Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

23 pages, 7627 KiB  
Article
Thermal Induced Interface Mechanical Response Analysis of SMT Lead-Free Solder Joint and Its Adaptive Optimization
by Shaoyi Liu, Yuefei Yan, Yijiang Zhou, Baoqing Han, Benben Wang, Daxing Zhang, Song Xue, Zhihai Wang, Kunpeng Yu, Yu Shi and Congsi Wang
Micromachines 2022, 13(6), 908; https://doi.org/10.3390/mi13060908 - 8 Jun 2022
Cited by 6 | Viewed by 3963
Abstract
Surface mount technology (SMT) plays an important role in integrated circuits, but due to thermal stress alternation caused by temperature cycling, it tends to have thermo-mechanical reliability problems. At the same time, considering the environmental and health problems of lead (Pb)-based solders, the [...] Read more.
Surface mount technology (SMT) plays an important role in integrated circuits, but due to thermal stress alternation caused by temperature cycling, it tends to have thermo-mechanical reliability problems. At the same time, considering the environmental and health problems of lead (Pb)-based solders, the electronics industry has turned to lead-free solders, such as ternary alloy Sn-3Ag-0.5Cu (SAC305). As lead-free solders exhibit visco-plastic mechanical properties significantly affected by temperature, their thermo-mechanical reliability has received considerable attention. In this study, the interface delamination of an SMT solder joint using a SAC305 alloy under temperature cycling has been analyzed by the nonlinear finite element method. The results indicate that the highest contact pressure at the four corners of the termination/solder horizontal interface means that delamination is most likely to occur, followed by the y-direction side region of the solder/land interface and the top arc region of the termination/solder vertical interface. It should be noted that in order to keep the shape of the solder joint in the finite element model consistent with the actual situation after the reflow process, a minimum energy-based morphology evolution method has been incorporated into the established finite element model. Eventually, an Improved Efficient Global Optimization (IEGO) method was used to optimize the geometry of the SMT solder joint in order to reduce the contact pressure at critical points and critical regions. The optimization result shows that the contact pressure at the critical points and at the critical regions decreases significantly, which also means that the probability of thermal-induced delamination decreases. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications)
Show Figures

Figure 1

18 pages, 16073 KiB  
Article
Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics
by Masoud Madadelahi, Javid Azimi-Boulali, Marc Madou and Sergio Omar Martinez-Chapa
Micromachines 2022, 13(6), 881; https://doi.org/10.3390/mi13060881 - 31 May 2022
Cited by 5 | Viewed by 1868
Abstract
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we [...] Read more.
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles’ size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle’s ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets. Full article
Show Figures

Figure 1

14 pages, 15829 KiB  
Article
Effect of Different Surface Microstructures in the Thermally Induced Self-Propulsion Phenomenon
by Clint John Cortes Otic and Shigeru Yonemura
Micromachines 2022, 13(6), 871; https://doi.org/10.3390/mi13060871 - 31 May 2022
Cited by 4 | Viewed by 2044
Abstract
In micro/nano-scale systems where the characteristic length is in the order of or less than the mean free path for gas molecules, an object placed close to a heated substrate with a surface microstructure receives a propulsive force. In addition to the induced [...] Read more.
In micro/nano-scale systems where the characteristic length is in the order of or less than the mean free path for gas molecules, an object placed close to a heated substrate with a surface microstructure receives a propulsive force. In addition to the induced forces on the boundaries, thermally driven flows can also be induced in such conditions. As the force exerted on the object is caused by momentum brought by gas molecules impinging on and reflected at the surface of the object, reproducing molecular gas flows around the object is required to investigate the force on it. Using the direct simulation Monte Carlo (DSMC) method to resolve the flow, we found that by modifying the conventional ratchet-shaped microstructure into different configurations, a stronger propulsive force can be achieved. Specifically, the tip angle of the microstructure is an important parameter in optimizing the induced force. The increase in the propulsive force induced by the different microstructures was also found to depend on the Knudsen number, i.e., the ratio of the mean free path to the characteristic length and the temperature difference between the heated microstructure and the colder object. Furthermore, we explained how this force is formed and why this force is enhanced by the decreasing tip angle, considering the momentum brought onto the bottom surface of the object by incident molecules. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

11 pages, 3810 KiB  
Article
High-Performance Flexible Piezoresistive Sensor Based on Ti3C2Tx MXene with a Honeycomb-like Structure for Human Activity Monitoring
by Yue Su, Kainan Ma, Fang Yuan, Jun Tang, Ming Liu and Xu Zhang
Micromachines 2022, 13(6), 821; https://doi.org/10.3390/mi13060821 - 25 May 2022
Cited by 9 | Viewed by 2347
Abstract
Wearable and flexible pressure sensors have sparked great interest due to their unique capacity to conformally attach to the surface of the skin and quantify human activities into recordable electric signals. As a result, more and more research efforts are being devoted to [...] Read more.
Wearable and flexible pressure sensors have sparked great interest due to their unique capacity to conformally attach to the surface of the skin and quantify human activities into recordable electric signals. As a result, more and more research efforts are being devoted to developing high-sensitivity and cost-effective flexible sensors for monitoring an individual’s state of activity. Herein, a high-performance flexible piezoresistive sensor was designed and fabricated by combing 2D transition metal carbides, nitrides, and carbonitrides (MXene) with a honeycomb-like structure formed by femtosecond filamentating pulses. The sensing mechanism is attributed to the change of the connecting conductive paths between the top interdigital electrodes and the bottom microstructured films coated with MXene. The obtained sensing device demonstrates high sensitivity of 0.61 kPa−1, relatively short response time, and excellent reliability and stability. Benefiting from the aforementioned extraordinary sensing performance, the sensor can be used with success to monitor tiny physiological signals, detect large deformations during human movement, and distinguish finger gestures, thus demonstrating its broad prospects in physiological analysis systems, health monitoring systems, and human–machine interaction. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors)
Show Figures

Figure 1

12 pages, 2926 KiB  
Article
Wireless Micro Soft Actuator without Payloads Using 3D Helical Coils
by Seonghyeon Lee, Woojun Jung, Kyungho Ko and Yongha Hwang
Micromachines 2022, 13(5), 799; https://doi.org/10.3390/mi13050799 - 20 May 2022
Cited by 3 | Viewed by 2654
Abstract
To receive a greater power and to demonstrate the soft bellows-shaped actuator’s wireless actuation, micro inductors were built for wireless power transfer and realized in a three-dimensional helical structure, which have previously been built in two-dimensional spiral structures. Although the three-dimensional helical inductor [...] Read more.
To receive a greater power and to demonstrate the soft bellows-shaped actuator’s wireless actuation, micro inductors were built for wireless power transfer and realized in a three-dimensional helical structure, which have previously been built in two-dimensional spiral structures. Although the three-dimensional helical inductor has the advantage of acquiring more magnetic flux linkage than the two-dimensional spiral inductor, the existing microfabrication technique produces a device on a two-dimensional plane, as it has a limit to building a complete three-dimensional structure. In this study, by using a three-dimensional printed soluble mold technique, a three-dimensional heater with helical coils, which have a larger heating area than a two-dimensional heater, was fabricated with three-dimensional receiving inductors for enhanced wireless power transfer. The three-dimensional heater connected to the three-dimensional helical inductor increased the temperature of the liquid and gas inside the bellows-shaped actuator while reaching 176.1% higher temperature than the heater connected to the two-dimensional spiral inductor. Thereby it enables a stroke of the actuator up to 522% longer than when it is connected to the spiral inductor. Therefore, three-dimensional micro coils can offer a significant approach to the development of wireless micro soft robots without incurring heavy and bulky parts such as batteries. Full article
(This article belongs to the Special Issue Integrated Fabrication Approaches for Soft Robotics)
Show Figures

Figure 1

8 pages, 2087 KiB  
Article
Module-Fluidics: Building Blocks for Spatio-Temporal Microenvironment Control
by Bowen Ling and Ilenia Battiato
Micromachines 2022, 13(5), 774; https://doi.org/10.3390/mi13050774 - 14 May 2022
Cited by 1 | Viewed by 1786
Abstract
Generating the desired solute concentration signal in micro-environments is vital to many applications ranging from micromixing to analyzing cellular response to a dynamic microenvironment. We propose a new modular design to generate targeted temporally varying concentration signals in microfluidic systems while minimizing perturbations [...] Read more.
Generating the desired solute concentration signal in micro-environments is vital to many applications ranging from micromixing to analyzing cellular response to a dynamic microenvironment. We propose a new modular design to generate targeted temporally varying concentration signals in microfluidic systems while minimizing perturbations to the flow field. The modularized design, here referred to as module-fluidics, similar in principle to interlocking toy bricks, is constructed from a combination of two building blocks and allows one to achieve versatility and flexibility in dynamically controlling input concentration. The building blocks are an oscillator and an integrator, and their combination enables the creation of controlled and complex concentration signals, with different user-defined time-scales. We show two basic connection patterns, in-series and in-parallel, to test the generation, integration, sampling and superposition of temporally-varying signals. All such signals can be fully characterized by analytic functions, in analogy with electric circuits, and allow one to perform design and optimization before fabrication. Such modularization offers a versatile and promising platform that allows one to create highly customizable time-dependent concentration inputs which can be targeted to the specific application of interest. Full article
(This article belongs to the Special Issue Lab-on-a-Chip and Organ-on-a-Chip: Fabrications and Applications)
Show Figures

Figure 1

19 pages, 4879 KiB  
Article
Oscillation Characteristics of an Artificial Cochlear Sensory Epithelium Optimized for a Micrometer-Scale Curved Structure
by Hiroki Yamazaki, Yutaro Kohno and Satoyuki Kawano
Micromachines 2022, 13(5), 768; https://doi.org/10.3390/mi13050768 - 13 May 2022
Viewed by 1898
Abstract
Based on the modern microelectromechanical systems technology, we present a revolutionary miniaturized artificial cochlear sensory epithelium for future implantation tests on guinea pigs. The device was curved to fit the spiral structure of the cochlea and miniaturized to a maximum dimension of <1 [...] Read more.
Based on the modern microelectromechanical systems technology, we present a revolutionary miniaturized artificial cochlear sensory epithelium for future implantation tests on guinea pigs. The device was curved to fit the spiral structure of the cochlea and miniaturized to a maximum dimension of <1 mm to be implanted in the cochlea. First, the effect of the curved configuration on the oscillation characteristics of a trapezoidal membrane was evaluated using the relatively larger devices, which had a trapezoidal and a comparable curved shape designed for high-precision in vitro measurements. Both experimental and numerical analyses were used to determine the resonance frequencies and positions, and multiple oscillation modes were clearly observed. Because the maximum oscillation amplitude positions, i.e., the resonance positions, differed depending on the resonance frequencies in both trapezoidal and curved membrane devices, the sound frequency was determined based on the resonance position, thus reproducing the frequency selectivity of the basilar membrane in the organ of Corti. Furthermore, the resonance frequencies and positions of these two devices with different configurations were determined to be quantitatively consistent and similar in terms of mechanical dynamics. This result shows that despite a curved angle of 50–60°, the effect of the curved shape on oscillation characteristics was negligible. Second, the nanometer-scale oscillation of the miniaturized device was successfully measured, and the local resonance frequency in air was varied from 157 to 277 kHz using an experimental system that could measure the amplitude distribution in a two-dimensional (2D) plane with a high accuracy and reproducibility at a high speed. The miniaturized device developed in this study was shown to have frequency selectivity, and when the device was implanted in the cochlea, it was expected to discriminate frequencies in the same manner as the basilar membrane in the biological system. This study established methods for fabricating and evaluating the miniaturized device, and the proposed miniaturized device in a curved shape demonstrated the feasibility of next-generation cochlear implants. Full article
Show Figures

Figure 1

16 pages, 9432 KiB  
Article
A Magnetically Coupled Piezoelectric–Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester
by Yongqiang Zhu, Zhaoyang Zhang, Pingxia Zhang and Yurong Tan
Micromachines 2022, 13(5), 761; https://doi.org/10.3390/mi13050761 - 11 May 2022
Cited by 10 | Viewed by 3235
Abstract
The traditional single electromechanical conversion energy harvester can collect energy only in a single vibration direction. Moreover, it requires high environmental vibration frequency, and its output power is low. To solve these problems, a cross-shaped magnetically coupled piezoelectric–electromagnetic hybrid harvester is proposed. The [...] Read more.
The traditional single electromechanical conversion energy harvester can collect energy only in a single vibration direction. Moreover, it requires high environmental vibration frequency, and its output power is low. To solve these problems, a cross-shaped magnetically coupled piezoelectric–electromagnetic hybrid harvester is proposed. The harvester comprised a ring-shaped support frame, a piezoelectric generation structure, and an electromagnetic generation structure. The harvester could simultaneously generate energy piezoelectrically and electrically, in addition, it could generate electricity efficiently at a lower environmental vibration, and it can collect the energy in two vibration directions simultaneously. To verify the effectiveness of the device, we set up a vibration experiment system and conducted comparative experiments about non-magnetically coupled piezoelectric, magnetically coupled piezoelectric, and magnetically coupled piezoelectric–electromagnetic hybrid energy harvesters. The experimental results showed that the output power of the magnetically coupled piezoelectric–electromagnetic hybrid energy harvester was 2.13 mW for the piezoelectric structure and 1.76 mW for the electromagnetic structure under the vibration of single-direction resonant frequency. The total hybrid output power was 3.89 mW. The hybrid harvester could collect vibration energy parallel to the ring in any direction. Furthermore, compared with the non-magnetically coupled piezoelectric energy harvester and the magnetically coupled piezoelectric energy harvester, the output power was increased by 141.6% and 55.6%, respectively. Full article
(This article belongs to the Special Issue Piezoelectric Energy Harvesting: Analysis, Design and Fabrication)
Show Figures

Figure 1

10 pages, 3311 KiB  
Article
Laser Scanning Guided Localization Imaging with a Laser-Machined Two-Dimensional Flexible Ultrasonic Array
by Jianzhong Chen, Wei Liu, Dianbao Gu and Dawei Wu
Micromachines 2022, 13(5), 754; https://doi.org/10.3390/mi13050754 - 10 May 2022
Cited by 5 | Viewed by 1849
Abstract
Advances in flexible integrated circuit technology and piezoelectric materials allow high-quality stretchable piezoelectric transducers to be built in a form that is easy to integrate with the body’s soft, curved, and time-dynamic surfaces. The resulting capabilities create new opportunities for studying disease states, [...] Read more.
Advances in flexible integrated circuit technology and piezoelectric materials allow high-quality stretchable piezoelectric transducers to be built in a form that is easy to integrate with the body’s soft, curved, and time-dynamic surfaces. The resulting capabilities create new opportunities for studying disease states, monitoring health/wellness, building human–machine interfaces, and performing other operations. However, more widespread application scenarios are placing new demands on the high flexibility and small size of the array. This paper provides a 8 × 8 two-dimensional flexible ultrasonic array (2D-FUA) based on laser micromachining; a novel single-layer “island bridge” structure was used to design flexible array and piezoelectric array elements to improve the imaging capability on complex surfaces. The mechanical and acoustoelectric properties of the array are characterized, and a novel laser scanning and positioning method is introduced to solve the problem of array element displacement after deformation of the 2D-FUA. Finally, a multi-modal localization imaging experiment was carried out on the multi-target steel pin on the plane and curved surface based on the Verasonics system. The results show that the laser scanning method has the ability to assist the rapid imaging of flexible arrays on surfaces with complex shapes, and that 2D-FUA has wide application potential in medical-assisted localization imaging. Full article
(This article belongs to the Special Issue Piezoelectric Ultrasound Transducer for Biomedical Applications)
Show Figures

Figure 1

10 pages, 3752 KiB  
Article
Refractive Index Sensor Based on a Metal-Insulator-Metal Bus Waveguide Coupled with a U-Shaped Ring Resonator
by Xiaoyu Zhang, Shubin Yan, Jilai Liu, Yifeng Ren, Yi Zhang and Lifang Shen
Micromachines 2022, 13(5), 750; https://doi.org/10.3390/mi13050750 - 9 May 2022
Cited by 7 | Viewed by 1599
Abstract
In this study, a novel refractive index sensor structure was designed consisting of a metal-insulator-metal (MIM) waveguide with two rectangular baffles and a U-Shaped Ring Resonator (USRR). The finite element method was used to theoretically investigate the sensor’s transmission characteristics. The simulation results [...] Read more.
In this study, a novel refractive index sensor structure was designed consisting of a metal-insulator-metal (MIM) waveguide with two rectangular baffles and a U-Shaped Ring Resonator (USRR). The finite element method was used to theoretically investigate the sensor’s transmission characteristics. The simulation results show that Fano resonance is a sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the successive wide-band mode. Next, the formation of broadband and narrowband is further studied, and finally the key factors affecting the performance of the sensor are obtained. The best sensitivity of this refractive-index sensor is 2020 nm/RIU and the figure of merit (FOM) is 53.16. The presented sensor has the potential to be useful in nanophotonic sensing applications. Full article
Show Figures

Figure 1

12 pages, 2821 KiB  
Article
Mechanical Behaviors of the Origami-Inspired Horseshoe-Shaped Solar Arrays
by Zhi Li, Chengguo Yu, Luqiao Qi, Shichao Xing, Yan Shi and Cunfa Gao
Micromachines 2022, 13(5), 732; https://doi.org/10.3390/mi13050732 - 2 May 2022
Cited by 7 | Viewed by 1825
Abstract
The importance of flexibility has been widely noticed and concerned in the design and application of space solar arrays. Inspired by origami structures, we introduce an approach to realizing stretchable and bendable solar arrays via horseshoe-shaped substrate design. The structure has the ability [...] Read more.
The importance of flexibility has been widely noticed and concerned in the design and application of space solar arrays. Inspired by origami structures, we introduce an approach to realizing stretchable and bendable solar arrays via horseshoe-shaped substrate design. The structure has the ability to combine rigid solar cells and soft substrates skillfully, which can prevent damage during deformations. The finite deformation theory is adapted to find the analytic model of the horseshoe-shaped structure via simplified beam theory. In order to solve the mechanical model, the shooting method, a numerical method to solve ordinary differential equation (ODE) is employed. Finite element analyses (FEA) are also performed to verify the developed theoretical model. The influences of the geometric parameters on deformations and forces are analyzed to achieve the optimal design of the structures. The stretching tests of horseshoe-shaped samples manufactured by three-dimensional (3D) printing are implemented, whose results shows a good agreement with those from theoretical predictions. The developed models can serve as the guidelines for the design of flexible solar arrays in spacecraft. Full article
(This article belongs to the Special Issue Structural Analyses and Designs for Flexible/Stretchable Electronics)
Show Figures

Figure 1

18 pages, 5936 KiB  
Article
Omnidirectional Manipulation of Microparticles on a Platform Subjected to Circular Motion Applying Dynamic Dry Friction Control
by Sigitas Kilikevičius, Kristina Liutkauskienė, Ernestas Uldinskas, Ribal El Banna and Algimantas Fedaravičius
Micromachines 2022, 13(5), 711; https://doi.org/10.3390/mi13050711 - 30 Apr 2022
Cited by 2 | Viewed by 1595
Abstract
Currently used planar manipulation methods that utilize oscillating surfaces are usually based on asymmetries of time, kinematic, wave, or power types. This paper proposes a method for omnidirectional manipulation of microparticles on a platform subjected to circular motion, where the motion of the [...] Read more.
Currently used planar manipulation methods that utilize oscillating surfaces are usually based on asymmetries of time, kinematic, wave, or power types. This paper proposes a method for omnidirectional manipulation of microparticles on a platform subjected to circular motion, where the motion of the particle is achieved and controlled through the asymmetry created by dynamic friction control. The range of angles at which microparticles can be directed, and the average velocity were considered figures of merit. To determine the intrinsic parameters of the system that define the direction and velocity of the particles, a nondimensional mathematical model of the proposed method was developed, and modeling of the manipulation process was carried out. The modeling has shown that it is possible to direct the particle omnidirectionally at any angle over the full 2π range by changing the phase shift between the function governing the circular motion and the dry friction control function. The shape of the trajectory and the average velocity of the particle depend mainly on the width of the dry friction control function. An experimental investigation of omnidirectional manipulation was carried out by implementing the method of dynamic dry friction control. The experiments verified that the asymmetry created by dynamic dry friction control is technically feasible and can be applied for the omnidirectional manipulation of microparticles. The experimental results were consistent with the modeling results and qualitatively confirmed the influence of the control parameters on the motion characteristics predicted by the modeling. The study enriches the classical theories of particle motion on oscillating rigid plates, and it is relevant for the industries that implement various tasks related to assembling, handling, feeding, transporting, or manipulating microparticles. Full article
(This article belongs to the Special Issue Flexible Micromanipulators and Micromanipulation)
Show Figures

Figure 1

11 pages, 3376 KiB  
Article
Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices
by Hiroki Toda, Wataru Iwasaki, Nobutomo Morita, Taisei Motomura, Kenshin Takemura, Masaya Nagano, Yoshitaka Nakanishi and Yuta Nakashima
Micromachines 2022, 13(5), 690; https://doi.org/10.3390/mi13050690 - 28 Apr 2022
Cited by 4 | Viewed by 2020
Abstract
Fluid control on a paper channel is necessary for analysis with multiple reagents, such as enzyme-linked immunosorbent assay (ELISA) in microfluidic paper-based analytical devices (µPADs). In this study, a thermo-responsive valve was fabricated by polymerizing N-isopropylacrylamide on a PVDF porous membrane by plasma-induced [...] Read more.
Fluid control on a paper channel is necessary for analysis with multiple reagents, such as enzyme-linked immunosorbent assay (ELISA) in microfluidic paper-based analytical devices (µPADs). In this study, a thermo-responsive valve was fabricated by polymerizing N-isopropylacrylamide on a PVDF porous membrane by plasma-induced graft polymerization. The polymerized membrane was observed by scanning electron microscopy (SEM), and it was confirmed that more pores were closed at temperatures below 32 °C and more pores were opened at temperatures above 32 °C. Valve permeability tests confirmed that the proposed polymerized membrane was impermeable to water and proteins at temperatures below 32 °C and permeable to water at temperatures above 32 °C. The valve could also be reversibly and repeatedly opened and closed by changing the temperature near 32 °C. These results suggest that plasma-induced graft polymerization may be used to produce thermo-responsive valves that can be opened and closed without subsequent loss of performance. These results indicate that the thermo-responsive valve fabricated by plasma-induced graft polymerization could potentially be applied to ELISA with µPADs. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

15 pages, 14650 KiB  
Article
Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates
by Fabian Merbeler, Sonja Wismath, Marco Haubold, Christian Bretthauer and Mario Kupnik
Micromachines 2022, 13(5), 676; https://doi.org/10.3390/mi13050676 - 26 Apr 2022
Cited by 4 | Viewed by 2842
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) represent an accepted technology for ultrasonic transducers, while high bias voltage requirements and limited output pressure still need to be addressed. In this paper, we present a design for ultra-low-voltage operation with enhanced output pressure. Low voltages allow [...] Read more.
Capacitive micromachined ultrasonic transducers (CMUTs) represent an accepted technology for ultrasonic transducers, while high bias voltage requirements and limited output pressure still need to be addressed. In this paper, we present a design for ultra-low-voltage operation with enhanced output pressure. Low voltages allow for good integrability and mobile applications, whereas higher output pressures improve the penetration depth and signal-to-noise ratio. The CMUT introduced has an ultra-thin gap (120 nm), small plate thickness (800 nm), and is supported by a non-flexural piston, stiffening the topside for improved average displacement, and thus higher output pressure. Three designs for low MHz operation are simulated and fabricated for comparison: bare plate, plate with small piston (34% plate coverage), and big piston (57%). The impact of the piston on the plate mechanics in terms of resonance and pull-in voltage are simulated with finite element method (FEM). Simulations are in good agreement with laser Doppler vibrometer and LCR-meter measurements. Further, the sound pressure output is characterized in immersion with a hydrophone. Pull-in voltages range from only 7.4 V to 25.0 V. Measurements in immersion with a pulse at 80% of the pull-in voltage present surface output pressures from 44.7 kPa to 502.1 kPa at 3.3 MHz to 4.2 MHz with a fractional bandwidth of up to 135%. This leads to an improvement in transmit sensitivity in pulsed (non-harmonic) driving from 7.8 kPa/V up to 24.8 kPa/V. Full article
Show Figures

Graphical abstract

13 pages, 7702 KiB  
Article
Case Study of a MEMS Snap-Through Actuator: Modeling and Fabrication Considerations
by Zhichao Shi, Emile Martincic, Johan Moulin, Elie Lefeuvre and Frédéric Lamarque
Micromachines 2022, 13(5), 654; https://doi.org/10.3390/mi13050654 - 20 Apr 2022
Cited by 1 | Viewed by 1763
Abstract
MEMS actuators rely on the deformation of silicon structures. Using dimensions smaller than dozens of micrometers reveals that the micro-electro-mechanical systems (MEMS) actuators are affected by fabrication inaccuracies, leading to hardly predictable forces and/or actuation results. In this paper, MEMS bistable buckled beam [...] Read more.
MEMS actuators rely on the deformation of silicon structures. Using dimensions smaller than dozens of micrometers reveals that the micro-electro-mechanical systems (MEMS) actuators are affected by fabrication inaccuracies, leading to hardly predictable forces and/or actuation results. In this paper, MEMS bistable buckled beam actuators are presented. A series of structures based on pre-shaped buckled beams of lengths ranging from 2 to 4 mm, constant width of 5 μm and actuation stroke ranging from 20 to 100 μm was fabricated. Experimental data show a significant difference with predictions from a conventional analytical model. The model commonly used for buckled beams design assumes a rectangular beam section, but it is not the case of the fabricated beams. Furthermore, only symmetric buckling modes (mode 1, mode 3…) are supposed to exist during snap-through. In this paper, new analytical models have been developed on the basis of the models of the literature to consider the effective beam shape. The first improved analytical model enabled prediction of the MEMS buckled beams mechanical behavior in a 30% margin on the whole range of operation. A second model has been introduced to consider both the effective shape of the beam and centro-symmetric buckling modes. This refined model exhibits the partial suppression of buckling mode 2 by a central shuttle. Therefore, mode 2 and mode 3 coexist at the beginning and the end of snap-through, while mode 3 quickly vanishes due to increasing rotation of the central shuttle to leave exclusive presence of mode 2 near the mid-stroke. With this refined model, the effective force-displacement curve can be predicted in a margin reduced to a few percentages in the center zone of the response curve, allowing the accurate prediction of the position switch force. In addition, the proposed model allows accurate results to be reached with very small calculation time. Full article
(This article belongs to the Topic Innovation of Applied System)
Show Figures

Figure 1

13 pages, 19309 KiB  
Article
Frequency Characteristics of Pulse Wave Sensor Using MEMS Piezoresistive Cantilever Element
by Taiga Nabeshima, Thanh-Vinh Nguyen and Hidetoshi Takahashi
Micromachines 2022, 13(5), 645; https://doi.org/10.3390/mi13050645 - 19 Apr 2022
Cited by 4 | Viewed by 2820
Abstract
Wearable sensor devices with minimal discomfort to the wearer have been widely developed to realize continuous measurements of vital signs (body temperature, blood pressure, respiration rate, and pulse wave) in many applications across various fields, such as healthcare and sports. Among them, microelectromechanical [...] Read more.
Wearable sensor devices with minimal discomfort to the wearer have been widely developed to realize continuous measurements of vital signs (body temperature, blood pressure, respiration rate, and pulse wave) in many applications across various fields, such as healthcare and sports. Among them, microelectromechanical systems (MEMS)-based differential pressure sensors have garnered attention as a tool for measuring pulse waves with weak skin tightening. Using a MEMS-based piezoresistive cantilever with an air chamber as the pressure change sensor enables highly sensitive pulse-wave measurements to be achieved. Furthermore, the initial static pressure when attaching the sensor to the skin is physically excluded because of air leakage around the cantilever, which serves as a high-pass filter. However, if the frequency characteristics of this mechanical high-pass filter are not appropriately designed, then the essential information of the pulse-wave measurement may not be reflected. In this study, the frequency characteristics of a sensor structure is derived theoretically based on the air leakage rate and chamber size. Subsequently, a pulse wave sensor with a MEMS piezoresistive cantilever element, two air chambers, and a skin-contacted membrane is designed and fabricated. The developed sensor is 30 mm in diameter and 8 mm in thickness and realizes high-pass filter characteristics of 0.7 Hz. Finally, pulse wave measurement at the neck of a participant is demonstrated using the developed sensor. It is confirmed that the measured pulse wave contains signals in the designed frequency band. Full article
Show Figures

Graphical abstract

12 pages, 3210 KiB  
Article
A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection
by Weihao Fang, Xiaoqing Lv, Zhengtai Ma, Jian Liu, Weihua Pei and Zhaoxin Geng
Micromachines 2022, 13(4), 631; https://doi.org/10.3390/mi13040631 - 16 Apr 2022
Cited by 12 | Viewed by 2902
Abstract
Metamaterial biosensors have been extensively used to identify cell types and detect concentrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable. Therefore, a [...] Read more.
Metamaterial biosensors have been extensively used to identify cell types and detect concentrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable. Therefore, a flexible terahertz metamaterial biosensor based on parylene C substrate was proposed for label-free and non-destructive detection of breast cancer cell growth and migration. The maximum resonance peak frequency shift achieved 183.2 GHz when breast cancer cell MDA−MB−231 was cultured onto the surface of the metamaterial biosensor for 72 h. A designed polydimethylsiloxane (PDMS) barrier sheet was applied to detect the cell growth rate which was quantified as 14.9 µm/h. The experimental peak shift expressed a linear relationship with the covered area and a quadratic relationship with the distance, which was consistent with simulation results. Additionally, the cell migration indicated that the transform growth factor-β (TGF-β) promoted the cancer cell migration. The terahertz metamaterial biosensor shows great potential for the investigation of cell biology in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Biosensors)
Show Figures

Graphical abstract

19 pages, 4683 KiB  
Article
Development of an Electromagnetic Micromanipulator Levitation System for Metal Additive Manufacturing Applications
by Parichit Kumar, Saksham Malik, Ehsan Toyserkani and Mir Behrad Khamesee
Micromachines 2022, 13(4), 585; https://doi.org/10.3390/mi13040585 - 9 Apr 2022
Cited by 10 | Viewed by 2606
Abstract
Magnetism and magnetic levitation has found significant interest within the field of micromanipulation of objects. Additive manufacturing (AM), which is the computer-controlled process for creating 3D objects through the deposition of materials, has also been relevant within the academic environment. Despite the research [...] Read more.
Magnetism and magnetic levitation has found significant interest within the field of micromanipulation of objects. Additive manufacturing (AM), which is the computer-controlled process for creating 3D objects through the deposition of materials, has also been relevant within the academic environment. Despite the research conducted individually within the two fields, there has been minimal overlapping research. The non-contact nature of magnetic micromanipulator levitation systems makes it a prime candidate within AM environments. The feasibility of integrating magnetic micromanipulator levitation system, which includes two concentric coils embedded within a high permeability material and carrying currents in opposite directions, for additive manufacturing applications is presented in this article. The working principle, the optimization and relevant design decisions pertaining to the micromanipulator levitation system are discussed. The optimized dimensions of the system allow for 920 turns in the inner coil and 800 turns in the outer coil resulting in a Ninnercoil:Noutercoil ratio of 1.15. Use of principles of free levitation, which is production of levitation and restoration forces with the coils, to levitate non-magnetic conductive materials with compatibility and applications within the AM environment are discussed. The Magnetomotive Force (MMF) ratio of the coils are adjusted by incorporation of an resistor in parallel to the outer coil to facilitate sufficient levitation forces in the axial axis while producing satisfactory restoration forces in the lateral axes resulting in the levitation of an aluminum disc with a levitation height of 4.5 mm. An additional payload of up to 15.2 g (59% of mass of levitated disc) was added to a levitated aluminum disk of 26 g showing the system capability coping with payload variations, which is crucial in AM process to gradually deploy masses. The final envisioned system is expected to have positional stability within the tolerance range of a few μm. The system performance is verified through the use of simulations (ANSYS Maxwell) and experimental analyses. A novel method of using the ratio of conductivity (σ) of the material to density (ρ) of the material to determine the compatibility of the levitation ability of non-magnetic materials with magnetic levitation application is also formulated. The key advantage of this method is that it does not rely on experimental analyses to determine the levitation ability of materials. Full article
(This article belongs to the Special Issue Flexible Micromanipulators and Micromanipulation)
Show Figures

Figure 1

8 pages, 7336 KiB  
Article
High Selectivity, Low Damage ICP Etching of p-GaN over AlGaN for Normally-off p-GaN HEMTs Application
by Penghao Zhang, Luyu Wang, Kaiyue Zhu, Yannan Yang, Rong Fan, Maolin Pan, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu and David Wei Zhang
Micromachines 2022, 13(4), 589; https://doi.org/10.3390/mi13040589 - 9 Apr 2022
Cited by 6 | Viewed by 3223
Abstract
A systematic study of the selective etching of p-GaN over AlGaN was carried out using a BCl3/SF6 inductively coupled plasma (ICP) process. Compared to similar chemistry, a record high etch selectivity of 41:1 with a p-GaN etch rate [...] Read more.
A systematic study of the selective etching of p-GaN over AlGaN was carried out using a BCl3/SF6 inductively coupled plasma (ICP) process. Compared to similar chemistry, a record high etch selectivity of 41:1 with a p-GaN etch rate of 3.4 nm/min was realized by optimizing the SF6 concentration, chamber pressure, ICP and bias power. The surface morphology after p-GaN etching was characterized by AFM for both selective and nonselective processes, showing the exposed AlGaN surface RMS values of 0.43 nm and 0.99 nm, respectively. MIS-capacitor devices fabricated on the AlGaN surface with ALD-Al2O3 as the gate dielectric after p-GaN etch showed the significant benefit of BCl3/SF6 selective etch process. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Graphical abstract

15 pages, 4627 KiB  
Article
Optimization and Fabrication of Multi-Level Microchannels for Long-Term Imaging of Bacterial Growth and Expansion
by Hsieh-Fu Tsai, Daniel W. Carlson, Anzhelika Koldaeva, Simone Pigolotti and Amy Q. Shen
Micromachines 2022, 13(4), 576; https://doi.org/10.3390/mi13040576 - 7 Apr 2022
Cited by 1 | Viewed by 2841
Abstract
Bacteria are unicellular organisms whose length is usually around a few micrometers. Advances in microfabrication techniques have enabled the design and implementation of microdevices to confine and observe bacterial colony growth. Microstructures hosting the bacteria and microchannels for nutrient perfusion usually require separate [...] Read more.
Bacteria are unicellular organisms whose length is usually around a few micrometers. Advances in microfabrication techniques have enabled the design and implementation of microdevices to confine and observe bacterial colony growth. Microstructures hosting the bacteria and microchannels for nutrient perfusion usually require separate microfabrication procedures due to different feature size requirements. This fact increases the complexity of device integration and assembly process. Furthermore, long-term imaging of bacterial dynamics over tens of hours requires stability in the microscope focusing mechanism to ensure less than one-micron drift in the focal axis. In this work, we design and fabricate an integrated multi-level, hydrodynamically-optimized microfluidic chip to study long-term Escherichia coli population dynamics in confined microchannels. Reliable long-term microscopy imaging and analysis has been limited by focus drifting and ghost effect, probably caused by the shear viscosity changes of aging microscopy immersion oil. By selecting a microscopy immersion oil with the most stable viscosity, we demonstrate successful captures of focally stable time-lapse bacterial images for ≥72 h. Our fabrication and imaging methodology should be applicable to other single-cell studies requiring long-term imaging. Full article
Show Figures

Figure 1

8 pages, 2278 KiB  
Article
Electrocapillary Actuation of Liquid Metal in Microchannels
by Saige J. Dacuycuy, Wayne A. Shiroma and Aaron T. Ohta
Micromachines 2022, 13(4), 572; https://doi.org/10.3390/mi13040572 - 3 Apr 2022
Cited by 3 | Viewed by 2788
Abstract
Controllable deformation of liquid metal by electrocapillary actuation (ECA) is empirically characterized in fluidic channels at the sub-millimeter-length scale. In 100-µm-deep channels of varying widths, the Galinstan liquid metal could move at velocities of more than 40 mm/s. The liquid metal could extend [...] Read more.
Controllable deformation of liquid metal by electrocapillary actuation (ECA) is empirically characterized in fluidic channels at the sub-millimeter-length scale. In 100-µm-deep channels of varying widths, the Galinstan liquid metal could move at velocities of more than 40 mm/s. The liquid metal could extend more than 2.5 mm into the channels at an electrocapillary actuation voltage of 3 V DC. The dynamic behavior of the liquid metal as it moves in the microchannels is described. These results are useful for designing microsystems that use liquid metal as a functional material. Full article
(This article belongs to the Section A:Physics)
Show Figures

Graphical abstract

12 pages, 3293 KiB  
Article
A Ring-Type Triboelectric Nanogenerator for Rotational Mechanical Energy Harvesting and Self-Powered Rotational Speed Sensing
by Yida Xin, Taili Du, Changhong Liu, Zhiyuan Hu, Peiting Sun and Minyi Xu
Micromachines 2022, 13(4), 556; https://doi.org/10.3390/mi13040556 - 31 Mar 2022
Cited by 5 | Viewed by 2476
Abstract
In recent years, sensors have been moving towards the era of intelligence, miniaturization and low power consumption, but the power-supply problem has always been a key issue restricting the popularization and development of machine-mounted sensors on the rotating machinery. Herein, we develop a [...] Read more.
In recent years, sensors have been moving towards the era of intelligence, miniaturization and low power consumption, but the power-supply problem has always been a key issue restricting the popularization and development of machine-mounted sensors on the rotating machinery. Herein, we develop a ring-type triboelectric nanogenerator (R-TENG) that functions as a sustainable power source as well as a self-powered rotational speed sensor for rotating machinery. The R-TENG adopts a freestanding mode and consists of a ring-type container unit, an end cover and polytetrafluoroethylene (PTFE) cylinders. In this study, the influence of the number of cylinders, the PTFE cylinder’s diameter and the rotational speed on the electrical output are systematically examined, and the motion law of the PTFE cylinders in the container is revealed by the experimental results and verified by kinetic simulation. At a rotational speed of 400 rpm, the output voltage, current and transferred charge of the designed R-TENG reached 138 V, 115 nC and 2.03 μA, respectively. This study provides an attractive power supply strategy for machine-mounted sensors of the rotating machinery, and the rotational speed measurement test also suggests the potential application of the R-TENG as a self-powered rotational speed sensor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Graphical abstract

12 pages, 4040 KiB  
Article
Particle Manipulation in 2D Space Using a Capacitive Micromachined Ultrasonic Transducer
by Chang Hoon Lee, Beom Hoon Park, Young Hun Kim, Hyeong Geun Jo and Kwan Kyu Park
Micromachines 2022, 13(4), 534; https://doi.org/10.3390/mi13040534 - 29 Mar 2022
Viewed by 2044
Abstract
Ultrasonic particle manipulation is a noncontact method for controlling microscale objects, such as cells or microparticles, using an acoustic field. In this study, a 2D array of capacitive micromachined ultrasonic transducers (CMUTs), placed horizontally in immersion, generated ultrasonic waves in the vertical direction, [...] Read more.
Ultrasonic particle manipulation is a noncontact method for controlling microscale objects, such as cells or microparticles, using an acoustic field. In this study, a 2D array of capacitive micromachined ultrasonic transducers (CMUTs), placed horizontally in immersion, generated ultrasonic waves in the vertical direction, and the oil’s surface increased due to the radiation force of the ultrasonic waves. In addition, the radiation force directly exerted a force on a floating particle. By measuring the movement of the reflected laser light by the moving oil surface, the height of the oil’s surface deformed by the acoustic radiation force (ARF) was measured. The ARF made a floating particle, as well as the oil’s surface, move. The particle moved radially away from the surface position above the transducer, and its velocity was determined by its position on the fluid’s surface. When a single channel was operated, it moved 0.4 mm at an average speed of 90 μm/s, and when two adjacent channels were operated, it moved 1.2 mm at a speed of 272 μm/s. The particles moved in any direction on the surface of the oil by controlling the actuation channel using an electrical switch. Full article
Show Figures

Figure 1

9 pages, 1698 KiB  
Communication
Characterization of Active Electrode Yield for Intracortical Arrays: Awake versus Anesthesia
by Brandon Sturgill, Rahul Radhakrishna, Teresa Thuc Doan Thai, Sourav S. Patnaik, Jeffrey R. Capadona and Joseph J. Pancrazio
Micromachines 2022, 13(3), 480; https://doi.org/10.3390/mi13030480 - 20 Mar 2022
Cited by 6 | Viewed by 2501
Abstract
Intracortical microelectrode arrays are used for recording neural signals at single-unit resolution and are promising tools for studying brain function and developing neuroprosthetics. Research is being done to increase the chronic performance and reliability of these probes, which tend to decrease or fail [...] Read more.
Intracortical microelectrode arrays are used for recording neural signals at single-unit resolution and are promising tools for studying brain function and developing neuroprosthetics. Research is being done to increase the chronic performance and reliability of these probes, which tend to decrease or fail within several months of implantation. Although recording paradigms vary, studies focused on assessing the reliability and performance of these devices often perform recordings under anesthesia. However, anesthetics—such as isoflurane—are known to alter neural activity and electrophysiologic function. Therefore, we compared the neural recording performance under anesthesia (2% isoflurane) followed by awake conditions for probes implanted in the motor cortex of both male and female Sprague-Dawley rats. While the single-unit spike rate was significantly higher by almost 600% under awake compared to anesthetized conditions, we found no difference in the active electrode yield between the two conditions two weeks after surgery. Additionally, the signal-to-noise ratio was greater under anesthesia due to the noise levels being nearly 50% greater in awake recordings, even though there was a 14% increase in the peak-to-peak voltage of distinguished single units when awake. We observe that these findings are similar for chronic time points as well. Our observations indicate that either anesthetized or awake recordings are acceptable for studies assessing the chronic reliability and performance of intracortical microelectrode arrays. Full article
(This article belongs to the Special Issue Micromachines for Neurological Research)
Show Figures

Graphical abstract

6 pages, 1100 KiB  
Article
3D Printed PCB Microfluidics
by Stefan Gassmann, Sathurja Jegatheeswaran, Till Schleifer, Hesam Arbabi and Helmut Schütte
Micromachines 2022, 13(3), 470; https://doi.org/10.3390/mi13030470 - 19 Mar 2022
Cited by 3 | Viewed by 3125
Abstract
The combination of printed circuit boards (PCB) and microfluidics has many advantages. The combination of electrodes, sensors and electronics is needed for almost all microfluidic systems. Using PCBs as a substrate, this integration is intrinsic. Additive manufacturing has become a widely used technique [...] Read more.
The combination of printed circuit boards (PCB) and microfluidics has many advantages. The combination of electrodes, sensors and electronics is needed for almost all microfluidic systems. Using PCBs as a substrate, this integration is intrinsic. Additive manufacturing has become a widely used technique in industry, research and by hobbyists. One very promising rapid prototype technique is vat polymerization with an LCD as mask, also known as masked stereolithography (mSLA). These printers are available with resolutions down to 35 µm, and they are affordable. In this paper, a technology is described which creates microfluidics on a PCB substrate using an mSLA printer. All steps of the production process can be carried out with commercially available printers and resins: this includes the structuring of the copper layer of the PCB and the buildup of the channel layer on top of the PCB. Copper trace dimensions down to 100 µm and channel dimensions of 800 µm are feasible. The described technology is a low-cost solution for combining PCBs and microfluidics. Full article
(This article belongs to the Special Issue Lab-on-PCB Devices)
Show Figures

Graphical abstract

9 pages, 21368 KiB  
Article
Miniaturized Sulfite-Based Gold Bath for Controlled Electroplating of Zone Plate Nanostructures
by Hanna Ohlin, Thomas Frisk, Mattias Åstrand and Ulrich Vogt
Micromachines 2022, 13(3), 452; https://doi.org/10.3390/mi13030452 - 17 Mar 2022
Cited by 4 | Viewed by 2788
Abstract
X-ray zone plates made from gold are common optical components used in X-ray imaging experiments. These nanostructures are normally fabricated using a combination of electron-beam lithography and gold electroplating with cyanide gold baths. In this study, we present a gold electroplating process in [...] Read more.
X-ray zone plates made from gold are common optical components used in X-ray imaging experiments. These nanostructures are normally fabricated using a combination of electron-beam lithography and gold electroplating with cyanide gold baths. In this study, we present a gold electroplating process in a miniaturized gold-suplphite bath. The miniaturization is enabled by on-chip reference plating areas with well defined sizes, offering a reliable way to control the height of the structures by carefully choosing the plating time at a given current density in accordance with a calibration curve. Fabricated gold zone plates were successfully used in X-ray imaging experiments with synchrotron radiation. Although gold electroplating of nanostructures is a well-established method, details about the actual process are often missing in the literature. Therefore, we think that our detailed descriptions and explanations will be helpful for other researchers that would like to fabricate similar structures. Full article
Show Figures

Figure 1

11 pages, 2814 KiB  
Article
Observations on Detonation Growth of Lead Azide at Microscale
by Yunfei Mu, Wei Zhang, Ruiqi Shen and Yinghua Ye
Micromachines 2022, 13(3), 451; https://doi.org/10.3390/mi13030451 - 16 Mar 2022
Cited by 4 | Viewed by 2167
Abstract
Lead azide (LA) is a commonly used primary explosive, the detonation growth of which is difficult to study because it is so sensitive and usually has a small charge size in applications. We used photon Doppler velocimetry (PDV) and calibrated polyvinylidene fluoride (PVDF) [...] Read more.
Lead azide (LA) is a commonly used primary explosive, the detonation growth of which is difficult to study because it is so sensitive and usually has a small charge size in applications. We used photon Doppler velocimetry (PDV) and calibrated polyvinylidene fluoride (PVDF) gauges to reveal the detonation growth in LA, which was pressed in the confinements with controlled heights. The particle-velocity profiles, output pressure, unsteady detonation velocity, reaction time, and reaction-zone width were obtained and analyzed. Three phases of detonation propagation of LA microcharges are discussed. The volume reactions occur at the beginning of detonation in LA microcharges without forming complete shock profiles. Then the shock front is fast with a slow chemistry reaction zone, which is compressed continuously between the height of 0.8 mm and 2.5 mm. Finally, the steady detonation is built at a height of 2.5 mm. The stable detonation velocity and CJ pressure are 4726 ± 8 m/s and 17.12 ± 0.22 GPa. Additionally, the stable reaction zone time and width are 44 ± 7 ns and 148 ± 11 μm. The detailed detonation process has not previously been quantified in such a small geometry. Full article
(This article belongs to the Special Issue Microsystems for Space and Defense Applications)
Show Figures

Graphical abstract

11 pages, 3350 KiB  
Article
Electrochemical Glue for Binding Chitosan–Alginate Hydrogel Fibers for Cell Culture
by Yoshinobu Utagawa, Kosuke Ino, Tatsuki Kumagai, Kaoru Hiramoto, Masahiro Takinoue, Yuji Nashimoto and Hitoshi Shiku
Micromachines 2022, 13(3), 420; https://doi.org/10.3390/mi13030420 - 8 Mar 2022
Cited by 6 | Viewed by 3420
Abstract
Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel [...] Read more.
Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel electrochemical strategy for gluing hydrogel fibers. In this strategy, a microelectrode electrochemically generated HClO or Ca2+, and these chemicals were used to crosslink chitosan–alginate fibers fabricated using interfacial polyelectrolyte complexation. Further, human umbilical vein endothelial cells were incorporated into the fibers, and two such fibers were glued together to construct “+”-shaped hydrogels. After gluing, the hydrogels were embedded in Matrigel and cultured for several days. The cells spread and proliferated along the fibers, indicating that the electrochemical glue was not toxic toward the cells. This is the first report on the use of electrochemical glue for the assembly of hydrogel pieces containing cells. Based on our results, the electrochemical gluing method has promising applications in tissue engineering and the development of organs on a chip. Full article
(This article belongs to the Special Issue Frontiers in Micromachines in Japan)
Show Figures

Figure 1

12 pages, 2237 KiB  
Article
Electrospun Nanofiber Covered Polystyrene Micro-Nano Hybrid Structures for Triboelectric Nanogenerator and Supercapacitor
by Jihyeon Park, Seungju Jo, Youngsu Kim, Shakir Zaman and Daewon Kim
Micromachines 2022, 13(3), 380; https://doi.org/10.3390/mi13030380 - 26 Feb 2022
Cited by 13 | Viewed by 3634
Abstract
Recently, tremendous research on small energy supply devices is gaining popularity with the immerging Internet of Things (IoT) technologies. Especially, energy conversion and storage devices can provide opportunities for small electronics. In this research, a micro-nano structured design of electrodes is newly developed [...] Read more.
Recently, tremendous research on small energy supply devices is gaining popularity with the immerging Internet of Things (IoT) technologies. Especially, energy conversion and storage devices can provide opportunities for small electronics. In this research, a micro-nano structured design of electrodes is newly developed for high performing hybrid energy systems with the improved effective surface area. Further, it could be simply fabricated through two-steps synthesis of electrospinning and glass transition of a novel polystyrene (PS) substrate. Herein, the electro-spun nanofiber of polyacrylonitrile (PAN) and Nylon 66 (Nylon) are applied to the dielectric layer of a triboelectric generator (TENG), while the PAN and polyaniline (PANI) composites is utilized as an electroactive material of supercapacitor (SC). As a result, the self-charging power system is successfully integrated with the wrinkled PAN/PS (W-PAN/PS@PANI)-SC and W-TENG by using a rectifier. According to the fabricated hybrid energy systems, the electrical energy produced by W-TENG can be successfully stored into as-fabricated W-PAN/PS@PANI-SC and can also turn on a commercial green LED with the stored energy. Therefore, the micro-nano structured electrode designed for hybrid energy systems can contribute to improve the energy conversion and storage performance of various electronic devices. Full article
Show Figures

Graphical abstract

13 pages, 4418 KiB  
Article
Hybrid Dissection for Neutron Tube Shell via Continuous-Wave Laser and Ultra-Short Pulse Laser
by Minqiang Kang, Yongfa Qiang, Canlin Zhu, Xiangjun Xiang, Dandan Zhou, Zhitao Peng, Xudong Xie and Qihua Zhu
Micromachines 2022, 13(3), 352; https://doi.org/10.3390/mi13030352 - 23 Feb 2022
Cited by 3 | Viewed by 1473
Abstract
The sealed neutron tube shell dissection process utilizing the traditional lathe turning method suffers from low efficiency and high cost due to the frequency of replacement of the diamond knife. In this study, a hybrid dissection method is introduced by combining the continuous-wave [...] Read more.
The sealed neutron tube shell dissection process utilizing the traditional lathe turning method suffers from low efficiency and high cost due to the frequency of replacement of the diamond knife. In this study, a hybrid dissection method is introduced by combining the continuous-wave (CW) laser for efficient tangential groove production with an ultra-short pulse laser for delamination scanning removal. In this method, a high-power CW laser is firstly employed to make a tapered groove on the shell’s surface, and then a femtosecond pulse laser is used to micromachine the groove in order to obtain a cutting kerf. The thermal field was theoretically investigated in a finite element model. The simulation results show that the width of the area of temperature exceeding 100 °C is 1.9 mm and 0.4 mm with rotating speeds of 20 rad/s and 60 rad/s, respectively. In addition, a 2 mm deep slot in the 25 mm diameter tube was successfully produced in 1 min by a kilowatt fiber laser, and a 500-femtosecond pulse laser was employed to cut a plate with a material removal rate of 0.2 mm3/min. By using the hybrid method, the cutting efficiency was improved about 49 times compared to the femtosecond laser cutting. According to the simulation and experimental results, this method provides a high-efficiency and non-thermal cutting technique for reclaimed metallic neutron tube shells with millimeter-level thick walls, which has the advantages of non-contact, minimal thermal diffusion, and no effect of molten slag. It is indicated that the hybrid dissection method not only offers a new solution for thick neutron tube shell cutting but also extends the application of laser cutting techniques. Full article
Show Figures

Figure 1

20 pages, 17345 KiB  
Article
Design and Fabrication of a Magnetic Actuator for Torque and Force Control Estimated by the ANN/SA Algorithm
by Pooriya Kazemzadeh Heris and Mir Behrad Khamesee
Micromachines 2022, 13(2), 327; https://doi.org/10.3390/mi13020327 - 19 Feb 2022
Cited by 11 | Viewed by 2520
Abstract
Magnetic manipulation has the potential to recast the medical field both from an operational and drug delivery point of view as it can provide wireless controlled navigation over surgical devices and drug containers inside a human body. The presented system in this research [...] Read more.
Magnetic manipulation has the potential to recast the medical field both from an operational and drug delivery point of view as it can provide wireless controlled navigation over surgical devices and drug containers inside a human body. The presented system in this research implements a unique eight-coil configuration, where each coil is designed based on the characterization of the working space, generated force on a milliscale robot, and Fabry factor. A cylindrical iron-core coil with inner and outer diameters and length of 20.5, 66, and 124 mm is the optimized coil. Traditionally, FEM results are adopted from simulation and implemented into the motion logic; however, simulated values are associated with errors; 17% in this study. Instead of regularizing FEM results, for the first time, artificial intelligence has been used to approximate the actual values for manipulation purposes. Regression models for Artificial Neural Network (ANN) and a hybrid method called Artificial Neural Network with Simulated Annealing (ANN/SA) have been created. ANN/SA has shown outstanding performance with an average R2, and a root mean square error of 0.9871 and 0.0153, respectively. Implementation of the regression model into the manipulation logic has provided a motion with 13 μm of accuracy. Full article
(This article belongs to the Special Issue Flexible Micromanipulators and Micromanipulation)
Show Figures

Figure 1

15 pages, 8744 KiB  
Article
Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti–6Al–4V Alloy via Annealing Heat Treatment
by Di Wang, Han Wang, Xiaojun Chen, Yang Liu, Dong Lu, Xinyu Liu and Changjun Han
Micromachines 2022, 13(2), 331; https://doi.org/10.3390/mi13020331 - 19 Feb 2022
Cited by 12 | Viewed by 2526
Abstract
This work investigated the influence of process parameters on the densification, microstructure, and mechanical properties of a Ti–6Al–4V alloy printed by selective laser melting (SLM), followed by annealing heat treatment. In particular, the evolution mechanisms of the microstructure and mechanical properties of the [...] Read more.
This work investigated the influence of process parameters on the densification, microstructure, and mechanical properties of a Ti–6Al–4V alloy printed by selective laser melting (SLM), followed by annealing heat treatment. In particular, the evolution mechanisms of the microstructure and mechanical properties of the printed alloy with respect to the annealing temperature near the β phase transition temperature were investigated. The process parameter optimization of SLM can lead to the densification of the printed Ti–6Al–4V alloy with a relative density of 99.51%, accompanied by an ultimate tensile strength of 1204 MPa and elongation of 7.8%. The results show that the microstructure can be tailored by altering the scanning speed and annealing temperature. The SLM-printed Ti–6Al–4V alloy contains epitaxial growth β columnar grains and internal acicular martensitic α′ grains, and the width of the β columnar grain decreases with an increase in the scanning speed. Comparatively, the printed alloy after annealing in the range of 750–1050 °C obtains the microstructure consisting of α + β dual phases. In particular, network and Widmanstätten structures are formed at the annealing temperatures of 850 °C and 1050 °C, respectively. The maximum elongation of 14% can be achieved at the annealing temperature of 950 °C, which was 79% higher than that of as-printed samples. Meanwhile, an ultimate tensile strength larger than 1000 MPa can be maintained, which still meets the application requirements of the forged Ti–6Al–4V alloy. Full article
Show Figures

Figure 1

13 pages, 10521 KiB  
Article
MEMS-Casting Fabricated Chip-Style 3D Metal Solenoidal Transformers towards Integrated Power Supply
by Nianying Wang, Changnan Chen, Pu Chen, Jiebin Gu, Pichao Pan, Ruofeng Han, Min Liu and Xinxin Li
Micromachines 2022, 13(2), 325; https://doi.org/10.3390/mi13020325 - 18 Feb 2022
Cited by 1 | Viewed by 2493
Abstract
A silicon-chip-based 3D metal solenoidal transformer is proposed and developed to achieve AC-DC conversion for integrated power supply applications. With wafer-level micro electromechanical systems (MEMS) fabrication technique to form the metal casting mold and the following micro-casting technique to rapidly (within 6 min) [...] Read more.
A silicon-chip-based 3D metal solenoidal transformer is proposed and developed to achieve AC-DC conversion for integrated power supply applications. With wafer-level micro electromechanical systems (MEMS) fabrication technique to form the metal casting mold and the following micro-casting technique to rapidly (within 6 min) fill molten ZnAl alloy into the pre-micromachined silicon mold, 45-turns primary solenoid and 7-turns secondary solenoid are fabricated in silicon wafers, where the two intertwining solenoids are located at inner deck and outer deck, respectively. Permalloy soft magnetic core is inserted into a pre-etched channel in the silicon chip, which is surrounded by the solenoids. The size of the chip-style transformer is as small as 8.5 mm × 6.6 mm × 2.5 mm. The internal resistance of the primary solenoid is 1.82 Ω and that of the secondary solenoid is 0.16 Ω. The working frequency of the transformer is 60 kHz. Combined with the testing circuit of the switch mode power supply, the DC voltage of 13.02 V is obtained when the input is 110 V at 50 Hz/60 Hz. Furthermore, the on-chip 3D solenoidal transformer is used for lighting four LEDs, which shows great potential for AC-DC power supply. The wafer-level fabricated chip-style solenoidal AC-DC transformer for integrated power supply is advantageous in uniform fabrication, small size and volume applications. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

12 pages, 4487 KiB  
Article
Wireless Control Combining Myoelectric Signal and Human Body Communication for Wearable Robots
by Taisuke Iguchi, Ikuma Kondo and Jianqing Wang
Micromachines 2022, 13(2), 290; https://doi.org/10.3390/mi13020290 - 12 Feb 2022
Cited by 1 | Viewed by 1781
Abstract
In this study, a communication module based on human body communication was developed to wirelessly control a wearable robot hand based on myoelectric signals. The communication module adopts 10–60 MHz band and an impulse radio multi-pulse position modulation method to achieve low transmission [...] Read more.
In this study, a communication module based on human body communication was developed to wirelessly control a wearable robot hand based on myoelectric signals. The communication module adopts 10–60 MHz band and an impulse radio multi-pulse position modulation method to achieve low transmission loss and high data rate. A technique to reduce the module size was developed by sharing the myoelectric signal detection electrode and transmitting electrode, and three receiving electrode structures were investigated to improve signal transmission performance. As a result, the developed communication module provides a packet detection rate of 100% and a bit error rate of less than 106 up to at least 110 cm along the arm, and a wearable robot hand was demonstrated to be properly controlled based on a human subject’s myoelectric signals. Full article
(This article belongs to the Special Issue Wearable Robotics)
Show Figures

Figure 1

13 pages, 1720 KiB  
Article
3D Bioprinting of an In Vitro Model of a Biomimetic Urinary Bladder with a Contract-Release System
by Suhun Chae, Jaewook Kim, Hee-Gyeong Yi and Dong-Woo Cho
Micromachines 2022, 13(2), 277; https://doi.org/10.3390/mi13020277 - 9 Feb 2022
Cited by 10 | Viewed by 3427
Abstract
The development of curative therapy for bladder dysfunction is usually hampered owing to the lack of reliable ex vivo human models that can mimic the complexity of the human bladder. To overcome this issue, 3D in vitro model systems offering unique opportunities to [...] Read more.
The development of curative therapy for bladder dysfunction is usually hampered owing to the lack of reliable ex vivo human models that can mimic the complexity of the human bladder. To overcome this issue, 3D in vitro model systems offering unique opportunities to engineer realistic human tissues/organs have been developed. However, existing in vitro models still cannot entirely reflect the key structural and physiological characteristics of the native human bladder. In this study, we propose an in vitro model of the urinary bladder that can create 3D biomimetic tissue structures and dynamic microenvironments to replicate the smooth muscle functions of an actual human urinary bladder. In other words, the proposed biomimetic model system, developed using a 3D bioprinting approach, can recreate the physiological motion of the urinary bladder by incorporating decellularized extracellular matrix from the bladder tissue and introducing cyclic mechanical stimuli. The results showed that the developed bladder tissue models exhibited high cell viability and proliferation rate and promoted myogenic differentiation potential given dynamic mechanical cues. We envision the developed in vitro bladder mimicry model can serve as a research platform for fundamental studies on human disease modeling and pharmaceutical testing. Full article
(This article belongs to the Special Issue Advanced Biofabrication Technologies)
Show Figures

Figure 1

7 pages, 2342 KiB  
Article
Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices
by Mijin Kim, Dongjin Kim, Ohun Kwon and Honyeon Lee
Micromachines 2022, 13(2), 269; https://doi.org/10.3390/mi13020269 - 7 Feb 2022
Cited by 16 | Viewed by 3069
Abstract
Fabrication of high-performance, flexible quantum-dot light-emitting diodes (QLEDs) requires the reliable manufacture of a flexible transparent electrode to replace the conventional brittle indium tin oxide (ITO) transparent electrode, along with flexible substrate planarization. We deposited a transparent oxide/metal/oxide (OMO) electrode on a polymer [...] Read more.
Fabrication of high-performance, flexible quantum-dot light-emitting diodes (QLEDs) requires the reliable manufacture of a flexible transparent electrode to replace the conventional brittle indium tin oxide (ITO) transparent electrode, along with flexible substrate planarization. We deposited a transparent oxide/metal/oxide (OMO) electrode on a polymer planarization layer and co-optimized both layers. The visible transmittance of the OMO electrode on a polyethylene terephthalate substrate increased markedly. Good electron supply and injection into an electron-transporting layer were achieved using WOX/Ag/ WOX and MoOx/Ag/MoOX OMO electrodes. High-performance flexible QLEDs were fabricated from these electrodes; a QLED with a MoOX/Ag/ MoOX cathode and an SU-8 planarization layer had a current efficiency of 30.3 cd/A and luminance more than 7 × 104 cd/m2. The current efficiency was significantly higher than that of a rigid QLED with an ITO cathode and was higher than current efficiency values obtained from previously reported QLEDs that utilized the same quantum-dot and electron-transporting layer materials as our study. Full article
(This article belongs to the Special Issue Quantum Dot Frontiers)
Show Figures

Figure 1

16 pages, 4042 KiB  
Article
A Monolithic 3D Printed Axisymmetric Co-Flow Single and Compound Emulsion Generator
by Amirreza Ghaznavi, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington, Tal Carmon, Lev Deych, Lan Yang and Jie Xu
Micromachines 2022, 13(2), 188; https://doi.org/10.3390/mi13020188 - 26 Jan 2022
Cited by 5 | Viewed by 3768
Abstract
We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, [...] Read more.
We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could offer any user an accessible and easy-to-utilize device for the generation of single and compound emulsions. Full article
(This article belongs to the Special Issue Microfluidics for Environmental Monitoring)
Show Figures

Graphical abstract

10 pages, 2231 KiB  
Article
Anti-Counterfeiting Tags Using Flexible Substrate with Gradient Micropatterning of Silver Nanowires
by Hyeli Kim, Goomin Kwon, Cheolheon Park, Jungmok You and Wook Park
Micromachines 2022, 13(2), 168; https://doi.org/10.3390/mi13020168 - 22 Jan 2022
Cited by 4 | Viewed by 3267
Abstract
Anti-counterfeiting technologies for small products are being developed. We present an anti-counterfeiting tag, a grayscale pattern of silver nanowires (AgNWs) on a flexible substrate. The anti-counterfeiting tag that is observable with a thermal imaging camera was fabricated using the characteristics of silver nanowires [...] Read more.
Anti-counterfeiting technologies for small products are being developed. We present an anti-counterfeiting tag, a grayscale pattern of silver nanowires (AgNWs) on a flexible substrate. The anti-counterfeiting tag that is observable with a thermal imaging camera was fabricated using the characteristics of silver nanowires with high visible light transmittance and high infrared emissivity. AgNWs were patterned at microscale via a maskless lithography method using UV dicing tape with UV patterns. By attaching and detaching an AgNW coated glass slide and UV dicing tape irradiated with multiple levels of UV, we obtained AgNW patterns with four or more grayscales. Peel tests confirmed that the adhesive strength of the UV dicing tape varied according to the amount of UV irradiation, and electrical resistance and IR image intensity measurements confirmed that the pattern obtained using this tape has multi-level AgNW concentrations. When applied for anti-counterfeiting, the gradient-concentration AgNW micropattern could contain more information than a single-concentration micropattern. In addition, the gradient AgNW micropattern could be transferred to a flexible polymer substrate using a simple method and then attached to various surfaces for use as an anti-counterfeiting tag. Full article
(This article belongs to the Special Issue Microparticle Fabrication and Its Biomedical Application)
Show Figures

Figure 1

14 pages, 4521 KiB  
Article
3D Culture Platform for Enabling Large-Scale Imaging and Control of Cell Distribution into Complex Shapes by Combining 3D Printing with a Cube Device
by Atsushi Takano, Isabel Koh and Masaya Hagiwara
Micromachines 2022, 13(2), 156; https://doi.org/10.3390/mi13020156 - 21 Jan 2022
Cited by 4 | Viewed by 3663
Abstract
While organoid differentiation protocols have been widely developed, local control of initial cell seeding position and imaging of large-scale organoid samples with high resolution remain challenging. 3D bioprinting is an effective method to achieve control of cell positioning, but existing methods mainly rely [...] Read more.
While organoid differentiation protocols have been widely developed, local control of initial cell seeding position and imaging of large-scale organoid samples with high resolution remain challenging. 3D bioprinting is an effective method to achieve control of cell positioning, but existing methods mainly rely on the use of synthetic hydrogels that could compromise the native morphogenesis of organoids. To address this problem, we developed a 3D culture platform that combines 3D printing with a cube device to enable an unrestricted range of designs to be formed in biological hydrogels. We demonstrated the formation of channels in collagen hydrogel in the cube device via a molding process using a 3D-printed water-soluble mold. The mold is first placed in uncured hydrogel solution, then easily removed by immersion in water after the gel around it has cured, thus creating a mold-shaped gap in the hydrogel. At the same time, the difficulty in obtaining high-resolution imaging on a large scale can also be solved as the cube device allows us to scan the tissue sample from multiple directions, so that the imaging quality can be enhanced without having to rely on higher-end microscopes. Using this developed technology, we demonstrated (1) mimicking vascular structure by seeding HUVEC on the inner walls of helix-shaped channels in collagen gels, and (2) multi-directional imaging of the vascular structure in the cube device. Thus, this paper describes a concerted method that simultaneously allows for the precise control of cell positioning in hydrogels for organoid morphogenesis, and the imaging of large-sized organoid samples. It is expected that the platform developed here can lead to advancements in organoid technology to generate organoids with more sophisticated structures. Full article
(This article belongs to the Special Issue Frontiers in Micromachines in Japan)
Show Figures

Graphical abstract

20 pages, 11405 KiB  
Article
Dynamic Modeling and Experimental Validation of a Water Hydraulic Soft Manipulator Based on an Improved Newton—Euler Iterative Method
by Yinglong Chen, Qiang Sun, Qiang Guo and Yongjun Gong
Micromachines 2022, 13(1), 130; https://doi.org/10.3390/mi13010130 - 14 Jan 2022
Cited by 11 | Viewed by 4350
Abstract
Compared with rigid robots, soft robots have better adaptability to the environment because of their pliability. However, due to the lower structural stiffness of the soft manipulator, the posture of the manipulator is usually decided by the weight and the external load under [...] Read more.
Compared with rigid robots, soft robots have better adaptability to the environment because of their pliability. However, due to the lower structural stiffness of the soft manipulator, the posture of the manipulator is usually decided by the weight and the external load under operating conditions. Therefore, it is necessary to conduct dynamics modeling and movement analysis of the soft manipulator. In this paper, a fabric reinforced soft manipulator driven by a water hydraulic system is firstly proposed, and the dynamics of both the soft manipulator and hydraulic system are considered. Specifically, a dynamic model of the soft manipulator is established based on an improved Newton–Euler iterative method, which comprehensively considers the influence of inertial force, elastic force, damping force, as well as combined bending and torsion moments. The dynamics of the water hydraulic system consider the effects of cylinder inertia, friction, and water response. Finally, the accuracy of the proposed dynamic model is verified by comparing the simulation results with the experimental data about the steady and dynamic characteristics of the soft manipulator under various conditions. The results show that the maximum sectional error is about 0.0245 m and that the maximum cumulative error is 0.042 m, which validate the effectiveness of the proposed model. Full article
Show Figures

Figure 1

13 pages, 2916 KiB  
Article
Optical Dielectrophoretic (DEP) Manipulation of Oil-Immersed Aqueous Droplets on a Plasmonic-Enhanced Photoconductive Surface
by Si Kuan Thio and Sung-Yong Park
Micromachines 2022, 13(1), 112; https://doi.org/10.3390/mi13010112 - 11 Jan 2022
Cited by 4 | Viewed by 2780
Abstract
We present a plasmonic-enhanced dielectrophoretic (DEP) phenomenon to improve optical DEP performance of a floating electrode optoelectronic tweezers (FEOET) device, where aqueous droplets can be effectively manipulated on a light-patterned photoconductive surface immersed in an oil medium. To offer device simplicity and cost-effectiveness, [...] Read more.
We present a plasmonic-enhanced dielectrophoretic (DEP) phenomenon to improve optical DEP performance of a floating electrode optoelectronic tweezers (FEOET) device, where aqueous droplets can be effectively manipulated on a light-patterned photoconductive surface immersed in an oil medium. To offer device simplicity and cost-effectiveness, recent studies have utilized a polymer-based photoconductive material such as titanium oxide phthalocyanine (TiOPc). However, the TiOPc has much poorer photoconductivity than that of semiconductors like amorphous silicon (a-Si), significantly limiting optical DEP applications. The study herein focuses on the FEOET device for which optical DEP performance can be greatly enhanced by utilizing plasmonic nanoparticles as light scattering elements to improve light absorption of the low-quality TiOPc. Numerical simulation studies of both plasmonic light scattering and electric field enhancement were conducted to verify wide-angle scattering light rays and an approximately twofold increase in electric field gradient with the presence of nanoparticles. Similarly, a spectrophotometric study conducted on the absorption spectrum of the TiOPc has shown light absorption improvement (nearly twofold) of the TiOPc layer. Additionally, droplet dynamics study experimentally demonstrated a light-actuated droplet speed of 1.90 mm/s, a more than 11-fold improvement due to plasmonic light scattering. This plasmonic-enhanced FEOET technology can considerably improve optical DEP capability even with poor-quality photoconductive materials, thus providing low-cost, easy-fabrication solutions for various droplet-based microfluidic applications. Full article
(This article belongs to the Special Issue Advances in Electrowetting Devices)
Show Figures

Graphical abstract

12 pages, 2949 KiB  
Article
In-Situ Integration of 3D C-MEMS Microelectrodes with Bipolar Exfoliated Graphene for Label-Free Electrochemical Cancer Biomarkers Aptasensor
by Shahrzad Forouzanfar, Nezih Pala and Chunlei Wang
Micromachines 2022, 13(1), 104; https://doi.org/10.3390/mi13010104 - 9 Jan 2022
Cited by 5 | Viewed by 3287
Abstract
The electrochemical label-free aptamer-based biosensors (also known as aptasensors) are highly suitable for point-of-care applications. The well-established C-MEMS (carbon microelectromechanical systems) platforms have distinguishing features which are highly suitable for biosensing applications such as low background noise, high capacitance, high stability when exposed [...] Read more.
The electrochemical label-free aptamer-based biosensors (also known as aptasensors) are highly suitable for point-of-care applications. The well-established C-MEMS (carbon microelectromechanical systems) platforms have distinguishing features which are highly suitable for biosensing applications such as low background noise, high capacitance, high stability when exposed to different physical/chemical treatments, biocompatibility, and good electrical conductivity. This study investigates the integration of bipolar exfoliated (BPE) reduced graphene oxide (rGO) with 3D C-MEMS microelectrodes for developing PDGF-BB (platelet-derived growth factor-BB) label-free aptasensors. A simple setup has been used for exfoliation, reduction, and deposition of rGO on the 3D C-MEMS microelectrodes based on the principle of bipolar electrochemistry of graphite in deionized water. The electrochemical bipolar exfoliation of rGO resolves the drawbacks of commonly applied methods for synthesis and deposition of rGO, such as requiring complicated and costly processes, excessive use of harsh chemicals, and complex subsequent deposition procedures. The PDGF-BB affinity aptamers were covalently immobilized by binding amino-tag terminated aptamers and rGO surfaces. The turn-off sensing strategy was implemented by measuring the areal capacitance from CV plots. The aptasensor showed a wide linear range of 1 pM–10 nM, high sensitivity of 3.09 mF cm−2 Logc−1 (unit of c, pM), and a low detection limit of 0.75 pM. This study demonstrated the successful and novel in-situ deposition of BPE-rGO on 3D C-MEMS microelectrodes. Considering the BPE technique’s simplicity and efficiency, along with the high potential of C-MEMS technology, this novel procedure is highly promising for developing high-performance graphene-based viable lab-on-chip and point-of-care cancer diagnosis technologies. Full article
(This article belongs to the Special Issue C-MEMS: Microstructure, Shapes, and Applications in Carbon)
Show Figures

Graphical abstract

21 pages, 36330 KiB  
Article
Intelligent Design Optimization System for Additively Manufactured Flow Channels Based on Fluid–Structure Interaction
by Haonan Ji, Bin Zou, Yongsheng Ma, Carlos F. Lange, Jikai Liu and Lei Li
Micromachines 2022, 13(1), 100; https://doi.org/10.3390/mi13010100 - 8 Jan 2022
Cited by 2 | Viewed by 2030
Abstract
Based on expert system theory and fluid–structure interaction (FSI), this paper suggests an intelligent design optimization system to derive the optimal shape of both the fluid and solid domain of flow channels. A parametric modeling scheme of flow channels is developed by design [...] Read more.
Based on expert system theory and fluid–structure interaction (FSI), this paper suggests an intelligent design optimization system to derive the optimal shape of both the fluid and solid domain of flow channels. A parametric modeling scheme of flow channels is developed by design for additive manufacturing (DfAM). By changing design parameters, a series of flow channel models can be obtained. According to the design characteristics, the system can intelligently allocate suitable computational models to compute the flow field of a specific model. The pressure-based normal stress is abstracted from the results and transmitted to the solid region by the fluid–structure (FS) interface to analyze the strength of the structure. The design space is obtained by investigating the simulation results with the metamodeling method, which is further applied for pursuing design objectives under constraints. Finally, the improved design is derived by gradient-based optimization. This system can improve the accuracy of the FSI simulation and the efficiency of the optimization process. The design optimization of a flow channel in a simplified hydraulic manifold is applied as the case study to validate the feasibility of the proposed system. Full article
(This article belongs to the Special Issue Intelligent Additive/Subtractive Manufacturing)
Show Figures

Figure 1

11 pages, 2311 KiB  
Article
Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy
by Francisco M. Espinosa, Manuel R. Uhlig and Ricardo Garcia
Micromachines 2022, 13(1), 97; https://doi.org/10.3390/mi13010097 - 8 Jan 2022
Cited by 2 | Viewed by 2384
Abstract
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are [...] Read more.
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we have combined nanolithography, chemical functionalization, electrical measurements and molecular recognition methods to correlate the current measured by the SiNW transistor with the presence of specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithography (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements confirmed that electrical current changes measured by the device were associated with the deposition of avidin molecules. Full article
Show Figures

Figure 1

15 pages, 5024 KiB  
Article
Detecting Redox Potentials Using Porous Boron Nitride/ATP-DNA Aptamer/Methylene Blue Biosensor to Monitor Microbial Activities
by Kai Guo, Zirui Song, Gaoxing Wang and Chengchun Tang
Micromachines 2022, 13(1), 83; https://doi.org/10.3390/mi13010083 - 4 Jan 2022
Cited by 5 | Viewed by 1524
Abstract
Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential [...] Read more.
Microbial activity has gained attention because of its impact on the environment and the quality of people’s lives. Most of today’s methods, which include genome sequencing and electrochemistry, are costly and difficult to manage. Our group proposed a method using the redox potential change to detect microbial activity, which is rooted in the concept that metabolic activity can change the redox potential of a microbial community. The redox potential change was captured by a biosensor consisting of porous boron nitride, ATP-DNA aptamer, and methylene blue as the fluorophore. This assembly can switch on or off when there is a redox potential change, and this change leads to a fluorescence change that can be examined using a multipurpose microplate reader. The results show that this biosensor can detect microbial community changes when its composition is changed or toxic metals are ingested. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

11 pages, 2177 KiB  
Article
Deep-Learning Based Estimation of Dielectrophoretic Force
by Sunday Ajala, Harikrishnan Muraleedharan Jalajamony and Renny Edwin Fernandez
Micromachines 2022, 13(1), 41; https://doi.org/10.3390/mi13010041 - 28 Dec 2021
Cited by 3 | Viewed by 2106
Abstract
The ability to accurately quantify dielectrophoretic (DEP) force is critical in the development of high-efficiency microfluidic systems. This is the first reported work that combines a textile electrode-based DEP sensing system with deep learning in order to estimate the DEP forces invoked on [...] Read more.
The ability to accurately quantify dielectrophoretic (DEP) force is critical in the development of high-efficiency microfluidic systems. This is the first reported work that combines a textile electrode-based DEP sensing system with deep learning in order to estimate the DEP forces invoked on microparticles. We demonstrate how our deep learning model can process micrographs of pearl chains of polystyrene (PS) microbeads to estimate the DEP forces experienced. Numerous images obtained from our experiments at varying input voltages were preprocessed and used to train three deep convolutional neural networks, namely AlexNet, MobileNetV2, and VGG19. The performances of all the models was tested for their validation accuracies. Models were also tested with adversarial images to evaluate performance in terms of classification accuracy and resilience as a result of noise, image blur, and contrast changes. The results indicated that our method is robust under unfavorable real-world settings, demonstrating that it can be used for the direct estimation of dielectrophoretic force in point-of-care settings. Full article
(This article belongs to the Special Issue Microfluidic System for Biochemical Application)
Show Figures

Figure 1

12 pages, 2285 KiB  
Article
Four-Dimensional Stimuli-Responsive Hydrogels Micro-Structured via Femtosecond Laser Additive Manufacturing
by Yufeng Tao, Chengchangfeng Lu, Chunsan Deng, Jing Long, Yunpeng Ren, Zijie Dai, Zhaopeng Tong, Xuejiao Wang, Shuai Meng, Wenguang Zhang, Yinuo Xu and Linlin Zhou
Micromachines 2022, 13(1), 32; https://doi.org/10.3390/mi13010032 - 27 Dec 2021
Cited by 12 | Viewed by 3165
Abstract
Rapid fabricating and harnessing stimuli-responsive behaviors of microscale bio-compatible hydrogels are of great interest to the emerging micro-mechanics, drug delivery, artificial scaffolds, nano-robotics, and lab chips. Herein, we demonstrate a novel femtosecond laser additive manufacturing process with smart materials for soft interactive hydrogel [...] Read more.
Rapid fabricating and harnessing stimuli-responsive behaviors of microscale bio-compatible hydrogels are of great interest to the emerging micro-mechanics, drug delivery, artificial scaffolds, nano-robotics, and lab chips. Herein, we demonstrate a novel femtosecond laser additive manufacturing process with smart materials for soft interactive hydrogel micro-machines. Bio-compatible hyaluronic acid methacryloyl was polymerized with hydrophilic diacrylate into an absorbent hydrogel matrix under a tight topological control through a 532 nm green femtosecond laser beam. The proposed hetero-scanning strategy modifies the hierarchical polymeric degrees inside the hydrogel matrix, leading to a controllable surface tension mismatch. Strikingly, these programmable stimuli-responsive matrices mechanized hydrogels into robotic applications at the micro/nanoscale (<300 × 300 × 100 μm3). Reverse high-freedom shape mutations of diversified microstructures were created from simple initial shapes and identified without evident fatigue. We further confirmed the biocompatibility, cell adhesion, and tunable mechanics of the as-prepared hydrogels. Benefiting from the high-efficiency two-photon polymerization (TPP), nanometer feature size (<200 nm), and flexible digitalized modeling technique, many more micro/nanoscale hydrogel robots or machines have become obtainable in respect of future interdisciplinary applications. Full article
Show Figures

Figure 1

23 pages, 43500 KiB  
Article
A Novel MEMS Capacitive Microphone with Semiconstrained Diaphragm Supported with Center and Peripheral Backplate Protrusions
by Shubham Shubham, Yoonho Seo, Vahid Naderyan, Xin Song, Anthony J. Frank, Jeremy Thomas Morley Greenham Johnson, Mark da Silva and Michael Pedersen
Micromachines 2022, 13(1), 22; https://doi.org/10.3390/mi13010022 - 25 Dec 2021
Cited by 17 | Viewed by 10378
Abstract
Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio [...] Read more.
Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio (SNR), distortion, and dynamic range when compared to their electret condenser microphone counterparts. We present the design and modeling of a semiconstrained polysilicon diaphragm with flexible springs that are simply supported under bias voltage with a center and eight peripheral protrusions extending from the backplate. The flexible springs attached to the diaphragm reduce the residual film stress effect more effectively compared to constrained diaphragms. The center and peripheral protrusions from the backplate further increase the effective area, linearity, and sensitivity of the diaphragm when the diaphragm engages with these protrusions under an applied bias voltage. Finite element modeling approaches have been implemented to estimate deflection, compliance, and resonance. We report an 85% increase in the effective area of the diaphragm in this configuration with respect to a constrained diaphragm and a 48% increase with respect to a simply supported diaphragm without the center protrusion. Under the applied bias, the effective area further increases by an additional 15% as compared to the unbiased diaphragm effective area. A lumped element model has been also developed to predict the mechanical and electrical behavior of the microphone. With an applied bias, the microphone has a sensitivity of −38 dB (ref. 1 V/Pa at 1 kHz) and an SNR of 67 dBA measured in a 3.25 mm × 1.9 mm × 0.9 mm package including an analog ASIC. Full article
(This article belongs to the Special Issue Micromachined Acoustic Transducers for Audio-Frequency Range)
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI
by Guanghua Xiao, Huibin Wang, Jie Shen, Zhe Chen, Zhen Zhang and Xiaomin Ge
Micromachines 2022, 13(1), 15; https://doi.org/10.3390/mi13010015 - 23 Dec 2021
Cited by 7 | Viewed by 2269
Abstract
Automatic brain tumor classification is a practicable means of accelerating clinical diagnosis. Recently, deep convolutional neural network (CNN) training with MRI datasets has succeeded in computer-aided diagnostic (CAD) systems. To further improve the classification performance of CNNs, there is still a difficult path [...] Read more.
Automatic brain tumor classification is a practicable means of accelerating clinical diagnosis. Recently, deep convolutional neural network (CNN) training with MRI datasets has succeeded in computer-aided diagnostic (CAD) systems. To further improve the classification performance of CNNs, there is still a difficult path forward with regards to subtle discriminative details among brain tumors. We note that the existing methods heavily rely on data-driven convolutional models while overlooking what makes a class different from the others. Our study proposes to guide the network to find exact differences among similar tumor classes. We first present a “dual suppression encoding” block tailored to brain tumor MRIs, which diverges two paths from our network to refine global orderless information and local spatial representations. The aim is to use more valuable clues for correct classes by reducing the impact of negative global features and extending the attention of salient local parts. Then we introduce a “factorized bilinear encoding” layer for feature fusion. The aim is to generate compact and discriminative representations. Finally, the synergy between these two components forms a pipeline that learns in an end-to-end way. Extensive experiments exhibited superior classification performance in qualitative and quantitative evaluation on three datasets. Full article
Show Figures

Figure 1

14 pages, 3660 KiB  
Article
Passivated Porous Silicon Membranes and Their Application to Optical Biosensing
by Clara Whyte Ferreira, Roselien Vercauteren and Laurent A. Francis
Micromachines 2022, 13(1), 10; https://doi.org/10.3390/mi13010010 - 22 Dec 2021
Cited by 6 | Viewed by 3011
Abstract
A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide Al2O3, hafnium oxide HfO2 and [...] Read more.
A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide Al2O3, hafnium oxide HfO2 and titanium oxide TiO2. The fabricated membranes were characterized in terms of morphology, optical properties and chemical properties. Stability tests and optical probing noise level determination were also performed. Preliminary results using an Al2O3 passivated membranes for a biosensing application are also presented for selective optical detection of Bacillus cereus bacterial lysate. The biosensor was able to detect the bacterial lysate, with an initial bacteria concentration of 106 colony forming units per mL (CFU/mL), in less than 10 min. Full article
(This article belongs to the Special Issue Selected Papers from ICMA2021)
Show Figures

Figure 1

Back to TopTop