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Abstract: Magnetic manipulation has the potential to recast the medical field both from an opera-
tional and drug delivery point of view as it can provide wireless controlled navigation over surgical
devices and drug containers inside a human body. The presented system in this research implements
a unique eight-coil configuration, where each coil is designed based on the characterization of the
working space, generated force on a milliscale robot, and Fabry factor. A cylindrical iron-core coil
with inner and outer diameters and length of 20.5, 66, and 124 mm is the optimized coil. Traditionally,
FEM results are adopted from simulation and implemented into the motion logic; however, simulated
values are associated with errors; 17% in this study. Instead of regularizing FEM results, for the first
time, artificial intelligence has been used to approximate the actual values for manipulation purposes.
Regression models for Artificial Neural Network (ANN) and a hybrid method called Artificial Neural
Network with Simulated Annealing (ANN/SA) have been created. ANN/SA has shown outstanding
performance with an average R2, and a root mean square error of 0.9871 and 0.0153, respectively.
Implementation of the regression model into the manipulation logic has provided a motion with
13 µm of accuracy.

Keywords: electromagnetism; magnetic manipulator; magnetic actuator; deep learning; ANN;
ANN/SA

1. Introduction

Electromagnetism principles and magnetic actuators have been implemented in vari-
ous applications such as metal forming, where a solenoid with 15 turns generates a magnetic
force to push a light metal in order to form a cellphone case [1], real-time production of
magnetic materials with the 3D printer in additive manufacturing is feasible by aligning the
particles with the magnetic field [2]. In addition, magnetic levitation can be used to design
a stable suspension for metal additive manufacturing, which results in substrate elimina-
tion [3]. For biological purposes, the electroless plating technique has been used to make
magnetic microparts that can rotate at high speed using a magnetic actuator for functional
lab-on-a-chip devices [4]. Microfluidics has also utilized magnetically actuated discs to
control the flow, mixing, reaction, and separation of fluid [5]. Furthermore, the conversion
of kinetic energy of human movement into electrical power is possible using a coil-spring
system [6]. The density of dense non-magnetic materials, such as glass, is also measurable,
by analyzing the strength of the levitation of a single iron-core coil (electromagnet) [7]. In
another study, the variation of the eddy current produced by a coil is measured to detect
the place and size of different defects [8]. In addition to the eddy current, electromagnetic
impedance and magnetic field values in one direction are also utilized to develop various
detection sensors, where one can detect a different contaminant in hydraulic oil [9] and
measure the size and position of a contaminant during the casting process [10], respectively.

Magnetic actuators are also implemented in micro-electro-mechanical systems (MEMSs)
such as micropumps [11], stable grasping [12], pick-and-place system [13], small force
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sensing [14], contactless delivery [15], and microsurgery [16]. Microsurgery can provide a
minimally invasive surgery environment and offer benefits such as lower infection risk,
fewer medical complications, and faster rehabilitation [17,18]. Bioengineering combined
with the small-scale (millimeter and sub-millimeter) wireless robots manipulated via the
magnetic field can potentially modernize the medical field [19] by replacing the current
devices with safer alternatives that enable surgeons to access fragile organs such as the
eye, heart, and brain to perform more precise and less invasive operations. It can also be
utilized to navigate capsules inside the body for targeted delivery purposes and approach
part of the body that was not safely accessible before [20].

Octomag is a magnetic actuator developed to enhance retinal surgery by eliminating
irreversible damage to the eye through the control constraints that could even respond
appropriately to unpredicted issues such as patient movement. This device contains eight
electromagnets to perform a 5 degree of freedom (5 DOF), transition, and orientation, via
magnetic force and torque control [21]. Octomag utilizes a linear relationship of fields
generated by an individual coil to calculate the total magnetic field using the FEM approach.
Then, calculated magnetic field values are calibrated with a few known values measured
from the actual coil in order to form the control logic.

Yuan et al. have designed an eight metal-core coil actuator that adopted the same
concept as the Octomag to navigate a capsule inside the stomach [22]. Minimag was also
motivated by OctoMag, enabling 5 DOF inside a spherical working space surrounded by
eight iron-core coils. This system also followed the same approach of calibrating the FEM
simulations to develop its control logic [23].

Catheter positioning [24,25] is another main advantage of magnetic manipulators; the
catheter guidance control and imaging (CGCI) systems use eight giant coils and have been
implemented at an industrial size [26]. Moreover, Bigmag has used six moving coils to
navigate a catheter [27].

Figure 1 indicates the developed system utilized in this study to manipulate a disk
magnet with a diameter and thickness of 0.1 and 0.0625 inches, respectively. The manipula-
tor contains eight coils in an open-asymmetric configuration that enables wider access to
the working space than the mentioned systems and does not compromise torque-force con-
trollability within the workspace [28]. This configuration also follows the square antiprism
of Thomson’s method [29] and can be modeled using the superposition theorem. This
project assumes that the changes in a magnetic field are infinitely small; hence, Maxwell
laws are applicable. Moreover, due to the high magnetic permeability of the pure iron core,
the inserted core discharges almost instantly after getting magnetized; therefore, the slight
non-linearity can be neglected, meaning that the superposition is still valid.

Figure 1. Magnetic manipulator consist of eight iron-core coils.
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2. Method
2.1. Coil Design

As indicated in Figure 2, the radius of the spherical working space is correlated to the
outer diameter of the coils. The surface area of coils is represented with planes, where the
largest coil diameter is located at the intersection of the planes. The relationship between
the largest outer radius of the coils, Rout, and spherical working space, Rsphere, in the
open-asymmetric configuration, can be modeled as:

Rout = tan (
π

6
)× Rsphere. (1)

Figure 2. Working space and outer diameter of the coils.

By equating the spherical radius to 60 mm, the outer diameter of the coil should be
less than 69.2820 mm. The selection of the outer diameter leads to using the Fabry factor, G,
to measure the coils’ inner radius and height.

G =
1
5

√
2πβ

α2 − 1
ln

α +
√

α2 + β2

1 +
√

1 + β2
(2)

α =
Rout

Rin

β =
l

2Rin

where Rin and l are the inner radius and length of the coil, respectively. The optimum
values for these factors are shown in Figure 3.

G factor parameterizes the coil’s dimension, generating the least heat dissipation to
produce a magnetic field. In this study, the G factor has been combined with the force
generated on a 1-mm3 magnet located at the center of the working space. Therefore, the
coil’s parameters that generate the most force value with minimum power consumption
will be selected as the final coil.
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Figure 3. Ideal Fabry factor values for minimizing heat dissipation.

2.2. Magnetic Force and Torque

The generated magnetic force and torque of a coil can be calculated using Maxwell Law:

~∇ · ~B = 0 (3)

~∇× ~B = µ0~J (4)

where J, B, and µ0 are the current density, magnetic field, and magnetic permeability of the
free space. The force (F) and torque (τ) acting on an object with the dipole moment of ~m is
equal to:

~F = (~m · ~∇)~B (5)

~τ = ~m× ~B. (6)

Equations (5) and (6) can be represented in matrix form [30]:

~F =

 mx my mz 0 0
0 mx 0 my mz
−mz 0 mx −mz my




δBx
δx

δBx
δy

δBx
δz

δBy
δy

δBy
δz

 = h(~m)g(~∇~BT) (7)

~τ =

 0 −mz my
mz 0 −mx
−my mx 0

Bx
By
Bz

 = S(~m)~B (8)

and (7) and (8) can be integrated to form wrench, W:

~W =

[
~τ
~F

]
=

[
S(~m) O

O h(~m)

][
~B

g(~∇~BT)

]
(9)

where O is the zero matrix with right dimensions, g is the gradient, and S is in skew
functions. By applying superposition theorem to (9) the contribution of each coil carrying
current I at point p in the working space can be calculated as:

~W =

[
~τ
~F

]
6×1

=

[
S(~m) O

O h(~m)

]
6×8

[
~B(p)

G(p)

]
8×8

× I8×1 (10)
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if [
S(~m) O

O h(~m)

]
6×8

[
~B(p)

G(p)

]
8×8

= A(m, p)6×8

where A is called the actuation matrix then the amount of current flowing through each
coil is:

I = A† ×W (11)

where † is the pseudo inverse.

2.3. Deep Learning

As previously mentioned, FEM is used to predict the magnetic field at each point
for experimental purposes. However, FEM models cannot capture the manufacturing
error caused during the coil winding process. Coil winding is a delicate process and is
consistently associated with unwanted gaps, reducing the number of designed turns in the
actual coil. In addition, pure iron becomes deformed easily during core manufacturing
and changes its dimensions after the annealing process; therefore, even a perfect model
cannot represent the actual coil properties and model magnetic field values. In addition to
the mentioned barriers, FEM itself is associated with an approximation error that is a part
of this approach. Figure 4 indicates the insensibility of the design to permeability change of
the iron core. Moreover, Figure 5 illustrates the difference between actual and calculated
values of the magnetic field on the axial axis of a coil, with an average error of 17%.

Figure 4. Simulated magnetic field for various magnetic permeability.

In order to enhance the modeling of the magnetic field and consider human error, deep
learning has been used as an alternative to approximate the magnetic field values. Deep
learning eliminates the need for collecting too many data points and can be developed with
few values inside the region of the interest. Artificial Neural Network (ANN) and a hybrid
model, Artificial Neural Network with Simulated Annealing (ANN/SA) algorithm, have
been implemented in this study.
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Figure 5. Actual and simulated magnetic field.

2.3.1. ANN

The artificial neural network is a deep learning approach, a subfield of machine learn-
ing, where the structure of the human brain inspires the foundation of the algorithm [31].
The ANN algorithm uses training data to recognize the patterns and predict the outputs
for a new set of similar data [32]. The training data is fed to the network as an input layer;
then, it moves along channels through hidden layers, which are the core processing units
of the network, to the output layer. Figure 6 indicates the general structure of a network.
Each channel is assigned to a number known as weight, which scales the neuron from the
previous layer and feeds it to the neuron in the next layer. All the channels toward a partic-
ular neuron will be added together; then, another value known as the bias or interception
point is added to this equation. Finally, an activation function will be applied to the neuron
before it leaves toward the next layer through its channels. The weight adjustment process
will be done through backpropagation, mainly using the gradient descent approach [33].

Figure 6. ANN structure.

For most regression problems, the outer layer is only a summation of the last layer’s
neuron values multiplied by their associated weights plus the interception point without
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any activation matrix. Figure 7 illustrates the scaling, bias (b), and activation function ( f )
over one neuron only; this process is known as forward propagation [34]. The weight
associated with the channel that connects the jth neuron of the layer l to the ith element of
the next layer will be shown as ω

(l)
ji ; the first number in the subscript is the neuron that the

channel leaves from, and the second one is where it lands; the superscript also refers to the
layer that the channel roots from, for example, the ω

(3)
52 , which connects the fifth neuron of

the third layer to the second neuron of the fourth layer.
y(l+1)

1

y(l+1)
2
. . .

y(l+1)
n


n×1

= f

(
a(l+1)

1

a(l+1)
2
. . .

a(l+1)
n


n×1

)
=


ω
(l)
11 ω

(l)
21 . . . ω

(l)
k1

ω
(l)
12 ω

(l)
22 . . . ω

(l)
k2

...
...

. . .
...

ω
(l)
1n ω

(l)
2n . . . ω

(l)
kn


n×k


x(l)1

x(l)2
. . .

x(l)k


k×1

+


b(l)1

b(l)2
. . .

b(l)n


n×1

(12)

where n and k are the number of neurons at the l + 1 and the l layers, respectively. The
weight matrix can also be shown as ωl .

Figure 7. Neuron value calculation.

2.3.2. ANN/SA

The ANN algorithm’s performance and convergence are heavily dependent on the
initial weight values; therefore, it is beneficial to develop a method that can produce initial
weights and biases that increase the probability of reaching the global minimum and
increase the learning pace of the network.

ANN/SA optimizes the randomly generated initial weights and biases values; once the
best initial values are selected, the network training process starts. The thermomechanical
annealing process inspired the optimization of random values [35]. The metal is heated
to a higher temperature and cooled down, resulting in a variation in the metal’s atomic
structure and material properties. The atomic structure and the temperature of the metal
will be related together, and if the temperature drops slowly, it can be related to the energy
change of the metal [36]. Figure 8 illustrates the explained process.

This method was used to optimize nonlinear functions involving multiple local mini-
mums, and it uses the Metropolis algorithm to simulate the annealing process [37]. Since
it is not a greedy process, the probability of reaching a local minimum is considerably
low. During the training process, the SA will adjust the weights randomly, considering the
algorithm’s temperature change and evaluating the network’s accuracy; once the accuracy
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has been calculated, the Metropolis algorithm decides whether the created solution is
acceptable—the probability of acceptance Pa is:

Pa(∆E, y) =

{
exp− k∆E

y ∆E > 0

1 ∆E ≤ 0
(13)

where ∆E is the error between the new solution and current solution, y is the current
temperature, and k is the acceptance constant, based on the range of weights, biases, and
inputs. As (13) indicates, the algorithm will frequently be accepting new results at high
temperatures, however becomes more selective at the lower ones. The cooling schedule
can be exponential, linear, and temperature cycling. In order to calculate the temperature
at each state using the temperature cycling method, the following equations should be
implemented [38].

Figure 8. ANN/SA process.

This method first takes a series of n ∈ [1, N] scenarios for temperature:

x[n + 1] = ρx[n] (14)

where the total number of temperatures is N, the starting temperature is x[1], the final
temperature is x[N], and cooling constant is ρ presented by:

ρ = elog ( (N−1)x[N]
x[1] ). (15)
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If the number of cycles before each optimization is expressed as M and the temperature
assigned to the simulated annealing indicated by y[n], the schedule of the cooling process
can be modeled as:

y[n] =
M−1

∑
m=0

x[n−mN] (16)

ultimately, the weight preparation of the layer l for the temperature can be formulated as:

ωl
ij[n + 1] = γ(1− λ)ωl

ij[n] + λu[n]− 0.5λ (17)

where u is a random variable that is uniformly distributed and takes values between [0, 1),
γ is a value equal to 20 or 30, and λ is the perturbation ratio:

λ =
y[n]
x[1]

. (18)

2.3.3. Validation

In order to evaluate the performance of each developed algorithm and select the best
approximation, Root-Mean-Square-Error (RMSE) and R-Squared (R2) are utilized.

RMSE =

√
1
N

ΣN
i=1

(
yi − ŷi)2 (19)

R2 = 1−
ΣN

i=1(yi − ŷi)
2

ΣN
i=1(yi − ȳi)2

(20)

where yi, ŷi, ȳi, and N are the actual, predicted, mean of actual set values, and the number of
samples, respectively. Once each model had been optimized, the final algorithm will be ad-
ditionally evaluated using the values mentioned in Table 1 to check its predictability [39,40].

Table 1. Extra evaluation parameters.

Variable Equation Criteria

Mean Absolute Error (MAE) MAE =
ΣN

i=1|(yi−ŷi)|
N As low as possible

Mean Absolute Percentage Error (MAPE) MAPE = 100
N ΣN

i=1|
yi−ŷi)

yi
| As low as possible

Slope regression line k k = ΣN
i=1(yi×ŷi)

y2
i

0.85 < k < 1.15

Slope regression line k
′

k
′
=

ΣN
i=1(yi×ŷi)

ŷi
2 0.85 < k

′
< 1.15

Squared correlation of actual vs predicted (Ro2) (Ro2) = 1− ΣN
i=1(ŷi−yo

i)
2

ΣN
i=1(ŷi− ¯̂yi)2 yi

o = k× ŷi Close to 1

Squared correlation of predicted vs actual (Ro
′
)2 (Ro

′
)2 = 1− ΣN

i=1(yi−ŷi
o)2

ΣN
i=1(yi−ȳi)2 ŷi

o = k
′ × yi Close to 1

Predictability of model Rm Rm = R2 × (1−
√
|R2 − R2

o |) Rm > 0.5
Performance index m m = R2−Ro2

R2 |m| < 0.1

Performance index n n = R2−Ro
′ 2

R2 |n| < 0.1

3. Results & Discussion
3.1. Designed Coil

The coil is wound using an AWG 14 wire with a diameter of 1.73228 mm with its
isolation. The α value for the various number of vertical layers has been investigated
considering the diameter of the wire and the geometric restriction of 67.69 mm of the coil’s
outer diameter. As indicated in Figure 9a, the optimum value of α = 3.3019 occurs at
14 layers. Moreover, as Figure 9b illustrates, the calculation for optimum feasible alpha
value starts when inner and outer radiuses are equal, meaning that the thickness is zero,
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then it continues by adding one layer at each step and calculates the alpha value accordingly.
Figure 9 indicates that the optimum α value is associated with a 10.25-mm inner radius.

The coil’s inner radius selection leads to β optimization. As indicated in Table 2, by
varying the length of the coil and modeling each scenario on Ansys Maxwell 2020 the
magnetic force had been calculated. According to the Figure 10, which is the illustration of
the normalized force and Fabry factor indicated in Table 2, a length of 124 mm indicates a
coil that provides almost as much force with less power consumption than the next scenario.
Therefore, the optimum coil is a cylindrical iron-core coil with 3.3019, 6.0761, and 0.140 for
α, β, and G values, respectively.

Table 2. Different coils with their generated force.

Lengthmm β G ForcemT

10.38 0.5063 0.129 0.013
20.76 1.0127 0.164 0.027
31.14 1.5190 0.177 0.080
41.52 2.0254 0.179 0.129
51.90 2.5317 0.176 0.207
62.28 3.0380 0.172 0.243
72.66 3.5444 0.166 0.284
83.04 4.0507 0.160 0.342
93.42 4.5571 0.155 0.373

103.80 5.0634 0.149 0.409
114.18 5.5698 0.144 0.454
124.56 6.0761 0.140 0.497
134.94 6.5824 0.135 0.536
145.32 7.0888 0.131 0.591
155.70 7.5951 0.128 0.625

Figure 9. (a) Number of layers from the inner radius toward outer radius for various α. (b) Inner
radius calculation based on the number of layers for different α values.
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Figure 10. (a) Normalized values of different scenarios. (b) Optimum coil parameters.

3.2. Data Collection

As indicated in Figure 11, the magnetic field had been measured using a Gauss meter
over a 7× 7× 6 grid, where y, z ∈ [−10 mm, 10 mm] and x ∈ [52 mm, 72 mm]. A total of
294 points for a coil running at one amp were collected for each magnetic field component.
The input data is the location of the point of interest above the coil, and the target or label
is the magnetic field components, Bx, By, and Bz.

Figure 11. Magnetic field values collection setup.

In order to guarantee the convergence of the algorithms and reach the global minimum,
the collected data have been normalized using the upper-lower approach between 0.05 and
0.95; Figure 12 shows the effect of normalization on targets.

3.3. Algorithm Development

Each target has its own algorithm developed separately for each method. However, to
ensure that the algorithms receive the same samples, the data set associated with targets
had been randomly shuffled and split into three categories: train, test, and validation
sets. The train set consists 70 percent of the initial data, with 206 samples, whereas the
test and validation sets are filled with only 15 percent, with 44 samples each. Each model
is developed using the train set, where its hyperparameters are tuned using the test set.
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Finally, the algorithm’s performance is measured on validation as unseen data to ensure
the accuracy of the model.

Figure 12. (a) Original data . (b) Normalized data.

3.3.1. ANN

The network has been developed using one hidden layer consisting of four to seven
neurons. The Adam optimizer, stochastic gradient descent method, a learning rate of
0.001, and batch size of 64 was chosen. The hidden layer is formed by activating a relu
function, and the output layer is the linear combination of the neurons and biases times to
associated weights of the hidden layer. Figure 13 indicates the number of neuron selection
process based on R2 and RMSE for each target. The highest R2 and lowest RMSE are
associated with seven, four, and six neurons for Bx, By, and Bz, respectively. Figure 14
shows the implementation of the developed algorithm on the train, test, and validation
sets. Bz reached R2 > 0.950 on all the sets; whereas, Bx and By reached as far as R2 = 0.889
and R2 = 0.876.

Figure 13. Different scenarios using ANN for (a) Bx, (b) By, and (c) Bz.
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Figure 14. Scatter plot of optimized ANN algorithms for (a) Bx, (b) By, and (c) Bz.

3.3.2. ANN/SA

The network was created using similar data and structure as ANN. By using tem-
perature cycling for the cooling cycle with initial and final temperatures of 15 and 0.015,
the data set associated with each magnetic field component was trained and tested in
NeuralLab v.3.1 software. Models indicated that the Levenberg–Marquardt algorithm had
worked better in all cases than the gradient descent. According to Figure 15, Bx and By
components have performed better with seven neurons than other scenarios. Moreover,
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Figure 15 indicates that among four scenarios, a structure with seven neurons Bz is the
optimal structure on the training data; however, six neurons are better than others on
the test set. Since performance on the test set is more important than training and the
six-neuron structure is the second best on the training set, the optimum structure will be
six neurons.

Figure 15. Different scenarios using ANN/SA for (a) Bx, (b) By, and (c) Bz.

Figure 16 illustrates the scatter plots with associated R2 and error values for optimal
structures. The performance of this approach shows a significant improvement compared
to the ANN approach. The scatter plots closely follow the red line and has a minimal
residual. However, the test performance of the Bx component is very similar to the
ANN performance.

3.3.3. Extra Validation

According to Figures 14 and 16, the ANN/SA is a better approach to approximate
the magnetic field than the other one. Therefore, the predictability of this algorithm on
the validation set has been checked as the final performance measurement. As Table 3
indicates, all the variables are in the expected range, and the regression models can be used
for manipulation purposes.

Figure 17 indicates the field values over the 7× 7× 6 grid, where y, z ∈ [−10 mm, 10 mm]
and x ∈ [52 mm, 72 mm]. As can be seen, the actual values and approximated values are
close to each other and the mean error percentage is 0.0633%.
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Figure 16. Scatter plot of optimized ANN/SA algorithms for (a) Bx, (b) By, and (c) Bz.
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Figure 17. 3D Scatter plots of optimized ANN/SA algorithms for (a) Bx, (b) By, (c) Bz, and (d) B.

Table 3. Extra evaluations for ANN/SA.

Variable Bx By Bz Criteria

k 0.9995 0.9988 0.9985 0.85 < k < 1.15
k
′

1.0005 1.0012 1.0007 0.85 < k
′
< 1.15

(Ro2) 1.0000 1.0000 1.0000 Close to 1
(Ro

′
)2 1.0000 1.0000 1.0000 Close to 1

Rm 0.9912 0.9867 0.9161 Rm > 0.5
m −0.0001 −0.1727× 10−3 −0.0062 |m| < 0.1
n −0.0001 −0.1727× 10−3 −0.0062 |n| < 0.1

3.4. Motion

The developed algorithm has indicated reliable results and can be utilized for manipu-
lation purposes. Each designed coil also can produce a maximum of 83.43 mH magnetic
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field at a maximum current of 10 amp, which is enough to manipulate at a milli/micro
scale. Figure 18 is a representation of a magnet attached to a flexible road acting as the
robot. This disk magnet has a dipole moment of 0.0084 Am2 with a diameter and thickness
of 0.1 and 0.0625 inches. The agent will be navigated only in one direction toward a laser
sensor which provides real-time position feedback of the agent. Since there is no other
information, such as the agent’s orientation, provided by the laser sensor, the system can
become unstable quickly. To overcome the rotational instabilities, the attached flexible part
to the agent was designed to be heavier than its normal weight. Figure 19 indicates the
fabricated system utilized to run the experiment.

Figure 18. The agent’s dimensions (a) and properties from the manufacturer [41] (b) with the attached
flexible part in inch.

Figure 19. (a) Fabricated frame and (b) designed frame.
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The provided position by the laser sensor will be used to calculate the amount of
required current at each coil utilizing (11). The actuation logic, indicated in Figure 20, has
resulted in the movement of the robot with an acceleration rate of 0.228 mm/s2 toward a
0.5-mm point resulting in a movement accuracy of 13 µm. In this logic, the current state of
the robot is collected from the laser sensor and compared to the desired point. The motion
continues until the difference between the desired and current points is considerably small,
meaning that the associated wrench cannot overcome the friction force. Figure 21 illustrates
the movement of the robot with respect to time.

Figure 20. The actuation logic.

Figure 21. Robot movement toward 0.5 mm.

4. Conclusions

This work demonstrated a magnetic manipulator’s design and implementation process
with eight coils. The integration of the Fabry factor and force strength has led to an optimal
coil with an inner radius, outer radius, and height of 20.5, 67.69, and 124.56 mm, respectively.
Due to the error associated with FEM, 17% in this study, the magnetic field produced by
this coil at one amp has been collected over a 7× 7× 6 grid and approximated using deep
learning techniques, ANN and ANN/SA. Although both models showed an acceptable
performance, the ANN/SA showed more reliable performance values with an average
of RSME = 0.0153 and R2 = 0.9871, 76.61% less and 9.66% more than the ANN model,
respectively. Utterly, the developed algorithm was used to approximate the magnetic field
and navigate an agent from almost the center of the working space toward a half-millimeter
away from it along a laser sensor direction. The manipulation had been implemented
successfully with 13 µm of accuracy.
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