the Properties of Natural Rubber as Air-Dried Sheets
by Phattarawadee Nun-Anan, Sunisa Suchat, Narissara Mahathaninwong, Narong Chueangchayaphan, Seppo Karrila and Suphatchakorn Limhengha
Polymers 2021, 13(23), 4178; https://doi.org/10.3390/polym13234178 - 29 Nov 2021
Cited by 3 | Viewed by 1780
Abstract
Fungal growth on rubber sheets confers inferior properties and an unpleasant odor to raw natural rubber (NR) and products made from it, and it causes environmental concerns. The purpose of the present work was to investigate the effects of Aquilaria crassna wood (ACW) [...] Read more.
Fungal growth on rubber sheets confers inferior properties and an unpleasant odor to raw natural rubber (NR) and products made from it, and it causes environmental concerns. The purpose of the present work was to investigate the effects of Aquilaria crassna wood (ACW) on the antifungal, physical and mechanical properties of NR as air-dried sheets (ADS) and ADS filled with ACW. The results show that the ACW-filled ADS had an increased Mooney viscosity, initial plasticity (PO), and high thermo-oxidation plasticity (i.e., high plasticity retention index PRI). Additionally, superior green strength was observed for the ACW-filled ADS over the ADS without additive because of chemical interactions between lignin and proteins in NR molecules eliciting greater gel formation. A significant inhibition of fungal growth on the NR products during storage over a long period (5 months) was observed for ACW-filled ADS. Thus, it can be concluded that ACW could be applied as an antifungal additive that reduces fungal growth. This is a practically important aspect for the rubber industry, as fungal growth tends to spoil and cause the loss of NR sheets during storage. Moreover, the ACW is active as an incense agent, reducing negative impacts from odors that fungi, on rubber surfaces, release. Therefore, these filled intermediate NR products provide added value through, an environmentally friendly approach, this is pleasant to customers. Full article
(This article belongs to the Special Issue Eco Polymeric Materials and Natural Polymer)
Show Figures

Graphical abstract

16 pages, 3152 KiB  
Article
Synthesis and Characterization of White-Light Luminescent End-Capped Polyimides Based on FRET and Excited State Intramolecular Proton Transfer
by Atsuko Tabuchi, Teruaki Hayakawa, Shigeki Kuwata, Ryohei Ishige and Shinji Ando
Polymers 2021, 13(22), 4050; https://doi.org/10.3390/polym13224050 - 22 Nov 2021
Cited by 5 | Viewed by 2720
Abstract
N-cyclohexylphthalimide-substituted trifluoroacetylamino (CF3CONH-) group (3TfAPI), which forms an intramolecular hydrogen bond, was synthesized, and it exhibited a bright yellow fluorescence owing to the excited-state intramolecular proton transfer (ESIPT) in the solution and crystalline states. In addition, CF3CONH-substituted phthalic [...] Read more.
N-cyclohexylphthalimide-substituted trifluoroacetylamino (CF3CONH-) group (3TfAPI), which forms an intramolecular hydrogen bond, was synthesized, and it exhibited a bright yellow fluorescence owing to the excited-state intramolecular proton transfer (ESIPT) in the solution and crystalline states. In addition, CF3CONH-substituted phthalic anhydride (3TfAPA) was synthesized, which was attached to the termini of a blue-fluorescent semi-aromatic polyimide (PI) chain. Owing to the efficient Förster resonance energy transfer (FRET) occurring from the main chain to the termini and the suppression of deprotonation (anion formation) at the 3TfAPA moiety by H2SO4 doping, the resulting PI films display bright white fluorescence. Moreover, the enhancement of the chain rigidity by substituting the diamine moiety results in an increase in the quantum yield of white fluorescence (Φ) by a factor of 1.7, due to the suppression of local molecular motion. This material design strategy is promising for preparing thermally stable white-light fluorescent PIs applicable to solar spectral convertors, displays, and ICT devices. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Graphical abstract

7 pages, 1002 KiB  
Article
Development of Long Wavelength Light-Absorptive Homopolymers Based on Pentaazaphenalene by Regioselective Oxidative Polymerization
by Hiroyuki Watanabe, Kazuo Tanaka and Yoshiki Chujo
Polymers 2021, 13(22), 4021; https://doi.org/10.3390/polym13224021 - 20 Nov 2021
Cited by 6 | Viewed by 1767
Abstract
We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at [...] Read more.
We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopolymers. In addition, it was observed that absorption bands were obtained in the longer wavelength region than the monomer. The computer calculation suggests that the highest occupied molecular orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the meta-substituted skeleton and distance dependency of the main-chain conjugation. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Graphical abstract

14 pages, 26790 KiB  
Article
Syntheses and Characteristics of Urushiol-Based Waterborne UV-Cured Wood Coatings
by Chia-Wei Chang, Jyun-Ya Liao and Kun-Tsung Lu
Polymers 2021, 13(22), 4005; https://doi.org/10.3390/polym13224005 - 19 Nov 2021
Cited by 6 | Viewed by 2719
Abstract
The manufacture and properties of waterborne UV-cured coatings (WUV coatings) by acetone process based on urushiol for wood finishing were investigated. Firstly, epoxide urushiol (EU) was prepared by reacting urushiol with epichlorohydrin. Secondly, the EU was reacted with acrylic acid to obtain acrylic [...] Read more.
The manufacture and properties of waterborne UV-cured coatings (WUV coatings) by acetone process based on urushiol for wood finishing were investigated. Firstly, epoxide urushiol (EU) was prepared by reacting urushiol with epichlorohydrin. Secondly, the EU was reacted with acrylic acid to obtain acrylic epoxide urushiol (AEU). Next, the prepolymers were synthesized by the reaction of AEU, 2,2-Bis(hydroxymethyl)propionic acid (DMPA), and isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI), respectively, using acetone as a solvent. The prepolymers were further neutralized by triethylamine (TEA) to obtain ionomers and dispersed in the water. After removing the acetone by vacuum distillation, the polyurethane dispersions (PUDs) were obtained. Finally, the WUV coatings were performed by adding a photoinitiator (Irgacure 2959). The products in the synthesized processes and the properties of the WUV coatings were examined. The results showed that the EU, AEU, prepolymers, and ionomers could be synthesized stably. The PUDs synthesized by the IPDI and HDI had a similar solid content of 25.2% and 26.2%, and similar pH values of 7.8 and 7.6. However, the IPDI-containing PUD displayed lower viscosity, smaller particle size, and a more even polydispersity index. The IPDI-containing WUV film displayed a higher hardness, gloss, and lightfastness. The HDI-containing WUV film possessed superior impact resistance. Both IPDI-containing and HDI-containing WUV films showed excellent adhesion, bending resistance, and mass retention, and demonstrated a potential for wood finishing. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 1729 KiB  
Article
FFF 3D Printing in Electronic Applications: Dielectric and Thermal Properties of Selected Polymers
by David Kalaš, Karel Šíma, Petr Kadlec, Radek Polanský, Radek Soukup, Jan Řeboun and Aleš Hamáček
Polymers 2021, 13(21), 3702; https://doi.org/10.3390/polym13213702 - 27 Oct 2021
Cited by 28 | Viewed by 3941
Abstract
The present study is a focused and comprehensive analysis of the dielectric and thermal properties of twenty-four 3D printed polymers suitable for fused filament fabrication (FFF) in electronic applications. The selected polymers include various thermoplastic elastomers, such as thermoplastics based on polycarbonate (PC), [...] Read more.
The present study is a focused and comprehensive analysis of the dielectric and thermal properties of twenty-four 3D printed polymers suitable for fused filament fabrication (FFF) in electronic applications. The selected polymers include various thermoplastic elastomers, such as thermoplastics based on polycarbonate (PC), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS-T). Their overall thermal behavior, including oxidation stability, glass transition, and melting temperature, was explored using simultaneous thermal analysis (STA) and differential scanning calorimetry (DSC). Considering their intended usage in electronic applications, the dielectric strength (Ep) and surface/volume resistivity (ρs/ρv) were comprehensively tested according to IEC 60243-1 and IEC 62631-3, respectively. The values of the dielectric constant (ε’) and loss factor (ε”) were also determined by broadband dielectric spectroscopy (BDS). While, on the one hand, exceptional dielectric properties were observed for some thermoplastic elastomers, the materials based on PCs, on the other hand, stood out from the others due to their high oxidation stability and above average dielectric properties. The low-cost materials based on PETG or ABS-T did not achieve thermal properties similar to those of the other tested polymers; nevertheless, considering the very reasonable price of these polymers, the obtained dielectric properties are promising for undemanding electronic applications. Full article
Show Figures

Graphical abstract

15 pages, 37769 KiB  
Article
3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage
by Chiao Feng and Sheng-Sheng Yu
Polymers 2021, 13(21), 3614; https://doi.org/10.3390/polym13213614 - 20 Oct 2021
Cited by 28 | Viewed by 5211
Abstract
Polyimide (PI)-based aerogels have been widely applied to aviation, automobiles, and thermal insulation because of their high porosity, low density, and excellent thermal insulating ability. However, the fabrication of PI aerogels is still restricted to the traditional molding process, and it is often [...] Read more.
Polyimide (PI)-based aerogels have been widely applied to aviation, automobiles, and thermal insulation because of their high porosity, low density, and excellent thermal insulating ability. However, the fabrication of PI aerogels is still restricted to the traditional molding process, and it is often challenging to prepare high-performance PI aerogels with complex 3D structures. Interestingly, renewable nanomaterials such as cellulose nanocrystals (CNCs) may provide a unique approach for 3D printing, mechanical reinforcement, and shape fidelity of the PI aerogels. Herein, we proposed a facile water-based 3D printable ink with sustainable nanofillers, cellulose nanocrystals (CNCs). Polyamic acid was first mixed with triethylamine to form an aqueous solution of polyamic acid ammonium salts (PAAS). CNCs were then dispersed in the aqueous PAAS solution to form a reversible physical network for direct ink writing (DIW). Further freeze-drying and thermal imidization produced porous PI/CNC composite aerogels with increased mechanical strength. The concentration of CNCs needed for DIW was reduced in the presence of PAAS, potentially because of the depletion effect of the polymer solution. Further analysis suggested that the physical network of CNCs lowered the shrinkage of aerogels during preparation and improved the shape-fidelity of the PI/CNC composite aerogels. In addition, the composite aerogels retained low thermal conductivity and may be used as heat management materials. Overall, our approach successfully utilized CNCs as rheological modifiers and reinforcement to 3D print strong PI/CNC composite aerogels for advanced thermal regulation. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Graphical abstract

12 pages, 3581 KiB  
Article
Elastic and Dynamic Heterogeneity in Aging Alginate Gels
by Raffaele Pastore, Ciro Siviello and Domenico Larobina
Polymers 2021, 13(21), 3618; https://doi.org/10.3390/polym13213618 - 20 Oct 2021
Cited by 4 | Viewed by 1912
Abstract
Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of “ultra-long-range” dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in [...] Read more.
Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of “ultra-long-range” dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in detectable ensemble fluctuations of the macroscopic material properties. We tackle this issue by performing replicated mechanical and dynamic light scattering (DLS) experiments on alginate gels, which recently emerged as a good model-system of anomalous aging. Here we show that some of the monitored quantities display wide variability, including large fluctuations in the stress relaxation and the occasional presence of two-step decay in the DLS decorrelation functions. By quantifying elastic fluctuation through the standard deviation of the elastic modulus and dynamic heterogeneities through the dynamic susceptibility, we find that both quantities do increase with the gel age over a comparable range. Our results suggest that large elastic fluctuations are closely related to ultra-long-range dynamical correlation, and therefore may be a general feature of anomalous aging in gels. Full article
(This article belongs to the Special Issue Biopolymers Characterisation)
Show Figures

Graphical abstract

19 pages, 10966 KiB  
Article
Preliminary Study for the Preparation of Transmucosal or Transdermal Patches with Acyclovir and Lidocaine
by Cristina-Adela Marioane, Mădălin Bunoiu, Mădălina Mateescu, Paula Sfîrloagă, Gabriela Vlase and Titus Vlase
Polymers 2021, 13(20), 3596; https://doi.org/10.3390/polym13203596 - 19 Oct 2021
Cited by 9 | Viewed by 2434
Abstract
The present study aimed to prepare and evaluate patches for the controlled release of lidocaine/acyclovir and the binary mixture between lidocaine: acyclovir in the oral cavity. Mucoside adhesive patches containing 12.5 mg/cm2 lidocaine/acyclovir or binary mixture base were developed by a solvent [...] Read more.
The present study aimed to prepare and evaluate patches for the controlled release of lidocaine/acyclovir and the binary mixture between lidocaine: acyclovir in the oral cavity. Mucoside adhesive patches containing 12.5 mg/cm2 lidocaine/acyclovir or binary mixture base were developed by a solvent casting method using sodium alginate, polyvinylpyrrolidone (PVP), glycerol (Gly), polyvinyl alcohol (PVA), and Span 80 (S). Binary mixtures between all components were prepared before the patches’ formulation in order to be able to check the substance compatibility. All formulated patches were analyzed by FT-IR spectroscopy, UV-Vis analysis, thermogravimetry (TGA), and scanning electron microscopy (SEM). FT-IR and TGA analyses were also used to check compatibility between binary mixtures. The study establishes which membranes are indicated in the controlled release of lidocaine/acyclovir and those membranes that contain both active principles. Membranes based on alginate, PVP, and PVA can be used to release the active substance. Simultaneously, membranes with SPAN used as a gelling agent were excluded due to the interaction with the active substance. The following membranes composition have been chosen for lidocaine release: Alginate:Gly and Alginate:Gly:PVP. At the same time, the following membrane compositions were chosen for acyclovir membranes: Alginate:Gly:PVP and Alginate:PVA:Gly. Both active substances could be included to obtain a homogeneous distribution only in the membrane based on alginate, PVA, and Gly. Full article
(This article belongs to the Special Issue Functional Alginate-Based Materials)
Show Figures

Figure 1

12 pages, 5288 KiB  
Article
Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes
by Christina Toigo, Milan Kracalik, Elke Bradt, Karl-Heinz Pettinger and Catia Arbizzani
Polymers 2021, 13(20), 3582; https://doi.org/10.3390/polym13203582 - 17 Oct 2021
Cited by 8 | Viewed by 3236
Abstract
Rheological properties of electrode slurries have been intensively studied for manifold different combinations of active materials and binders. Standardly, solvent-based systems are under use, but a trend towards water-based electrode manufacturing is becoming more and more important. The different solvent is beneficial in [...] Read more.
Rheological properties of electrode slurries have been intensively studied for manifold different combinations of active materials and binders. Standardly, solvent-based systems are under use, but a trend towards water-based electrode manufacturing is becoming more and more important. The different solvent is beneficial in terms of sustainability and process safety but is also accompanied by some disadvantages such as extraction of residual humidity and a higher complexity concerning slurry stability. Li4Ti5O12 (LTO) active material provides good long-term stability and can be processed in aqueous solutions. Combining the LTO active material with sodium alginate (SA) as a promising biobased polymer binder reveals good electrochemical properties but suffers from bad slurry stability. In this work, we present a comprehensive rheological study on material interactions in anode slurries consisting of LTO and SA, based on a complex interaction of differentially sized materials. The use of two different surfactants—namely, an anionic and non-ionic one, to enhance slurry stability, compared with surfactant-free slurry. Full article
(This article belongs to the Special Issue Functional Alginate-Based Materials)
Show Figures

Figure 1

19 pages, 3594 KiB  
Article
Membranes for Cation Transport Based on Dendronized Poly(epichlorohydrin-co-ethylene oxide). Part 1: The Effect of Dendron Amount and Column Orientation on Copolymer Mobility
by Alireza Zare, Borja Pascual-Jose, Silvia De la Flor, Amparo Ribes-Greus, Xavier Montané, José Antonio Reina and Marta Giamberini
Polymers 2021, 13(20), 3532; https://doi.org/10.3390/polym13203532 - 14 Oct 2021
Cited by 5 | Viewed by 1750
Abstract
Dendronized polyethers give rise to columnar LC structures which can successfully act as cation transport materials. Therefore, we prepared two different materials, based on Poly(epichlorohydrin-co-ethylene oxide) (PECH-co-EO) grafted with methyl 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, containing 20% or 40% modified units, respectively. The obtained polymers were [...] Read more.
Dendronized polyethers give rise to columnar LC structures which can successfully act as cation transport materials. Therefore, we prepared two different materials, based on Poly(epichlorohydrin-co-ethylene oxide) (PECH-co-EO) grafted with methyl 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, containing 20% or 40% modified units, respectively. The obtained polymers were characterized by differential scanning calorimetry (DSC), X-ray diffraction and optical microscopy between crossed polars (POM) and compared to the unmodified PECH-co-EO. In order to reach efficient transport properties, homeotropically oriented membranes were prepared by a fine-tuned thermal annealing treatment and were subsequently investigated by dynamic mechanical thermal analysis (DMTA) and dielectric thermal analysis (DETA). We found that the presence of the dendrons induces a main chain partial crystallization of the polyether chain and coherently increases the polymer Tg. This effect is more evident in the oriented membranes. As for copolymer orientation upon annealing, the cooling rate and the annealing temperature were the most crucial factors. DMTA and DETA confirmed that grafting with the dendron strongly hinders copolymer motions, but did not show great differences between unoriented and oriented membranes, regardless of the amount of dendrons. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes)
Show Figures

Graphical abstract

21 pages, 8458 KiB  
Article
Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings
by Amado Lacruz, Mireia Salvador, Miren Blanco, Karmele Vidal, Amaia M. Goitandia, Lenka Martinková, Martin Kyselka and Antxon Martínez de Ilarduya
Polymers 2021, 13(20), 3526; https://doi.org/10.3390/polym13203526 - 13 Oct 2021
Cited by 8 | Viewed by 5379
Abstract
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the [...] Read more.
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress–strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, storage aging tests, and accelerated aging tests by analytical centrifuge (LUM). Subsequently, selected fabrics have been face-coated by the WPUD using the knife coating method and their properties have been assessed by measuring the water contact angle (WCA), oil contact angle (OCA), water column, fabric stiffness, air permeability, and water vapor resistance (breathability). Finally, the surface morphology and elemental composition of uncoated and coated fabrics have been studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. All of the synthesized polyurethane-ureas provided the coated substrates with a remarkable hydrophobicity and water column, resulting in a more sustainable alternative to waterproof coatings based on fluoropolymers, such as PTFE. Grafting POSS-OH to the polymeric backbone has led to textile coatings with enhanced hydrophobicity, maintaining thermal, mechanical, and water column properties, giving rise to multifunctional coatings that are highly demanded in protective workwear and technical textiles. Full article
(This article belongs to the Special Issue State-of-the-Art Polymeric Surfaces and Coatings)
Show Figures

Graphical abstract

19 pages, 4561 KiB  
Article
Polymer Networks for Enrichment of Calcium Ions
by Marcus Heinze, Christoph Horn, Doris Pospiech, Regine Boldt, Oliver Kobsch, Kathrin Eckstein, Dieter Jehnichen, Brigitte Voit, Stefan Baudis, Robert Liska, Anna Naumova, Kay Saalwächter, Urs Lendenmann and Norbert Moszner
Polymers 2021, 13(20), 3506; https://doi.org/10.3390/polym13203506 - 12 Oct 2021
Cited by 1 | Viewed by 3796
Abstract
In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N′-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with [...] Read more.
In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N′-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The morphology of the networks is characterized by in situ photorheology, solid state NMR spectroscopy, and scanning electron microscopy (SEM) of the dried gels. It is demonstrated that the storage modulus is not only determined by the crosslinker content in the gel, but also by the solvent used for preparation. The networks turn out to be porous structures with G′ being governed by a rigid, phase-separated polymer phase rather than by entropic elasticity. The external and internal pKa values of the poly(ECPA-co-BNEAA) gels were determined by titration with a specially designed method and compared to the calculated values. The polymer-immobilized phosphonic acid groups in the hydrogels induce buffering behavior into the system without using a dissolved buffer. The calcium accumulation in the gels is studied by means of a double diffusion cell filled with calcium ion-containing solutions. The successful accumulation of hydroxyapatite within the gels is shown by a combination of SEM, energy-dispersive X-ray spectroscopy (EDX) and wide-angle X-ray scattering (WAXS). Full article
(This article belongs to the Special Issue Photoinitiators and Photopolymerization Technology)
Show Figures

Graphical abstract

14 pages, 3946 KiB  
Article
Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness
by Zhang Chen, Ting Yang, Lin Cheng and Jianxin Mu
Polymers 2021, 13(20), 3493; https://doi.org/10.3390/polym13203493 - 12 Oct 2021
Cited by 3 | Viewed by 1985
Abstract
First, nickel particles were deposited on the surface of graphite nanoplatelets to fabricate highly conductive GnPs@Ni core-shell structure hybrid fillers via electroplating. The modified GnPs were blended with polyphenylene sulfone via the solution blending method, followed by the hot-pressing method to achieve high [...] Read more.
First, nickel particles were deposited on the surface of graphite nanoplatelets to fabricate highly conductive GnPs@Ni core-shell structure hybrid fillers via electroplating. The modified GnPs were blended with polyphenylene sulfone via the solution blending method, followed by the hot-pressing method to achieve high thermally conducting GnPs@Ni/PPSU composites for high performance electromagnetic interference effectiveness. The results showed that in-plane and through-plane thermal conductivity of the composite at the 40 wt% filler loading could reach 2.6 Wm−1K−1 and 3.7 Wm−1K−1, respectively, which were 9.4 and 20 times higher than that of pure PPSU resin. The orientation degree of fillers was discussed by XRD and SEM. Then, heat conduction data were fitted and analyzed by the Agari model, and the heat conduction mechanism was further explored. The testing results also demonstrated that the material exhibited good conductivity, electromagnetic shielding effectiveness and superior thermal stability. Overall, the GnPs@Ni/PPSU composites had high thermal conductivity and were effective electromagnetic shielding materials at high temperatures. Full article
(This article belongs to the Special Issue Graphene-Polymer Composites III)
Show Figures

Figure 1

12 pages, 36044 KiB  
Article
Development of Gelatin-Coated Microspheres for Novel Bioink Design
by Muskan Kanungo, Yale Wang, Noah Hutchinson, Emma Kroll, Anna DeBruine, Subha Kumpaty, Lixia Ren, Yuelin Wu, Xiaolin Hua and Wujie Zhang
Polymers 2021, 13(19), 3339; https://doi.org/10.3390/polym13193339 - 29 Sep 2021
Cited by 10 | Viewed by 3529
Abstract
A major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres [...] Read more.
A major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres for incorporation into a novel bioink. Electrospray was used to produce the microspheres. The process was optimized using Design-Expert® software. Microspheres underwent gelatin coating and EDC catalysis modifications. The results showed that the concentration of pectin solution impacted roundness and uniformity primarily, while flow rate affected size most significantly. The optimal gelatin concentration for microsphere coating was determined to be 0.75%, and gelatin coating led to a positively charged surface. When incorporated into bioink, the microspheres did not significantly alter viscosity, and they distributed evenly in bioink. These microspheres show great promise for incorporation into bioink for tissue engineering applications. Full article
(This article belongs to the Special Issue Biopolymer-Based Scaffolds for Regenerative Medicine Applications)
Show Figures

Figure 1

16 pages, 69133 KiB  
Article
An Investigation to Study the Effect of Process Parameters on the Strength and Fatigue Behavior of 3D-Printed PLA-Graphene
by Anouar EL MAGRI, Saeedeh VANAEI, Mohammadali SHIRINBAYAN, Sébastien Vaudreuil and Abbas TCHARKHTCHI
Polymers 2021, 13(19), 3218; https://doi.org/10.3390/polym13193218 - 23 Sep 2021
Cited by 30 | Viewed by 4210
Abstract
3D printing, an additive manufacturing process, draws particular attention due to its ability to produce components directly from a 3D model; however, the mechanical properties of the produced pieces are limited. In this paper, we present, from the experimental aspect, the fatigue behavior [...] Read more.
3D printing, an additive manufacturing process, draws particular attention due to its ability to produce components directly from a 3D model; however, the mechanical properties of the produced pieces are limited. In this paper, we present, from the experimental aspect, the fatigue behavior and damage analysis of polylactic acid (PLA)-Graphene manufactured using 3D printing. The main purpose of this paper is to analyze the combined effect of process parameters, loading amplitude, and frequency on fatigue behavior of the 3D-printed PLA-Graphene specimens. Firstly, a specific case study (single printed filament) was analyzed and compared with spool material for understanding the nature of 3D printing of the material. Specific experiments of quasi-static tensile tests are performed. A strong variation of fatigue strength as a function of the loading amplitude, frequency, and process parameters is also presented. The obtained experimental results highlight that fatigue lifetime clearly depends on the process parameters as well as the loading amplitude and frequency. Moreover, when the frequency is 80 Hz, the coupling effect of thermal and mechanical fatigue causes self-heating, which decreases the fatigue lifetime. This paper comprises useful data regarding the mechanical behavior and fatigue lifetime of 3D-printed PLA-Graphene specimens. In fact, it evaluates the effect of process parameters based on the nature of this process, which is classified as a thermally-driven process. Full article
(This article belongs to the Special Issue Polymers for Additive Manufacturing)
Show Figures

Graphical abstract

16 pages, 5034 KiB  
Article
pH-Responsive Succinoglycan-Carboxymethyl Cellulose Hydrogels with Highly Improved Mechanical Strength for Controlled Drug Delivery Systems
by Younghyun Shin, Dajung Kim, Yiluo Hu, Yohan Kim, In Ki Hong, Moo Sung Kim and Seunho Jung
Polymers 2021, 13(18), 3197; https://doi.org/10.3390/polym13183197 - 21 Sep 2021
Cited by 20 | Viewed by 4581
Abstract
Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels [...] Read more.
Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels in a non-bead form. These new SG/CMC-based IPN hydrogels significantly increased the mechanical strength while maintaining the characteristic superabsorbent property of CMC-based hydrogels. The SG/CMC gels exhibited an 8.5-fold improvement in compressive stress and up to a 6.5-fold higher storage modulus (G′) at the same strain compared to the CMC alone gels. Furthermore, SG/CMC gels not only showed pH-controlled drug release for 5-fluorouracil but also did not show any cytotoxicity to HEK-293 cells. This suggests that SG/CMC hydrogels could be used as future biomedical biomaterials for drug delivery. Full article
(This article belongs to the Special Issue Advanced Polymers for Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 2068 KiB  
Article
Challenges and Opportunities for Recycled Polyethylene Fishing Nets: Towards a Circular Economy
by Rafael Juan, Carlos Domínguez, Nuria Robledo, Beatriz Paredes, Sara Galera and Rafael A. García-Muñoz
Polymers 2021, 13(18), 3155; https://doi.org/10.3390/polym13183155 - 17 Sep 2021
Cited by 17 | Viewed by 7636
Abstract
Plastic waste generation has become an important problem that critically affects marine and oceans environments. Fishing nets gear usually have a relatively short lifespan, and are abandoned, discarded and lost, what makes them one of the largest generators of ocean plastic waste. Recycled [...] Read more.
Plastic waste generation has become an important problem that critically affects marine and oceans environments. Fishing nets gear usually have a relatively short lifespan, and are abandoned, discarded and lost, what makes them one of the largest generators of ocean plastic waste. Recycled polyolefin resins from fishing nets (rFN), especially from polyethylene (PE), have poor properties due to the presence of contaminants and/or excessive degradation after its lifetime. These reasons limit the use of these recycled resins. This work aims to study the incorporation of recycled fishing nets PE-made to different grades of virgin PE, in order to evaluate the potential use of these rFN in the development of new products. The recovered fishing nets have been fully characterized to evaluate its properties after the collection and recycling process. Then, different PE virgin resins have been mechanically blended with the recovered fishing nets at different recycling contents to study its feasibility for fishing nets or packaging applications. Critical mechanical properties for these applications, as the elongation at break, impact strength or environmental stress cracking resistance have been deeply evaluated. Results show important limitations for the manufacture of fibers from recycled PE fishing nets due to the presence of inorganic particles from the marine environment, which restricts the use of rFN for its original application. However, it is proved that a proper selection of PE raw resins, to be used in the blending process, allows other possible applications, such as non-food contact bottles, which open up new ways for using the fishing nets recyclates, in line with the objectives pursued by the Circular Economy of Plastics. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials)
Show Figures

Figure 1

19 pages, 9642 KiB  
Article
Preparation and Performance of Thermochromic and Self-Repairing Dual Function Paint Film with Lac Resin Microcapsules and Fluorane Microcapsules
by Xiaoxing Yan, Wenting Zhao and Lin Wang
Polymers 2021, 13(18), 3109; https://doi.org/10.3390/polym13183109 - 15 Sep 2021
Cited by 15 | Viewed by 2443
Abstract
Microcapsules with lac resin as the core material and urea-formaldehyde resin as the wall material were prepared by in situ polymerization, and then the lac resin microcapsules and fluorane microcapsules were added into a water-based primer or topcoat, respectively, to prepare water-based coatings [...] Read more.
Microcapsules with lac resin as the core material and urea-formaldehyde resin as the wall material were prepared by in situ polymerization, and then the lac resin microcapsules and fluorane microcapsules were added into a water-based primer or topcoat, respectively, to prepare water-based coatings with dual functions of thermochromic and self-repair. The effects of different methods of adding microcapsules on the optical properties, mechanical properties, self-repairing properties, and the aging resistance of water-based paint film were investigated, so as to prepare water-based paint film with the best discoloration and self-repairing functions. The results showed that the paint film with 10.0% fluorane microcapsules in the topcoat and 5.0% lac resin microcapsules in the primer had better comprehensive properties, and the paint film changed from yellow to colorless at 32 °C, with a color difference of 68.9, hardness of 3H, adhesion grade of 0, impact resistance of 13.0 kg∙cm, and elongation at break of 20.0%. The resistance of the paint film to NaCl, ethanol, and detergent was grade 2, with slight discontinuous marks, and the resistance to red ink was grade 3, with slight marks. The lac resin microcapsules have good aging resistance, which can enhance the aging resistance of the paint film with fluorane microcapsules. The gap width of the paint film was repaired by 2.1 µm, the self-repairing rate was 12.3%, and the paint film with lac resin microcapsules had a better crack inhibition effect. The results have provided a reference for multifunctional wood coatings. Full article
Show Figures

Figure 1

Back to TopTop