The Effects of Legume-Cereal Intercropping on the Symbiotically Fixed N2 in Soybean, N Accumulation, and C Allocation
Abstract
:1. Introduction
2. Results
2.1. Intercropping Effect on Biological Parameters of Plants
2.2. Intercropping Effect on N Content, NDFA and C Allocation
2.3. Carbon and Nitrogen Content in Individual Plants
2.4. Accumulated Total Carbon and Nitrogen in Pots
3. Discussion
3.1. Effect of Intercropping on N Yields and Legume Nitrogen Fixation
3.2. Carbon Allocation Effects
4. Materials and Methods
4.1. Experimental Design and Treatments
4.2. Isotope Labeling Experiments
4.3. Biological Parameters of Plants
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, P.; Crosson, P.; Lovett, D.; Boland, T.; O’Mara, F.; Kenny, D. Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems. Agric. Ecosyst. Environ. 2011, 142, 222–230. [Google Scholar] [CrossRef]
- Peoples, M.B.; Giller, K.E.; Jensen, E.S.; Herridge, D.F. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 2021, 469, 1–14. [Google Scholar]
- Anglade, J.; Billen, G.; Garnier, J. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere 2015, 6, 1–24. [Google Scholar]
- Rochester, I.; Peoples, M.; Hulugalle, N.; Gault, R.; Constable, G. Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crops Res. 2001, 70, 27–41. [Google Scholar]
- Herridge, D.; Rose, I. Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res. 2000, 65, 229–248. [Google Scholar]
- Coskan, A.; Gok, M.; Onac, I.; Ortas, I. The effects of rhizobium and mycorrhiza interactions on N2-fixation, biomass and P uptake. J. Cukurova Univ. Fac. Agric. 2003, 18, 35–44. [Google Scholar]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.-P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.-P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar]
- Alaru, M.; Talgre, L.; Luik, A.; Tein, B.; Eremeev, V.; Loit, E. Barley undersown with red clover in organic and conventional systems: Nitrogen aftereffect on legume growth. Zemdirb.-Agric. 2017, 104, 131–138. [Google Scholar] [CrossRef]
- Regehr, A.; Oelbermann, M.; Videla, C.; Echarte, L. Gross nitrogen mineralization and immobilization in temperate maize-soybean intercrops. Plant Soil 2015, 391, 353–365. [Google Scholar]
- Coll, P.; Cadre, E.l.; Villenave, C. Assessment of soil quality, as a tool to adopt sustainable viticultural practices. Prog. Agric. Vitic. 2012, 129, 445–448. [Google Scholar]
- Coll, P.; Cadre, E.l.; Villenave, C. What are long-term effects of organic viticulture on soil quality? Prog. Agric. Vitic. 2012, 129, 449–452. [Google Scholar]
- Yang, Y.; Ding, J.; Zhang, Y.; Wu, J.; Zhang, J.; Pan, X.; Gao, C.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A. Intercropping wheat and beans: Effects on agronomic performance and land productivity. Crop Sci. 2014, 54, 2285–2293. [Google Scholar] [CrossRef]
- Chapagain, T.; Riseman, A. Barley–pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Res. 2014, 166, 18–25. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain yield, symbiotic N 2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Hauggaard-Nielsen, H.; Høgh-Jensen, H.; Jensen, E.S. Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutr. Cycl. Agroecosyst. 2005, 73, 201–212. [Google Scholar] [CrossRef]
- Šarūnaitė, L.; Deveikytė, I.; Arlauskienė, A.; Kadžiulienė, Ž.; Maikštėnienė, S. Pea and spring cereal intercropping systems: Advantages and suppression of broad-leaved weeds. Pol. J. Environ. Stud. 2013, 22, 541–551. [Google Scholar]
- Corre-Hellou, G.; Dibet, A.; Hauggaard-Nielsen, H.; Crozat, Y.; Gooding, M.; Ambus, P.; Dahlmann, C.; von Fragstein, P.; Pristeri, A.; Monti, M. The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Res. 2011, 122, 264–272. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Pridham, J.C.; Entz, M.H. Intercropping spring wheat with cereal grains, legumes, and oilseeds fails to improve productivity under organic management. Agron. J. 2008, 100, 1436–1442. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Andersen, M.K.; Joernsgaard, B.; Jensen, E.S. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Wang, Z.; Zhang, S. Planting density and sowing proportions of maize–soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. Eur. J. Agron. 2016, 72, 70–79. [Google Scholar] [CrossRef]
- Andersen, I.K.; Dragsted, L.O.; Rasmussen, J.; Fomsgaard, I.S. Intercropping of Hordeum vulgare L. and Lupinus angustifolius L. causes the generation of prenylated flavonoids in Lupinus angustifolius L. J. Plant Interact. 2023, 18, 2255039. [Google Scholar] [CrossRef]
- Andersen, I.K.; Fomsgaard, I.S.; Rasmussen, J. Intercropping of Narrow-Leafed Lupin (Lupinus angustifolius L.) and Barley (Hordeum vulgare L.) Affects the Flavonoid Composition of Both Crops. J. Agric. Food Chem. 2023, 72, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific competition for soil N and its interaction with N 2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Biological nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for white clover (Trifolium repens L.) and field pea (Pisum sativum L.) grown for seed. Field Crops Res. 2000, 68, 49–59. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Peoples, M. Prospects and problems of simple linear models for estimating symbiotic N 2 fixation by crop and pasture legumes. Plant Soil 2010, 329, 75–89. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.; Adjei-Nsiah, S.; Ahiabor, B.; Abaidoo, R.C.; Giller, K. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agric. Ecosyst. Environ. 2018, 261, 201–210. [Google Scholar] [CrossRef]
- Rasmussen, J.; Søegaard, K.; Pirhofer-Walzl, K.; Eriksen, J. N2-fixation and residual N effect of four legume species and four companion grass species. Eur. J. Agron. 2012, 36, 66–74. [Google Scholar]
- Galal, Y. Dual inoculation with strains of Bradyrhizobium japonicum and Azospirillum brasilense to improve growth and biological nitrogen fixation of soybean (Glycine max L.). Biol. Fertil. Soils 1997, 24, 317–322. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A. Agrisost 2022, 28, 1–8. [Google Scholar]
- Hegde, D.; Babu, S.; Qureshi, A.A.; Murthy, I. Enhancing nutrient-use efficiency in crop production–A review. Indian J. Agron. 2007, 52, 261–274. [Google Scholar]
- Wang, R.; Cavagnaro, T.R.; Jiang, Y.; Keitel, C.; Dijkstra, F.A. Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. J. Ecol. 2021, 109, 3699–3709. [Google Scholar]
- Hartmann, H.; Bahn, M.; Carbone, M.; Richardson, A.D. Plant carbon allocation in a changing world–challenges and progress. New Phytol. 2020, 227, 981–988. [Google Scholar]
- Martinez, C.; Alberti, G.; Cotrufo, M.F.; Magnani, F.; Zanotelli, D.; Camin, F.; Gianelle, D.; Cescatti, A.; Rodeghiero, M. Belowground carbon allocation patterns as determined by the in-growth soil core 13C technique across different ecosystem types. Geoderma 2016, 263, 140–150. [Google Scholar] [CrossRef]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean development and productivity in response to organic management above the northern boundary of soybean distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Martins, J.T.; Rasmussen, J.; Eriksen, J.; Arf, O.; De Notaris, C.; Moretti, L.G. Biological N fixation activity in soybean can be estimated based on nodule dry weight and is increased by additional inoculation. Rhizosphere 2022, 24, 100589. [Google Scholar] [CrossRef]
- Semaškienė, R.; Jonavičienė, A.; Razbadauskienė, K.; Deveikytė, I.; Sabeckis, A.; Supronienė, S.; Šarūnaitė, L.; Kadžiulienė, Ž. The response to crop health and productivity of field pea (Pisum sativum L.) at different growing conditions. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 923–930. [Google Scholar]
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Bàrberi PRossing, W.A.H. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- Willsey, T.; Patey, J.; Vucurevich, C.; Chatterton, S.; Carcamo, H. Evaluation of foliar and seed treatments for integrated management of root rot and field pea leaf weevil in field pea and faba bean. Crop. Prot. 2021, 143, 105538. [Google Scholar] [CrossRef]
- de Neergaard, A.; Gorissen, A. Carbon allocation to roots, rhizodeposits and soil after pulse labelling: A comparison of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). Biol. Fertil. Soils 2004, 39, 228–234. [Google Scholar]
- Carlsson, G.; Huss-Danell, K. Does nitrogen transfer between plants confound 15 N-based quantifications of N 2 fixation? Plant Soil 2014, 374, 345–358. [Google Scholar] [CrossRef]
- Chalk, P.M.; Lam, S.K.; Chen, D. 15N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review. Sci. Total Environ. 2016, 571, 624–632. [Google Scholar]
Cropping System | Height, cm | Nodule Plant−1 | Shoot Weight, g Plant−1 DM | Root Weight, g Plant−1 DM | C:N Shoots | C:N Roots |
---|---|---|---|---|---|---|
Soybean (S) | ||||||
Monoculture: | ||||||
S uninoculated | 27.2 a | 0.0 a | 2.41 a | 0.68 ab | 13.4 a | 10.8 b |
S Low (1) | 29.3 a | 3.0 a | 2.68 a | 0.73 a | 13.7 a | 11.2 b |
S High (3) | 28.1 a | 6.2 a | 2.62 a | 0.66 ab | 14.8 a | 12.3 b |
Mixtures S/W | ||||||
High/Low (3/4) | 30.4 a | 12.3 a | 1.52 a | 0.34 b | 15.9 a | 16.0 a |
Low/Low (1/4) | 34.0 a | 5.7 a | 2.01 a | 0.46 ab | 14.9 a | 16.7 a |
Low/High (1/8) | 32.7 a | 13.7 a | 1.60 a | 0.37 ab | 17.0 a | 17.9 a |
Wheat (W) | ||||||
Monoculture: | ||||||
W Low (4) | 50.3 a | NA | 2.13 a | 0.49 a | 18.3 ab | 19.8 b |
W High (8) | 45.0 b | NA | 1.78 ab | 0.34 b | 19.5 a | 22.1 ab |
Mixtures S/W | ||||||
High/Low (3/4) | 43.2 b | NA | 1.27 b | 0.22 b | 17.2 b | 20.8 ab |
Low/Low (1/4) | 44.0 b | NA | 1.65 ab | 0.28 b | 17.8 ab | 21.4 ab |
Low/High (1/8) | 43.6 b | NA | 1.65 ab | 0.24 b | 18.3 ab | 24.9 a |
Cropping System | N Shoots, % | N Roots, % | Ndfa Roots, % | Ndfa Shoots, % | C Shoots, % | C Roots, % | 13C Roots, Atom% Excess | 13C Shoots, Atom% Excess | 13C Shoot-to-Root Allocation, % |
---|---|---|---|---|---|---|---|---|---|
Soybean (S) | |||||||||
Monoculture: | |||||||||
S uninoculated | 3.14 a | 3.59 a | 0.0 c | 0.0 c | 42.2 b | 38.8 bc | 2.07 a | 2.79 a | 42.2 a |
S Low (1) | 3.10 a | 3.50 a | 6.0 b | 5.1 ab | 42.6 ab | 39.0 bc | 1.96 a | 2.82 a | 40.9 a |
S High (3) | 2.91 a | 3.12 a | 6.0 b | 2.5 bc | 42.8 ab | 38.4 c | 1.37 b | 1.95 b | 41.5 a |
Mixtures S/W | |||||||||
High/Low (3/4) | 2.73 a | 2.64 b | 12.8 a | 4.6 abc | 43.3 ab | 42.1 a | 1.01 bc | 1.82 b | 35.8 b |
Low/Low (1/4) | 3.06 a | 2.49 b | 12.2 a | 2.9 bc | 44.5 a | 40.8 ab | 0.94 bc | 1.85 b | 33.2 b |
Low/High (1/8) | 2.63 a | 2.39 b | 15.3 a | 9.2 a | 43.7 ab | 42.2 a | 0.65 c | 1.27 c | 33.9 b |
Wheat (W) | |||||||||
Monoculture: | |||||||||
W Low (4) | 2.33 bc | 1.56 ab | NA | NA | 42.5 b | 30.9 b | 1.43 a | 1.91 a | 42.8 a |
W High (8) | 2.19 c | 1.49 b | NA | NA | 42.6 b | 32.7 b | 1.02 b | 1.39 b | 42.4 a |
Mixtures S/W | |||||||||
High/Low (3/4) | 2.52 ab | 1.88 a | NA | NA | 43.2 ab | 39.0 a | 1.20 ab | 1.77 a | 40.2 a |
Low/Low (1/4) | 2.55 a | 1.85 ab | NA | NA | 45.4 a | 38.6 a | 1.27 ab | 1.75 a | 43.5 a |
Low/High (1/8) | 2.39 ab | 1.55 ab | NA | NA | 43.9 ab | 38.4 a | 0.99 b | 1.24 b | 44.0 a |
Cropping System | Total N Per Shoot | Total N Per Root | Total N Per Plant | Total C Per Shoot | Total C Per Root | Total C Per Plant |
---|---|---|---|---|---|---|
Soybean (S) | ||||||
Monoculture: | ||||||
S uninoculated | 0.076 ab | 0.024 a | 0.100 a | 1.05 a | 0.26 a | 1.28 a |
S Low (1) | 0.082 a | 0.025 a | 0.108 a | 1.14 a | 0.28 a | 1.42 a |
S High (3) | 0.074 ab | 0.020 ab | 0.095 a | 1.12 a | 0.25 a | 1.37 a |
Mixtures S/W | ||||||
High/Low (3/4) | 0.041 b | 0.009 c | 0.050 b | 0.66 a | 0.14 a | 0.80 a |
Low/Low (1/4) | 0.060 ab | 0.011 bc | 0.071 ab | 0.90 a | 0.19 a | 1.09 a |
Low/High (1/8) | 0.041 b | 0.009 c | 0.050 b | 0.70 a | 0.16 a | 0.86 a |
Wheat (W) | ||||||
Monoculture: | ||||||
W Low (4) | 0.050 a | 0.0077 a | 0.057 a | 0.90 a | 0.15 a | 1.05 a |
W High (8) | 0.039 ab | 0.0051 b | 0.044 ab | 0.76 ab | 0.11 ab | 0.87 ab |
Mixtures S/W | ||||||
High/Low (3/4) | 0.032 b | 0.0041 b | 0.036 b | 0.55 b | 0.08 b | 0.63 b |
Low/Low (1/4) | 0.042 ab | 0.0050 b | 0.047 ab | 0.75 ab | 0.11 ab | 0.86 ab |
Low/High (1/8) | 0.035 b | 0.0038 b | 0.039 b | 0.64 b | 0.09 b | 0.74 b |
Cropping System | Total Shoot N Per Pot | Total Root N Per Pot | Total Plant N Per Pot | Total Shoot C Per Pot | Total Root C Per Pot | Total Plant C Per Pot |
---|---|---|---|---|---|---|
Soybean (S) | ||||||
Monoculture: | ||||||
S uninoculated | 0.076 c | 0.024 c | 0.100 c | 1.05 c | 0.26 c | 1.28 c |
S Low (1) | 0.082 c | 0.025 c | 0.108 c | 1.14 c | 0.28 c | 1.42 c |
S High (3) | 0.222 b | 0.060 a | 0.285 ab | 3.36 b | 0.75 ab | 4.11 b |
Mixtures S/W | ||||||
High/Low (3/4) | 0.252 b | 0.0430 b | 0.295 ab | 4.17 b | 0.77 ab | 4.93 b |
Low/Low (1/4) | 0.227 b | 0.0311 bc | 0.258 b | 3.90 b | 0.63 ab | 4.53 b |
Low/High (1/8) | 0.322 a | 0.0386 bc | 0.360 a | 5.84 a | 0.90 a | 6.74 a |
Monoculture: | Wheat (W) | |||||
W High (8) | 0.312 a | 0.0408 bc | 0.352 a | 6.08 a | 0.88 a | 6.96 a |
W Low (4) | 0.200 b | 0.0308 bc | 0.228 b | 3.60 b | 0.60 b | 4.20 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toleikiene, M.; Skipityte, R.; Bariseviciute, R.; Martins, J.T.; Rasmussen, J. The Effects of Legume-Cereal Intercropping on the Symbiotically Fixed N2 in Soybean, N Accumulation, and C Allocation. Plants 2025, 14, 1009. https://doi.org/10.3390/plants14071009
Toleikiene M, Skipityte R, Bariseviciute R, Martins JT, Rasmussen J. The Effects of Legume-Cereal Intercropping on the Symbiotically Fixed N2 in Soybean, N Accumulation, and C Allocation. Plants. 2025; 14(7):1009. https://doi.org/10.3390/plants14071009
Chicago/Turabian StyleToleikiene, Monika, Raminta Skipityte, Ruta Bariseviciute, Juliana Trindade Martins, and Jim Rasmussen. 2025. "The Effects of Legume-Cereal Intercropping on the Symbiotically Fixed N2 in Soybean, N Accumulation, and C Allocation" Plants 14, no. 7: 1009. https://doi.org/10.3390/plants14071009
APA StyleToleikiene, M., Skipityte, R., Bariseviciute, R., Martins, J. T., & Rasmussen, J. (2025). The Effects of Legume-Cereal Intercropping on the Symbiotically Fixed N2 in Soybean, N Accumulation, and C Allocation. Plants, 14(7), 1009. https://doi.org/10.3390/plants14071009