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Abstract: Automatic brain tumor classification is a practicable means of accelerating clinical diagnosis.
Recently, deep convolutional neural network (CNN) training with MRI datasets has succeeded in
computer-aided diagnostic (CAD) systems. To further improve the classification performance of
CNNs, there is still a difficult path forward with regards to subtle discriminative details among brain
tumors. We note that the existing methods heavily rely on data-driven convolutional models while
overlooking what makes a class different from the others. Our study proposes to guide the network
to find exact differences among similar tumor classes. We first present a “dual suppression encoding”
block tailored to brain tumor MRIs, which diverges two paths from our network to refine global
orderless information and local spatial representations. The aim is to use more valuable clues for
correct classes by reducing the impact of negative global features and extending the attention of
salient local parts. Then we introduce a “factorized bilinear encoding” layer for feature fusion. The
aim is to generate compact and discriminative representations. Finally, the synergy between these
two components forms a pipeline that learns in an end-to-end way. Extensive experiments exhibited
superior classification performance in qualitative and quantitative evaluation on three datasets.

Keywords: brain tumor classification; convolutional neural networks; suppressing strategy; bilinear
pooling; magnetic resonance imaging

1. Introduction

A brain tumor is an abnormal growth of tissue in the brain or central vertebral canal,
which can cause a variety of serious complications such as sensory and motor dysfunction.
Brain tumors endanger the lives of patients and it is usually a complex process to diagnose
them. The accurate diagnosis of brain tumors in the early stage allows greater opportunity
for curing them, since the treatments vary from one type to another. Magnetic resonance
imaging (MRI) is considered a non-invasive soft tissue imaging used to help identify brain
tumor types. In clinical practice, the inspection of MRI images depends on experienced
specialists and radiologists. Manual diagnosis of brain tumors in the face of a torrent
of patient data is difficult and the process is hectic and error-prone. Many researchers
are committed to computer-aided diagnostic (CAD) systems based on machine learning
to automate the diagnostic process, thereby boosting the efficiency of precise analysis
decisions and aiding physicians by enhancing diagnostic capabilities. According to the
World Health Organization (WHO) guidelines [1], the classification of brain tumors is
strictly histopathology. This classification also promotes the use of CAD in the existing
medical imaging technology.

In recent years, researchers have proposed various prediction models for brain tumors.
The traditional methods extract statistical features from MRI slices based on the image’s

Micromachines 2022, 13, 15. https://doi.org/10.3390/mi13010015 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13010015
https://doi.org/10.3390/mi13010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-6738-7014
https://orcid.org/0000-0002-2250-5371
https://orcid.org/0000-0002-3786-4617
https://doi.org/10.3390/mi13010015
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13010015?type=check_update&version=2


Micromachines 2022, 13, 15 2 of 25

characteristics (texture, boundary, and shape). Feature representations include discrete
wavelet transform (DWT) [2], Gabor filter [3], scale invariant feature transform (SIFT) [4],
Harris corner [5], etc. Feature reduction methods, such as principal component analysis
(PCA) [6], locally linear embedding (LLE) [7], and T-distributed stochastic neighbor embed-
ding (TSNE) [8] are then used to decrease the fused features. Finally, the feature datasets
extracted by different methods are passed to an ensemble classifier for classification. Typi-
cal classifiers includes K-nearest neighbor (KNN) [9], support vector machine (SVM) [10],
latent dirichlet allocation (LDA) [11], random forest (RF) [12], artificial neural network
(ANN) [13], etc. These traditional methods benefit from model interpretability and small
data size. However, for a long time there was little scope in performance improvements,
until deep convolutional neural networks (CNNs) came to dominate. Most traditional
methods struggle with prior knowledge about domain expertise, whereas deep CNNs have
greatly improved on pattern recognition [14–16], due to their excellent performance close
to that of humans.

Many previous works have attracted considerable attention in terms of classification,
mainly described in the following aspects. Firstly, they have built new deep CNN models
according to the properties of datasets and the carrying capacity of computing resources.
Ayadi et al. [17] aimed to build a CNN model containing various layers to classify MRI brain
tumors with little preprocessing. Khan et al. [18] introduced a scratched CNN model and
combined it with data augmentation and image processing to categorize MRI brain scan im-
ages. Bashir-Gonbadi et al. [19] used a convolutional auto-encoder neural network (CANN)
to extract desirable features for brain tumor classification. Alhassan et al. [20] adopted
an activation function with a hard swish-based RELU in CNNs to improve classification
performance and learning speed. Secondly, previous studies have utilized pre-trained mod-
els to transfer knowledge and model weights in medical image datasets. Polat et al. [21]
conducted classic CNN architectures with different optimization algorithms to explore the
transfer learning technique. Bodapati et al. [22] integrated two deep CNN architectures to
allow joint training sets of image representations in an end-to-end manner. Sajjad et al. [23]
put augmented datasets into a segmentation network and used a pre-trained CNN model
to obtain convincing performance. Swati et al. [24] introduced a general deep CNN model
with a block-wise fine-tuning strategy based on transfer learning and that does not require
any handcrafted features. Thirdly, researchers have stacked ensemble learning to play
down error factors by complementing each model. Toğaçar et al. [25] developed a CNN
model called BrainMRNet for mass detection of MRI images that includes attention mod-
ules, hypercolumn technique, and residual blocks. Anaraki et al. [26] utilized a genetic
algorithm (GA) to evolve the CNN model and bagged them as an ensemble algorithm for
classification. Kumar et al. [27] offered a weighted correlation feature selection-based itera-
tive Bayesian multivariate deep neural learning (WCFS-IBMDNL) technique to improve
early-stage brain tumor diagnosis. Noreen et al. [28] presented a fine-tuned deep CNN
model and encompassed the ensemble technique including RF, KNN, and SVM.

The modified CNN models mentioned above have shown favorable results in diverse
applications of medical image classification. However, there are still challenges for networks
to precisely understand differences in order to handle inter-class similarities and intra-
class variations. Firstly, deep CNNs provide the capability to make predictions and draw
conclusions by learning data feature representations. This pattern tends to fail when faced
with the challenge of limited training data for the over-fitting problem, which means
that deep learning is a data starving approach. Transfer learning is a well-established
technique that has performed successfully in dramatically improving the results of CNN
models, especially under the conditions associated with a relatively small dataset and
low computational power. Transfer learning also has flaw of paying little attention to
intermediate feature representations generated by the pre-trained CNN model. Secondly,
deep CNN-based models classify by learning data feature mappings between input images
and output labels. Common convolutional layers of CNNs act as sliding windows, resulting
in output feature maps generated with relative spatial arrangement. This tendency during
learning causes CNN models to focus on local spatial information of brain tumors and
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to lack attention to the relationship between tumors and other tissues in an MRI brain
image. Recent CNN models such as FV-CNN [29], NetVLAD [30], and Deep-TEN [31]
perform an outstanding job of extracting global orderless features for material or texture
recognition. However, this statistical- and distribution-based acquisition approach may
distract attention from salient features in brain tumor identification, since almost all MRI
brain images have a very similar background and texture. Thirdly, the CNN architecture
implements the final prediction by aggregating output features from various convolutional
channels. Usual aggregation practices, such as concatenation, pooling, and element-wise
sum, can only collect first-order statistical information, which cannot contribute to the
classification of MRI brain tumor images. This is because brain tumor classification is
essentially a fine-grained recognition task and requires more detailed visual descriptions.
In addition, despite ensemble learning being a beneficial strategy in improving the efficiency
and stability of CNNs, these models require more computation to combine the predictions
in test time. Furthermore, the model pipeline is not always learned in an end-to-end
scenario and is probably not the best option for real-time applications.

To address all the previous concerns, we propose to guide the network to find exact
differences among similar classes. We first present a customized dual suppression encoding
(DSE) block that gears our network to refine global orderless information and local spatial
representations. According to the suppression strategy for global orderless features, the aim
is to reduce the negative salient features’ impact based on background and texture, and
guide the network to concentrate on informative ones for better discriminability. The sup-
pression strategy for local spatial features does the opposite during learning. It extends
the network attention to salient parts to consolidate a diverse set of relevant cues across
the classes. Then, we introduce a fusion layer based on improved bilinear pooling [32]
to fuse the extracted features, which refer to a factorized bilinear encoding (FBE) layer.
Unlike linear pooling and bilinear pooling, FBE avoids high-dimensional outputs and
produces huge model parameters. It also enjoys the benefit of robust expressive capacity,
allowing it to obtain a compact and discriminative representation with fewer parameters.
Finally, we designed a framework to plug these two blocks (DSE and FBE) into an ex-
isting state-of-the-art deep CNN to form an end-to-end deep learning pipeline for our
classification task.

The main contributions of our work are four-fold.

• We propose a DSE block that can guide the network to refine the global orderless
information and the local spatial representations on purpose.

• We introduce a fusion layer named FBE to fuse the extracted features in a compact
and discriminative form, enabling the network to offer more expressive and robust
representation.

• We design a framework with transfer learning for end-to-end classification tasks where
the DSE block and the FBE layer are learned together in a single network.

• Comparative experiments demonstrate that the proposed model is competent to
support the decision-making processes of specialists in clinics.

The organization of the layout in this paper is as follows. Section 2 reviews the
related works. Section 3 gives a detailed description of the proposed method. Section 4
provides comprehensive experiments and analysis. Finally, Section 5 draws conclusions
and suggestions for future work.

2. Related Works
2.1. Feature Encoding

The progress of deep CNNs in vision-based applications does not imply that tradi-
tional computer vision techniques are obsolete or superseded. Deep CNNs are sometimes
unnecessary when dealing with images with imperceptible inter-class variance and wide
intra-class variance if the training dataset is not well constructed. In traditional computer
vision tasks, image feature extracting is a set of feature descriptors (SIFT, SURF, BRIEF, etc.)
followed by feature encoding approaches such as bag of features (BoF) [33], Fisher vector
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(FV) [34] and vector of locally aggregated descriptors (VLAD) [35]. These features form a
bag of visual words (BoVW) to perform the tasks such as image classification. The difficulty
with the hand-engineered approach is how to choose the best describable features to distin-
guish different objects. The features in BoVW become more cumbersome and require more
parameters to define as the number of classes increases. Thus, the base intuition behind
encoding approaches is to pay more attention to a solution of global features in a specific
domain. Some studies embed feature encoding approaches into deep CNNs to achieve
improved performance in their domain tasks. Ng et al. [36] adopted VLAD encoding to
encode convolutional features extracted from different layers of deep networks for image
retrieval tasks. Tang et al. [37] combined CNN training with FV encoding in a single end-to-
end structure (FisherNet). They then observed both accuracy and computational efficiency
over plain CNN and standard FV on visual object class classification tasks. Inspired by
these, we organize our network structure using an encoding block covering VLAD and FV
to leverage orderless features.

2.2. Feature Fusion

The implementation of feature aggregation from different convolutional channels is
often via summation or concatenation. Recent studies [38,39] show that bilinear pooling
exhibits more expressive ability among feature fusion approaches by exploiting higher-
order information. However, bilinear pooling generates redundant information in an
exceptionally high-dimensional space [40], therefore suffering from the burstiness phe-
nomenon [41]. Gao et al. [42] proposed a kernelized bilinear pooling method to reduce
the feature dimensionality. The obtained compact representations are comparable to fully
bilinear pooling in performance. Li et al. [43] presented a factorized bilinear model (FB) that
replaces the pairwise feature with factorized bilinear weight. This model thereby simplifies
the calculation to linear complexity. Gao et al. [44] adopted sparse coding and dictionary
learning in a fusion technique based on bilinear pooling, named factorized bilinear coding
(FBC), to immensely reduce the number of parameters of the model. Although these models
provide considerable improvements in related target issues, a compact and discriminative
solution of bilinear pooling is still required for our model to be optimized.

2.3. Feature Mapping

Classification models based on deep CNN usually consist of two parts: a convolutional
layer and a fully connected layer. Multiple convolutional layers comprise the core building
block of a deep CNN. Fully connected layers take the features extracted from convolutional
layer mapping into the label space. Each layer combines a set of learnable parameters
to interpret the input feature. We can formulate this as y = f (∑

i
ωixi + bi), where xi is

input data, ωi and bi denote the weights and the bias term and f denotes a non-linear
activation function.

Studies using MRI images in [45,46] show that transfer learning may utilize the
parameter values of the weights and bias from a pre-trained network to gain generalized
features and then fine-tune them on specific datasets of MRI images. This feature-based
learning approach does not require training the whole model from scratch in most cases.
Inspired by [47], some recent papers on medical images, such as [48], have verified the
effectiveness of replacing FC layers in their deep CNNs with GAP to avoid overfitting on
the corresponding layers and maintain high performance. Figure 1 sketches the differences
between the FC layer and the GAP layer.
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(a)

(b)

Figure 1. Comparison of feature mapping layers. (a) FC layer, (b) GAP layer.

The FC layer stretches the feature maps of the convolution layer into a vector, then
produces a result with matrix multiplication followed by a bias addition. It requires a
mass of trainable parameters to perform complex nonlinear computations in the feature
space, making it heavily dependent on dropout regularization and possibly resulting in
overfitting. The GAP layer averages each feature map of the convolution layer to create
confidence maps of the corresponding category. Endowing each feature map with an actual
category meaning makes it more interpretable to the convolution structure. Hence, our
work draws on the conception of GAP to reduce the network parameters and then uses FC
to generate the desired number of categories.

3. Proposed Method

In this section, we present our classification solution in three ways: First, we introduce
the overall network architecture of the proposed model. Then, we elaborate on the DSE
block. Finally, we explain how the FBE layer works.

3.1. Proposed Architecture

As is illustrated in Figure 2, we introduce the architecture of the brain tumor clas-
sification model with the following three parts: backbone network, DSE block, and FBE
layer. The primary purpose of this devised framework is to distinguish the subtle features
extracted from different MRI images among brain tumor types. As mentioned previously,
the transfer learning technique is superior to training a deep CNN from scratch due to
limited training data. Feature encoding gives the extracted features a different interpreta-
tion, enhancing the model’s expressive ability and generalization for fine-grained features.
Drawing on feature encoding, we derive features from convolutional layers with a pre-
trained CNN model as a feature extraction module, which provides better details of local
feature representations. Then, we feed the outputs from convolutional layers into the DSE
block through two paths. One is the original CNN path that encodes the features into spa-
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tial information. The other is the residual encoding [31] that sends the copies into encoders
such as VLAD and Fisher vector to generate orderless representations. The discriminative
regions of the feature maps from these two paths are suppressed separately by customized
strategies, with the expectation that our network will look for more representative and
informative features to enhance classification performance. Finally, we build the FBE
layer based on modified bilinear pooling [32] to capture higher-order information. This
immensely reduces the number of parameters to avoid overfitting problems. Furthermore,
the compact representations obtained from the fusion module can help the classification
results narrow intra-distances and discriminate between distributions.

Figure 2. Architecture of the proposed network.

More concretely, we build our model with an instantiation of the proposed architec-
ture on the top of a 50-layer pre-trained ResNeSt [49] (as shown in Table 1), which is a
new ResNet [50] variant that integrates channel-wise attention with multi-path network
representation. Compared to other state-of-the-art CNN models, the family of ResNeSt
achieves higher accuracy and a better latency trade-off on the benchmark dataset. In this
work, we remove the GAP and last FC layers and replace them with our modules. When
the image inputs, the image size is 224× 224; the backbone network constituted by original
layers generates the output of feature maps with the size of 7× 7× 2048. Then the feature
processing path branches off in the DSE block to produce two different feature map sizes
(8× 2048 and 49× 2048). We stretch one of the feature maps with 8× 2048 size to 49× 2048
by exploiting FC for the following FBE layer. The dimension of outputs from the FBE layer
falls to 1× 2048, where the resulting vector is normalized with L2 normalization for the
final classification. Furthermore, the new model can load the parameters of the ResNeSt-50
model that is pre-trained on the ImageNet dataset [51] to accelerate the training process,
and all the parameters of the model can be trained end-to-end by backpropagation.

3.2. DSE Block

For brain tumor classification, since background and texture usually lack discrimi-
native features in MRI images, the basic idea of our DSE block is to suppress the salient
features’ impact based on background and texture details from global orderless information.
Local spatial representation is a crucial element for classification, while the strategy of
the DSE block is to randomly suppress the discriminative regions of the feature maps
to guide network attention for a diverse set of relevant cues across the classes. Through
superimposing these two suppression strategies, the network can capture more attentive
features from input images.
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Table 1. The architectures for adopting 50-layer pre-trained ResNeSt. The input image size is
224× 224.

Layer Name Filter Type Number Output Size

layer0 conv1

 3× 3, 32, stride 2
3× 3, 32
3× 3, 64


×1 112× 112× 64

downsample 3× 3 maxpool, stride 2

layer1

conv1 1× 1× 64

×3
56× 56× 128

conv2

 3× 3, 128
1× 1, 32

1× 1, 128


conv3 1× 1, 256

downsampl 1× 1 averagepool, stride 2 ×11× 1, 256

layer2

conv1 1× 1× 128

×4
28× 28× 512

conv2

 3× 3, 256
1× 1, 64
1× 1, 256


conv3 1× 1, 512

downsampl 2× 2 averagepool, stride 2 ×11× 1, 512

layer3

conv1 1× 1× 256

×6
14× 14× 1024

conv2

 3× 3, 512
1× 1, 128
1× 1, 512


conv3 1× 1, 1024

downsampl 2× 2 averagepool, stride 2 ×11× 1, 1024

layer4

conv1 1× 1× 512

×3
7× 7× 2048

conv2

 3× 3, 1024
1× 1, 256

1× 1, 1024


conv3 1× 1, 2048

downsampl 2× 2 averagepool, stride 2 ×11× 1, 2048

DSE Block Section 3.2
×1

49× 2048
FBE Layer Section 3.3 1× 2048

Classification 1× 1, FC n classes

3.2.1. Global Orderless Feature Suppression

The encoding layer integrates the dictionary learning and residual encoding pipeline
into a single CNN layer to provide global orderless information. Here we briefly present
an overview of prior work for completeness. Let the input feature map size be c× h× w,
which c, h, and w refer to the channel, height, and width. Then the visual descriptors are set
to X = {x1, x2, · · · , xm}, where m = h× w. The inherent codebook D = {d1, d2, · · · , dn}
contains n learned codewords and the corresponding residual vector rij can be written
as rij = xi − dj, where i = 1, · · ·m and j = 1, · · · n. Given an assigned weight ωij to each
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codeword for residual vector rij, the corresponding residual encoding model for every
single codeword dj can be denoted by

ej =
m

∑
i=1

eij =
m

∑
i=1

ωijrij (1)

Considering the codeword ambiguity and the assigning weights for residual en-
coding model differentiation, the assigning weight ωij for the residual vector rij can be
represented as

ωij =
exp(−sj

∥∥rij
∥∥2
)

∑K
j=1 exp(−sj

∥∥rij
∥∥2
)

(2)

where S = {s1, s2, · · · , sm} denote learnable scaling factors for each codebook dj.
The encoding layer encodes a set of K residual encoding vectors E = {e1, e2 · · · , en}

of visual descriptors X to capture global orderless features. Here we extend the encoding
layer with a suppression strategy, as shown in Figure 3. Let Pl = {p1, p2, · · · pn} be the non-
maximal map derived from lth residual encoding vector El , where P ∈ Rn and l = 1, · · · c.
The form is generated as follow:

Pl(j) =
{

α, ifEl(j) = max(El)
1, otherwise

(3)

where max(El) denotes the maximum value of vector El and α ∈ [0, 1] is suppressing factor.
We suppress the maximum value of each residual encoding vector such that:

Ẽl = Pl ◦ El (4)

where ◦ denotes the element-wise multiplication of two vectors. The intention behind
the strategy of suppressing the salient feature is to weed out the effect of background
and texture and consequently force the network to attend to more accurate discriminative
features during propagation.

Figure 3. Overview of global orderless feature suppression strategy.

3.2.2. Local Spatial Feature Suppression

Consider that local spatial features bring focus to discriminative regions of a multi-class
image. We expect the network to capture more subtle information from extracted feature
maps by randomly suppressing active locations, as shown in Figure 4. As with prior visual
descriptors X, here X also represents the feature map of a channel. xi is the ith pixel of X,
where i = 1, · · ·m. We also let P′l = {p′1, p′2, · · · p′m} be the non-maximal map derived from
the lth residual encoding vector Xl , where P ∈ Rm and l = 1, · · · c. The form is generated
as follows:

P′l (j) =
{

β, ifXl(j) = max(Xl)
1, otherwise

(5)

where max(Xl) denotes the maximum value of vector Xl and β ∈ [0, 1] is another sup-
pressing factor. Then we randomly select feature map Xl from all channels with a certain
probability r, where r is a Bernoulli random variable. By suppressing the peak pixels
randomly from each selected Xl , the network looks for the discriminative regions as an
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alternative to the suppressed representations in the image and outputs a modified vector
X̃l . The specific implementation of the suppression strategy is illustrated in Algorithm 1.

Figure 4. Overview of local spatial feature suppression strategy.

Algorithm 1 The implementation of local spatial feature suppression.

Here, the feature map is Xl={x1, x2, · · · , xm}, r ∼ Bernoulli(p) has p probability of being
1, c is the number of network channels, and ct is a random integer to control the number
of loops.

for l = 1, · · · , c do
Initialize r;
if r == 1 then

Initialize ct;
for i = 1, · · · , ct do

X̃l = P′ ◦ Xl ;
else

X̃l = Xl ;

Additionally, the local suppression strategy only works during the training phase.
The whole feature map passes through the local suppression module without any sup-
pression during the test phase so that all informative features can contribute to the final
confidence score.

3.3. FBE Layer

While classical fusion approaches such as concatenation based on first-order statistical
information are effective at classification tasks, they have not matched the performance
of bilinear pooling. The shortcoming of bilinear pooling is its redundancy, which may
output high-dimensional features with many model parameters. The prior studies [44,52]
inspired us to embed the FBE layer into our network to achieve a more effective fusion of
the extracted features from different branches of the DSE Block. The architecture of the
whole FBE Layer is illustrated in Figure 5.

Figure 5. The architecture of the FBE module.
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As known from Section 3.2, let X̃ and Ẽ represent the two extracted feature vectors
with dimensionality m and n. F = { f1, f2, · · · fo} is output vector and every pair of features
is given by

fi = X̃TWiẼ + bi (6)

where Wi ∈ Rm×n is a projection matrix for the output and bi is a bias. The number of
parameters that are needed to learn is o× (m× n + 1). Such a large number of parameters
may cause high computational cost and overfitting risk. Li et al. [43] suggest a matrix fac-
torization method to reduce the rank of matrix Wi. They rewrite the matrix as Wi = UiVT

i ,
where Ui ∈ Rm×k, Vi ∈ Rn×k, and k ≤ min(m, n). Inspired by this idea, fi can be factorized
as follows:

fi = X̃TUiVT
i Ẽ + bi=1T(UT

i X̃ ◦VT
i Ẽ) + bi (7)

where 1T ∈ Rk is an all-one column vector and denotes the element-wise multiplication
of two vectors. Without losing generality, we reformulate 1 as Q ∈ Rk×o to decide the
dimension of the output. Then we replace bi with B ∈ Ro, and redefine U ∈ Rm×k and
V ∈ Rn×k to get the output feature F as follows:

F = QT(UTX̃ ◦VTẼ) + B (8)

To further reduce the redundancy of the model and allow it to learn a compact
representation in an end-to-end manner, we encode the lth vector Fl into sparse code by
exploiting the following solution of an optimization problem. Then we take the form as:

Zl = arg min
Z

{
1
2
‖Z− Fl‖2

2 + λ‖Z‖1

}
(9)

Here, Zl ∈ Ro is the sparse code Fl and l = 1, · · · c. λ is a tuning parameter to adjust
the model complexity. The L1-norm ‖•‖1 is used as a penalty term to impose the sparsity
constraint on Z.

According to Iterative Shrinkage-Thresholding Algorithm (ISTA), we translate each
iteration with a descent function to obtain the sparse code Zl . Equation (9) is expanded as:

Zl = arg min
Z

{
∑

i
[
1
2
(Z(i)− Fl(i))

2 + λ|Z(i)|]
}

(10)

where Z(i) and Fl(i) are the ith components of Z and Fl respectively. If Z(i) > 0,
Equation (10) follows the properties of quadratic and absolute value functions such that:

Zl(i) = arg min
Z

{
1
2
(Z(i)− Fl(i))

2 + λZ(i)
}

(11)

where the derivative with respect to Z(i) is

dZl(i)
dZ(i)

= Z(i)− Fl(i) + λ (12)

The minimum value of Zl(i) is given by

Zl(i) =


Fl(i)− λ , Fl(i) ≥ λ
Fl(i) + λ , Fl(i) ≤ −λ
0 , −λ < Fl(i) < λ

(13)

Based on the above discussion, we need to apply the single term solution method to
each term of Equations (8) and (9), which yields:{

Zl = sign(Fl) ◦max{(|Fl | − λ), 0}
Fl = QT(UTX̃l ◦VTẼl) + B

(14)
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At this point, we reduce the number of parameters and fuse the two input features
simply by matrix factorization tricks. Finally, we compute our fusion representations Z̃ by
using the average operation.

Z̃ = average{Zl}c
l=1 (15)

4. Experimental Results and Analysis

In this section, we present experimental results and related analyses for the proposed
brain tumor classification network. We first describe the datasets and implementation
details for our network. Then we provide detailed qualitative and quantitative experiments
on the two modules of our network to demonstrate the effectiveness of the proposed
method mentioned in the paper. Finally, we report our network’s performance on public
datasets and choose several state-of-the-art methods for comparison.

4.1. Experimental Setting
4.1.1. Datasets

For brain tumor classification, we collected available MRI datasets from three different
repositories to perform a set of experiments, as shown in Table 2. The first dataset is from
the Kaggle website [53] and consists of multiple publicly available dataset repositories.
The dataset comprises 3264 brain MRI slices divided into four classes: meningioma, glioma,
pituitary, and no tumor, with slice numbers 937, 926, 901, and 500, respectively. We named
this dataset BT-4C for simplicity. The second dataset is Figshare [54], which contains 3064
T1-weighted contrast-enhanced images from 233 patients. This dataset comprises three
brain tumor classes: meningioma, glioma, and pituitary tumor, with slice numbers 708,
1426, and 930, respectively. We named this dataset BT-3C. The third dataset was collected
in a private repository from Changzhou No.2 People’s Hospital in China in 2021. All
image slices consisted of plain and dynamic enhanced MRI for metastatic tumor detection.
We cleaned the data by approaching a doctor who examined all the MRIs manually. This
dataset comprises 1109 slices, out of which 495 slices are metastatic tumor and the remaining
614 slices are normal without tumor. We named this dataset BT-2C due to it containing
two classes. Figure 6 shows the examples of MRI brain images in BT-4C, BT-3C, and BT-2C
datasets. In Section 4.2, the dataset is used for qualitative and quantitative analysis with
the subdivisions of a training set, a validation set, and a test set. Of the dataset, 70% was
for training, 15% was for validation, and the rest 15% was for testing. In Section 4.3, we
conducted experiments with different partition ratios and cross-validation schemes to
further test the performance of our proposed method. Additionally, for fair comparisons
with the state-of-the-art works, we followed the same settings in the literature.

Table 2. The main characteristics of the three datasets.

Dataset Class Number Resolution Format

BT-4C

Glioma 937 512× 512,
350× 350,
630× 630,

etc.

.jpgMeningioma 926
Normal 500
Pituitary 901

BT-3C
Glioma 708

512× 512 .matMeningioma 1426
Pituitary 930

BT-2C Metastatic 495 512× 512 .jpgNormal 614
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Glioma Meningioma Normal Pituitary
(a)

Glioma Meningioma Pituitary
(b)

Metastatic Normal
(c)

Figure 6. The examples of brain MRI slices in different datasets. (a) BT-4C, (b) BT-3C, (c) BT-2C.

4.1.2. Implementation Details

To fairly compare the different methods with and without novelties mentioned above,
we used an input image resolution of 224× 224 in all experiments. At the default setting
of the hyperparameters, the optimal parameters were learned with an Adam optimizer.
The initial learning rate of the experiments was 1e-4, which halve decays when the loss
stops improving for two consecutive epochs during training. The learning rate of added
and modified layers was ten times higher than that of pre-trained layers. We applied the
Pytorch environment to perform all the experiments with NVIDIA Quadro RTX4000 GPU.

4.1.3. Evaluation Metrics

Furthermore, we adopt the performance evaluation metrics to evaluate the generaliza-
tion ability of the proposed network, i.e., precision, recall, specificity, F1 score, accuracy,
and area under the curve (AUC). The mathematical expressions are defined as follows.

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

speci f icity =
TN

TN + FP
(18)

F1score = 2× recall × precision
recall + precision

(19)

accuracy =
TP + TN

TP + TN + FP + FN
(20)

TP (true positive), means the correct prediction of the positive class. FP (false positive),
means the incorrect prediction of the positive class. Similarly, TN (true negative) is an
outcome that correctly predicts the negative class, while FN (false negative) is an outcome
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that incorrectly predicts the negative class. Hence, precision is the proportion of true
positives in the total of positive predictions, recall is the proportion of positive cases
correctly predicted, specificity is the proportion of negative cases correctly predicted, F1
score is the weighted average of precision and recall, and accuracy is the proportion of
correctly classified observations.

4.2. Qualitative and Quantitative Analysis

In this section, we design a series of experiments to test the effectiveness of the
proposed components in the network for detailed analysis. Each one was compared with
a similar network as a baseline to highlight the importance of the DSE block and the
FBL layer.

4.2.1. Ablation Experiments

We conducted all ablation experiments on dataset BT-4C by using ResNeSt-50 as
a backbone to highlight the importance of each component in our network. Here, we
constructed a similar network as a baseline for ablation investigation. First, we retained
the dual path from the proposed network to extract global and local features without any
suppression strategy, naming this “Dual-path” as a benchmark of DSE. Then we adopted a
concatenation layer for fusion as a substitute to FBE.

Table 3 provides the accuracy rates for various combinations of proposed methods.
Applying the DSE block in the ResNet-50 backbone improves the accuracy from 95.51% to
96.94%. Using the FBE layer results in a performance improvement of 0.61% (from 95.51%
to 96.12%). We note that the baseline network modified without suppression strategy leads
to few accuracy improvements, as the feature extractions presumably contain influence
factors. Thus, the DSE block cooperating with the FBE layer caused an immediate effect on
performance improvement.

Table 3. Ablation analysis on the dataset BT-4C. Our DSE block and FBE layer provide progressive
improvements over the baseline.

Methods Accuracy (%)

ResNeSt-50 95.91
ResNeSt-50 + Dual-path + Concat 95.91

ResNeSt-50 + DSE + Concat 97.14
ResNeSt-50 + Dual-path + FBE 96.94

Ours 97.96

4.2.2. Effect of DSE

The DSE block uses an adaptive strategy harmony with the characteristics of brain
tumor MRIs to guide the network in suppressing the interfering factors and extracting more
informative features. The effect of the global orderless feature suppression (GS) strategy is
quite different from that of the local spatial feature suppression (LS) strategy. In an attempt
to clarify the working mechanism of each module, here we present a comparison between
our method and the baseline by class activation map (CAM) observation, as shown in
Figure 7.
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(a) (b) (c) (d) (e)

Figure 7. Class activation map (CAM) comparison with and without our modules in dataset BT-4C.
Top to bottom: glioma, meningioma, normal, pituitary. (a) Original image, (b) CAM with GS module,
(c) CAM without GS module, (d) CAM with LS module, (e) CAM without LS module.

Firstly, the GS module was introduced in CNN separately for discriminative local-
ization using the GAP. The global feature is a set of abstract orderless encodes, in which
some clues can unfold from CAM. Figure 7a illustrates that the network with GS prunes
the CAM region compared to Figure 7b without GS. Specifically, when applying the BS
strategy, the salient area of the CAM is clear even if there is no tumor in the MRI. In con-
trast, without BS, there is bit diffusion or worse for no-tumor MRIs. The explanation of the
difference is that the network works the way we intended it to, being more concerned with
distinct discriminative features from global encodes than background or texture ones.

Secondly, we processed the LS module in the same way to generate the CAM. As the
local feature is an aggregation of spatial order information, it seemed more suitable for
CAM to interpret what parts of the image are of interest to the network. Figure 7c,d shows
that the LS module achieves an effect opposite to that of the GS. When applying the LS
strategy, the CAM displays an extended salient area where the network pays more attention
to the tumor and its associated parts. In contrast, without LS, there is a limited set of
the salient region of spatial locations. This implies that the LS module helps the network
excavate a more informative area, which is expected to improve classification performance.

The definition of all brain tumor types depends on the tumor size and the related
parts involved in the brain [55]. That explains why the DSE block triggers two opposite
effects, as the global orderless feature focuses on the tumor itself and the local spatial one
concentrates on the associated part of the brain.

Here, we conduct experiments with different values of suppressing factor α and β in
Equation (3)–(5) to demonstrate our inference. Table 4 shows the results of parameter sensi-
tivity on dataset BT-4C, that is, how these two parameters influence the model classification
performance. One can see that the network achieves better performance when α and β are
kept as small values than it does without using the DSE block (α = β = 1), which indicates
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that the DSE block contributes to brain tumor classification. The values α = 0 and β = 0.1
especially lead to the highest accuracy.

Table 4. Accuracy with different combinations of suppressing parameters α and β on dataset BT-4C.

α
β 0 0.1 0.2 1

0 97.55 97.96 97.35 96.73
0.1 97.35 97.35 97.14 96.73
0.2 96.94 96.94 96.73 96.53
1 96.72 96.53 96.53 96.33

4.2.3. Effect of FBE

The FBE layer uses a fusion technique based on bilinear pooling from a factorized
sparse coding perspective. Since feature distributions that output from two branches of
the DSE block may vary dramatically, the effect of FBE is to fully capture complex associ-
ations between these two types of features and balance their contributions for sufficient
expressiveness of the network. To analyze the effect of the FBE, we randomly choose 80%
of images from dataset BT-4C as a training set and collected feature representations before
classification layers. Then we plotted the feature distributions using the t-SNE [56] to
observe class variance, as shown in Figure 8. The plots suggest that the FBE obtains a better
visualization effect in separating the inter-class and clustering the intra-class.

(a)

(b)

(c)

Figure 8. Visualization of feature distribution of three classification models on dataset BT-4C.
(a) ResneSt, (b) ResneSt + bilinear pooling, (c) ResneSt + FBE.

Since brain tumor type recognition from different MRIs requires experts to distinguish
and annotate them according to professional knowledge, brain tumor classification is a
fine-grained recognition task. That explains why the FBE layer is more effective, since it is a
fusion technique based on fine-grained features. We designed experiments to compare FBE
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with other methods based on bilinear pooling and observed the results on a brain tumor
classification task according to different options. Here, we used the ResNeSt-50 network as
the backbone and removed the layers after “layer4”. The two groups of features for fusion
are the output of “layer4” and its copies. We then applied each method in turns to obtain
representations, followed by an FC layer. Table 5 shows the accuracy results of the listed
methods, where the option o is output dimension, and k is the rank of factorized matrixes
(such as U and V in Equation (14)).

Table 5. Overall accuracies of different fusion methods on dataset BT-4C.

Method Options Accuracy (%)

Bilinear pooling [32] - 96.86

Compact bilinear pooling [42] o = 8000 95.56
o = 16,000 95.71

Low-rank bilinear pooling [52]
k = 1, o = 2048 96.32
k = 2, o = 1024 96.17
k = 4, o = 512 96.17

FBE
k = 1, o = 2048, λ = 0.01 96.63
k = 2, o = 1024, λ = 0.01 96.94
k = 4, o = 512, λ = 0.01 96.48

We can see that our FBE method further improves the accuracy compared with other
methods. When we set the parameter of FBE to k = 2 and o = 2048, its performance
achieves 96.94% on the BT-4C dataset. It was also found that compact bilinear pooling [32]
and low-rank bilinear pooling [52] can immensely reduce the number of parameters from
the output vector to produce compact representations. On this basis, FBE aims to further
improve discrimination by using comparable parameters for higher accuracies.

4.3. Performance Comparison

In this section, we choose several representative networks and state-of-the-art methods
to compare the performance of their brain tumor classification with our method. The test
results of these methods were obtained from presented literature or the model was retrained
using code resources provided by public repositories. We follow the same conditions to
train our model.

4.3.1. Performance on Dataset BT-4C

We analyzed the proposed network on dataset BT-4C in the previous section. Here,
we use more transverse tests to analyze the generalization performance of the proposed
method. Table 6 details the evaluation metrics of classification performance with different
partition ratios between training and testing sets from 90:10 to 60:40. With the variation
of the partition ratio of training and testing set, the evaluation metrics for each category
obtained by the proposed network are barely degraded. Intuitive suggests that our method
still learns the key discriminative features even under the limitation of training data, thus
maintaining classification performance at a high level. The confusion matrices illustrated
in Figure 9 further prove the positive roles of the proposed method in this classification
task from the actual and predicted labels. The accuracy reaches 0.9786, 0.9770, 0.9786, and
0.9732 with partition ratios of 90:10, 80:20, 70:30, and 60:40 between training and testing
sets, respectively. Figure 10 takes the ratio of 80:20 as an example to illustrate the curves of
the training process.
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Table 6. Classification performance of the proposed method on dataset BT-4C.

Partition Ratio Class Precision Recall Specificity F1 Score

90:10

Glioma 0.9907 0.9727 0.9954 0.9817
Meningioma 0.9753 0.9634 0.9918 0.9693

Normal 0.9592 0.9792 0.9928 0.9691
Pituitary 0.9775 1.0000 0.9917 0.9886

80:20

Glioma 0.9899 0.9703 0.9956 0.9800
Meningioma 0.9727 0.9834 0.9894 0.9780

Normal 0.9528 0.9712 0.9909 0.9619
Pituitary 0.9819 0.9819 0.9938 0.9819

70:30

Glioma 0.9795 0.9695 0.9912 0.9744
Meningioma 0.9625 0.9809 0.9861 0.9716

Normal 0.9868 0.9804 0.9976 0.9836
Pituitary 0.9888 0.9852 0.9958 0.9870

60:40

Glioma 0.9725 0.9489 0.9893 0.9605
Meningioma 0.9595 0.9673 0.9851 0.9634

Normal 0.9718 0.9857 0.9945 0.9787
Pituitary 0.9861 0.9944 0.9947 0.9902

(a) (b)

(c) (d)

Figure 9. The confusion matrixes derived from the proposed model on BT-4C with different partition
ratios. (a) 90:10, (b) 80:20, (c) 70:30, (d) 60:40.
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(a) (b)

Figure 10. The curves of the training process on dataset BT-4C. (a) Training loss, (b) validation
accuracy.

We then compared the classification performance of the proposed network with that of
three pre-trained CNN models, i.e., VGG-16 [57], ResNet-50 [50], and EfficientNet-B0 [58].
They all performed the same experiments with a partition ratio of 80:20 and applied the
same transfer learning and fine-tuning strategy. Table 7 gives the classification results of
macro-average evaluation metrics. Our method shows the best performance, exceeding
the other three models on each metric, where our method obtains 2.14%, 1.99%, and 1.53%
higher accuracy than VGG-16, ResNet-50, and EfficientNet-B0, respectively. To analyze the
value of each model more intuitively, we plotted the ROC curves for each experiment with
the same coordinates, as shown in Figure 11. The accuracy of VGG-16 is lower than that of
Resnet-50, while the AUC is higher, implying that VGG-16 had a better diagnostic value
than Resnet-50 in this experiment. EfficientNet-B0 achieves an AUC of 0.9623 and performs
better than VGG-16 and ResNet-50. Our method shows the best AUC of 0.9724 among the
models, proving its superior performance for the classification task.

Table 7. Classification performance of the proposed method on dataset BT-4C.

Method Precision Recall Specificity F1 Score Accuracy

VGG-16 0.9522 0.9533 0.9851 0.9526 0.9556
ResNet-50 0.9544 0.9556 0.9856 0.9549 0.9571

EfficientNet-B0 0.9608 0.9623 0.9870 0.9615 0.9617
Ours 0.9743 0.9767 0.9924 0.9755 0.9770

Figure 11. Comparison of the ROC curves of different methods.
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4.3.2. Performance on Dataset BT-3C

To revisit the generalization of the proposed method, we applied our network to
another BT-3C dataset with the same experimental setting as Section 4.3.1. Table 8 shows
the evaluation metrics of classification performance for each of the three categories. As the
proportion of training data in the total dataset falls while the testing data grows accordingly,
the performance of the proposed network showed an insignificant decline. The reason
behind the decline lies in distribution inconsistency between training and testing datasets.
However, each evaluation metric still holds steady at a relatively high percent due to
the proposed network with powerful learning and generalizing ability. As illustrated
in Figure 12, we can obtain more direct results from the confusion matrices. When the
partition ratio is 90:10, the proposed network attains a classification accuracy of 0.9805 with
an ROC of 0.9687. When the partition ratio is 80:20, the accuracy is 0.9772, and the ROC
is 0.9634. Figure 13 also shows the curves of the training process. At a ratio of 70:30, we
get an accuracy of 0.9739 with an ROC of 0.9565. Even if the partition ratio reaches 60:40,
the accuracy remains at 0.9690 while the ROC is 0.9593.

Table 8. Classification performance of the proposed method on dataset BT-3C.

Partition Ratio Class Precision Recall Specificity F1 Score

90:10
Meningioma 0.9620 0.9620 0.9868 0.9620

Glioma 0.9924 0.9776 0.9942 0.9850
Pituitary 0.9792 1.0000 0.9906 0.9895

80:20
Meningioma 0.9401 0.9752 0.9779 0.9573

Glioma 0.9886 0.9667 0.9912 0.9775
Pituitary 0.9945 0.9945 0.9977 0.9945

70:30
Meningioma 0.9127 0.9812 0.9717 0.9457

Glioma 0.9927 0.9557 0.9939 0.9739
Pituitary 0.9964 0.9964 0.9984 0.9964

60:40
Meningioma 0.8944 0.9783 0.96628 0.9345

Glioma 0.9945 0.9510 0.9954 0.9722
Pituitary 0.9920 0.9894 0.9965 0.9907

(a) (b)

(c) (d)

Figure 12. The confusion matrixes derived from the proposed model on BT-3C with different partition
ratios. (a) 90:10, (b) 80:20, (c) 70:30, (d) 60:40.



Micromachines 2022, 13, 15 20 of 25

(a) (b)

Figure 13. The curves of the training process on dataset BT-3C. (a) Training loss, (b) validation
accuracy.

As described in Table 9, we can make an extended comparison to some extent of the
results produced by our proposed method with the state-of-art ones in the literature using
the same dataset. Studies [2,59] adopted traditional methods to extract global statistical
features, then classified them by classifiers to achieve the final decision. Studies [60,61]
deployed their model using CapsNet [62] to vary the feature maps in the convolutional
layer. Studies [26,63,64] combined deep CNN and machine learning classifiers for brain
tumor classification with a series of fine-tuning operations. Studies [16,22,28] used multiple
models to grab more information for high accuracy in the classification task. The literature
shows improvements in network architecture and training tricks, but does not elaborate on
the rationale for extracting features. Our work is the pioneer study in exploring the essence
of brain tumor features with the proposed method. As a result, the accuracy we obtained is
superior to that of other existing models.

Table 9. Comparison between the proposed and existing state-of-the-art methods.

Reference Method Accuracy (%)

Cheng et al. [59] BoW + SVM 91.28
Ismael et al. [2] DWT + Gabor 91.90

Afshar et al. [60] CapsNet 90.89
Phaye et al. [61] Diverse CapsNet 95.03

Anaraki et al. [26] CNN + Genetic Algorithm 94.20
Kaplan et al. [63] nLBP + KNN 95.56

Deepak and Ameer [64] Freeze GoogLeNet-inception-4e + SVM 95.44
Noreen et al. [28] Inception-v3 + Ensemble Learning 94.34
Jyostna et al. [22] Two-channel DNN 95.23
Badža et al. [16] Four-layer CNN 97.39

Proposed ResNeSt-50 + DSE + FBE 98.02

4.3.3. Performance on Dataset BT-2C

The dataset BT-2C was acquired to validate the generalization of the proposed network
in metastatic tumor detection. Unlike other tumor classification tasks, metastatic tumors
are sometimes too small to be detected. Even a specialist needs to comprehensively study
different modalities of MRI scans (such as plain and dynamic enhanced MRI) for make a
final decision. Given the limited samples in the dataset, we introduced cross-validation
to evaluate the performance of our method. The experiment conducted a standard cross-
validation procedure of three-fold, five-fold, and ten-fold. In the comparison, we used
the same pre-trained CNN models such as VGG-16 [57], ResNet-50 [50], and EfficientNet-
B0 [58]. Table 10 describes the average results of each evaluation metric for the two classes:
normal and abnormal (metastatic). Figure 14 presents an example to depict the curves
of the training process in five-fold cross-validation. After integrated analysis of each test
result, our proposed method shows clear superiority to other pre-trained models.
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Table 10. Classification performance of the proposed method on dataset BT-2C.

Cross-Validation Method Class Precision Recall Specificity F1 Score

3-fold

VGG-16 Metastatic 0.9371 0.9577 0.9212 0.9472
Normal 0.9471 0.9213 0.9577 0.9338

ResNet-50 Metastatic 0.9401 0.9751 0.9242 0.9573
Normal 0.9683 0.9243 0.9751 0.9458

EfficientNet-B0 Metastatic 0.9228 0.9801 0.9000 0.9506
Normal 0.9738 0.9000 0.9801 0.9354

Ours Metastatic 0.9672 0.9528 0.9606 0.9599
Normal 0.9437 0.9606 0.9528 0.9520

5-fold

VGG-16 Metastatic 0.9433 0.9709 0.9314 0.9569
Normal 0.9645 0.9314 0.9709 0.9477

ResNet-50 Metastatic 0.9472 0.9709 0.9363 0.9589
Normal 0.9647 0.9363 0.9709 0.9503

EfficientNet-B0 Metastatic 0.9084 0.9917 0.8824 0.9482
Normal 0.9890 0.8824 0.9917 0.9326

Ours Metastatic 0.9710 0.9667 0.9657 0.9687
Normal 0.9612 0.9657 0.9667 0.9633

10-fold

VGG-16 Metastatic 0.9750 0.9207 0.9688 0.9469
Normal 0.9034 0.9688 0.9207 0.9348

ResNet-50 Metastatic 0.9466 0.9841 0.9271 0.9650
Normal 0.9781 0.9271 0.9841 0.9518

EfficientNet-B0 Metastatic 0.9197 0.9921 0.8855 0.9543
Normal 0.9889 0.8855 0.9921 0.9338

Ours Metastatic 0.9690 0.9841 0.9584 0.9765
Normal 0.9788 0.9584 0.9841 0.9683

(a) (b)

Figure 14. The curves of the training process on dataset BT-2C. (a) Training loss, (b) validation
accuracy.

Figure 15 depicts the average results of accuracy and AUC for each method under the
different cross-validation mechanisms. The results reflect that our model can achieve persis-
tent optimal classification performance under any cross-validation mechanism. Specifically,
when adopting three-fold cross validation, the accuracy of the proposed network is 0.9508
and the AUC is 0.9490. We achieve a classification accuracy of 0.9685 with a ROC of 0.9638
under five-fold cross-validation. When using ten-fold cross validation to evaluate the
performance, the accuracy is 0.9820 and the ROC is 0.9530.
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(a)

(b)

Figure 15. Comparison of cross-validation performance for different methods on dataset BT-2C.
(a) Accuracy comparison, (b) AUC comparison.

5. Conclusions

This paper has proposed a novel method based on a pre-trained model for brain tumor
classification that synergizes a factorized bilinear network with a dual suppression strategy.
The proposed DSE block uses two methods to find the exact features that represent the
differences between similar classes. One method is to refine global orderless features for
more valuable clues by reducing the impact of negative ones. The other is to shift attention
to salient regions from local spatial features. An appropriate fusion layer named FBE is
then used to generate compact and discriminative representations. Finally, we port the
two components into a pipeline where end-to-end learning is achieved. As a result, our
proposed method demonstrates excellent performance in brain tumor classification on three
datasets, outperforming other state-of-the-art methods without any data augmentation.
Moreover, we conducted experiments to explore the connection between the character
of brain tumor MRIs and the convolutional feature map. In the future, we will further
analyze information on MRIs from different modalities and relationships between them by
exploiting deep CNNs, in order to help specialists complete diagnoses quickly.
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