Topical Collection "Selected Papers from Lithuanian Research Centre for Agriculture and Forestry"

A topical collection in Plants (ISSN 2223-7747). This collection belongs to the section "Horticultural Science and Ornamental Plants".

Viewed by 1573

Editors

Lithuanian Research Centre for Agriculture and Forestry, Kedainiai, Lithuania
Interests: soil science; agricultural plant science; agrophysics
1. Department of Horticulture, Norwegian Institute of Bioeconomy Research–NIBIO Ullensvang, Ulensvangvegen 1005, NO-5781 Lofthus, Norway 2. Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
Interests: crop load management, fruit tree rootstocks; fruit quality; planting systems; pomology
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

In modern agriculture, in the context of a climate change, it is important to find solutions for obtaining high productivity for crops of proper quality, which are both safe for humans and, at the same time, not harmful to the environment. To achieve these goals, many aspects must be foreseen and evaluated.

The work carried out in the Lithuanian Research Centre for Agriculture and Forestry (LAMMC) is covering a broad spectrum of R&D in the fields of agronomy and forestry and the related fields of ecology and environmental sciences, biology, biophysics, botany, and micro and macro fauna. The results obtained in the Centre are of great importance for better understanding the future perspectives in agriculture, horticulture, and forestry.

This Topical Collection will include publications on the recent research carried out in the LAMMC related to plant science.

Topics of interest include but are not limited to:

Dr. Giedrė Samuolienė
Dr. Gražina Kadžienė
Dr. Darius Kviklys
Dr. Neringa Rasiukeviciute
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  •  plant physiology
  •  plant nutrition
  •  plant-soil interactions
  •  plant genetics
  •  genomics and biotechnology
  •  plant protection
  •  plant breeding
  •  postharvest and processing

Published Papers (2 papers)

2023

Article
Oilseed Rape, Wheat, and Barley Grain Contamination as Affected by Different Glyphosate Usage
Plants 2023, 12(6), 1335; https://doi.org/10.3390/plants12061335 - 16 Mar 2023
Viewed by 449
Abstract
Glyphosate is one of the most widely used herbicides, but is still in the spotlight due to its controversial impact on the environment and human health. The main purpose of this study was to explore the effects of different glyphosate usages on harvested [...] Read more.
Glyphosate is one of the most widely used herbicides, but is still in the spotlight due to its controversial impact on the environment and human health. The main purpose of this study was to explore the effects of different glyphosate usages on harvested grain/seed contamination. Two field experiments of different glyphosate usage were carried out in Central Lithuania during 2015–2021. The first experiment was a pre-harvest application, with two timings, the first according to the label (14–10 days), and the other applied 4–2 days before harvest (off-label), performed in winter wheat and spring barley in 2015 and 2016. The second experiment consisted of glyphosate applications at label rate (1.44 kg ha−1) and double dose rate (2.88 kg ha−1) at two application timings (pre-emergence of crop and at pre-harvest), conducted in spring wheat and spring oilseed rape in 2019–2021. The results suggest that pre-emergence application at both dose rates did not affect the harvested spring wheat grain or spring oilseed rape seeds—no residues were found. The use of glyphosate at pre-harvest, despite the dosage and application timing, led to glyphosate’s, as well as its metabolite, aminomethosphonic acid’s, occurrence in grain/seeds, but the amounts did not reach the maximum residue levels according to Regulation (EC) No. 293/2013. The grain storage test showed that glyphosate residues remain in grain/seeds at steady concentrations for longer than one year. A one year study of glyphosate distribution within main and secondary products showed that glyphosate residues were mainly concentrated in wheat bran and oilseed rape meal, while no residues found in cold-pressed oil and wheat white flour, when glyphosate used at pre-harvest at the label rate. Full article
Show Figures

Figure 1

Article
Biochar with Inorganic Nitrogen Fertilizer Reduces Direct Greenhouse Gas Emission Flux from Soil
Plants 2023, 12(5), 1002; https://doi.org/10.3390/plants12051002 - 22 Feb 2023
Viewed by 560
Abstract
Agricultural waste can have a catastrophic impact on climate change, as it contributes significantly to greenhouse gas (GHG) emissions if not managed sustainably. Swine-digestate-manure-derived biochar may be one sustainable way to manage waste and tackle GHG emissions in temperate climatic conditions. The purpose [...] Read more.
Agricultural waste can have a catastrophic impact on climate change, as it contributes significantly to greenhouse gas (GHG) emissions if not managed sustainably. Swine-digestate-manure-derived biochar may be one sustainable way to manage waste and tackle GHG emissions in temperate climatic conditions. The purpose of this study was to ascertain how such biochar could be used to reduce soil GHG emissions. Spring barley (Hordeum vulgare L.) and pea crops in 2020 and 2021, respectively, were treated with 25 t ha−1 of swine-digestate-manure-derived biochar (B1) and 120 kg ha−1 (N1) and 160 kg ha−1 (N2) of synthetic nitrogen fertilizer (ammonium nitrate). Biochar with or without nitrogen fertilizer substantially lowered GHG emissions compared to the control treatment (without any treatment) or treatments without biochar application. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions were directly measured using static chamber technology. Cumulative emissions and global warming potential (GWP) followed the same trend and were significantly lowered in biochar-treated soils. The influences of soil and environmental parameters on GHG emissions were, therefore, investigated. A positive correlation was found between both moisture and temperature and GHG emissions. Thus, biochar made from swine digestate manure may be an effective organic amendment to reduce GHG emissions and address climate change challenges. Full article
Show Figures

Figure 1

Back to TopTop