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Abstract: The importance of flexibility has been widely noticed and concerned in the design and
application of space solar arrays. Inspired by origami structures, we introduce an approach to
realizing stretchable and bendable solar arrays via horseshoe-shaped substrate design. The structure
has the ability to combine rigid solar cells and soft substrates skillfully, which can prevent damage
during deformations. The finite deformation theory is adapted to find the analytic model of the
horseshoe-shaped structure via simplified beam theory. In order to solve the mechanical model, the
shooting method, a numerical method to solve ordinary differential equation (ODE) is employed.
Finite element analyses (FEA) are also performed to verify the developed theoretical model. The
influences of the geometric parameters on deformations and forces are analyzed to achieve the
optimal design of the structures. The stretching tests of horseshoe-shaped samples manufactured
by three-dimensional (3D) printing are implemented, whose results shows a good agreement with
those from theoretical predictions. The developed models can serve as the guidelines for the design
of flexible solar arrays in spacecraft.

Keywords: solar arrays; horseshoe-shaped structure; shooting method; finite deformation theory;
experiment

1. Introduction

Stretchable electronic devices [1] have exploited wide applications in the fields of
aerospace [2–5], biomedicine [6,7], intelligent wear [8], etc., which helps to tackle many
challenges in engineering and becomes the research focus at present. There are two ap-
proaches to achieve the stretchability of electronic devices. One is to directly employ the
intrinsically stretchable organic materials [9,10], and the other one is to manipulate the struc-
tures with large deformation and small strain through geometric engineering [11–13]. The
latter is more easily to enjoy the development of modern electronic technology. Through
reasonable structural design, electronic devices can be guaranteed to withstand smaller
strain under large deformation to protect themselves. In order to solve the above two seem-
ingly contradictory requirements, multifarious solutions have been proposed such as wavy
structural configuration [14,15], island-interconnect configuration [16,17], fractal design of
stretchable interconnects [18,19] and origami and kirigami structural configurations [20–22].
Among them, as a fresh structural design method, the origami structures can achieve more
complex and novel structures that cannot be accomplished by other methods [23–26].

When turn the gaze to the solar arrays of spacecraft, one can find the similar require-
ments as in stretchable electronics. Solar cells are characterized by longevity, high efficiency,

Micromachines 2022, 13, 732. https://doi.org/10.3390/mi13050732 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13050732
https://doi.org/10.3390/mi13050732
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7421-3306
https://doi.org/10.3390/mi13050732
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13050732?type=check_update&version=1


Micromachines 2022, 13, 732 2 of 12

small volume, light weight and large spread area. The traditional inorganic solar cells such
as silicon and gallium arsenide solar cells can meet the above characteristics. However, the
material brittleness becomes the first safety and reliability concerns during their in-orbit
operations. Inspired by flexible electronics, a flexible substrate design seems to be a good
solution [27]. The traditional substrates of solar cell array include rigid substrate, semi-
rigid substrate and flexible substrate. In recent years, the new types of structure substrates,
including the origami/kirigami structures [22,28], are proposed.

In this paper, a new origami design is proposed. The horseshoe-shaped design is
introduced as shown in Figure 1a. The structure can not only achieve large deformation,
but also guarantee small strain at the particular region. This design can also manipulate
the parts of large and small deformations during stretching, which can prevent the damage
of the core devices. The finite deformation beam theory [16] is employed to establish an
analytical model of the horseshoe-shaped structure, which can be extended to the analyses
of more complex structures. The governing equations obtained by the finite deformation
theory are solved by shooting method, a numerical solution to solve boundary value prob-
lems for ordinary differential equations (ODE). It transforms the boundary value problem
of ODE into an initial value problem. The finite element analyses (FEA) are performed to
verify the developed theoretical model. The comparisons of the deformation and tension
force from theoretical analysis and FEA validate the correctness of our theoretical model.
Then the influence of various geometrical parameters of horseshoe-shaped structures on
deformation and tension force are investigated, which provides a basis for the adjustment of
deformation and force. Finally, the uniaxial tensile tests of the horseshoe-shaped structures
prepared by 3D printing are performed, whose results shows great coincidence with those
from theoretical model. The mechanical behaviors of horseshoe-shaped structures are
studied by theoretical analysis, finite element analysis and experiment, which showed a
high degree of consistency.
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Figure 1. The diagram of horseshoe-shaped structure. (a) The three-dimensional view of horseshoe-

shaped structure with three periods; (b) the simplified mechanical model; (c) the infinitesimal arc 

sections before and after deformation. 
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Figure 1. The diagram of horseshoe-shaped structure. (a) The three-dimensional view of horseshoe-
shaped structure with three periods; (b) the simplified mechanical model; (c) the infinitesimal arc
sections before and after deformation.

2. Analytical Model

For slender curved beam structures with the thickness-to-length ratio smaller than 0.05,
the Euler beam theory is usually adopted to model the deformations, where the effects of
axial elongation and shear strain are neglected. According to periodicity and symmetry, the
mechanical model can be simplified into a three-section curved beam structure as shown in
Figure 1b. It contains two straight parts (I and II) denoted by L1 and L3, respectively, and
an arc part (III) with a radio R and central angle α in the middle. The applied displacement
load is denoted as uapp on one unit period structure. The real displacement load on a
quarter period is uapp/4 when the right endpoint is fixed. As shown in the Figure 1c, the
representative infinitesimal arc section AB is built in initial coordinate S, which represents
the state before deformation. While, the arc ab is built in current coordinate s, which denotes
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the state after deformation. Now take a point P (X, Y) on the infinitesimal arc section AB,
and its tangent angle is Θ. After deformation, it becomes point p (x, y), and the tangent
angle is θ. The equilibrium differential equations represented in the current coordinate
system can be obtained by force equilibriums of the deformed infinitesimal arc section ab:

dn
ds − q dθ

ds = 0
dq
ds + n dθ

ds = 0
dm
ds = q

(1)

where, n represents axial force. q denotes shear force. m is bending moment in the cur-
rent configuration.

The following assumptions are introduced: the curved beam of horseshoe-shaped
structure keeps its original length after deformation, i.e.,

λ =
ds
dS

= 1 (2)

where λ represents the elongation of the curved beam.
The physical equations can be written as{

n = EA(λ− 1)
m = EI∆κ

(3)

where, E is Young’s modulus. EA and EI denote tensile stiffness and bending stiffness,
respectively. ∆κ represents the change of curvature. K and κ denote the curvature of curved
beams before and after deformation, respectively. Then, ∆κ can be expressed as

∆κ = κ −K = −dθ

ds
−K = − dθ

dS
−K (4)

Based on the Equation (2), the coordinate transform relationship can be written as{
dx
dS = cos θ
dy
dS = sin θ

(5)

According to the first two lines in equilibriums Equation (1), the differential equations
of shear force and axial force can be obtained respectively. Combined with the boundary
conditions, the specific differential equations are obtained as follows

d2q
dθ2 + q = 0
q
∣∣
θ=θ0 = q0(
− dq

dθ

)∣∣
θ=θ0 = n0,


d2n
dθ2 + n = 0
n
∣∣
θ=θ0 = n0

dn
dθ

∣∣
θ=θ0 = q0

(6)

where, the subscript “0” represents the initial endpoint of each beam. The general solutions
to Equation (6) are {

q = q0 cos(θ − θ0)− n0 sin(θ − θ0)
n = n0 cos(θ − θ0) + q0 sin(θ − θ0)

(7)

The tension and shear force can also be written directly according to the equilibrium
conditions. The third equation in equilibrium Equation (1), the second equation in physical
Equation (3) and curvature change Equation (4) yield to

d2θ

dS2 = − q
EI

(8)
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Substituting the expression for q in Equation (7) into the Equation (8), one obtains

d2θ

dS2 = − 1
EI

[q0 cos(θ − θ0)− n0 sin(θ − θ0)] (9)

After one time of length integration, one obtains

dθ

dS
= sign

(
dθ

dS

)√
C[G− cos(θ − B)] (10)

The above equation is so-called the governing equation, where the plus or minus is
determined by the sign of the moment at that point. B, C and G are constants:

B = ϕ + θ0
ϕ = arctan q0

n0

C =
2
√

n2
0+q2

0
EI

G = EI
2
√

n2
0+q2

0

(m0
EI + K

)2
+ cos ϕ

Here, we introduce a function,

F(θ) =
√

C[G− cos(θ − B)] (11)

Then the length of the curved beam can be obtained by Integration of Equation (10)

S =
∫ θ

θ0

sign
(

dθ

dS

)
dθ

F(θ)
(12)

The coordinates of any point in curved beams can also be found by{
x
y

}
=

{
x0
y0

}
−
∫ θ

θ0

sign
(

dθ

dS

)
1

F(θ)

{
cos θ
sin θ

}
dθ (13)

The forces of the curved beam can also be easily expressed as
n = n0 cos(θ − θ0) + q0 sin(θ − θ0)
q = q0 cos(θ − θ0)− n0 sin(θ − θ0)
m = m0 + (y0 − y)(n0 cos θ0 − q0 sin θ0)
−(x0 − x)(n0 sin θ0 + q0 cos θ0)

(14)

The two connected beams are coupled together by continuity conditions{
θ21 = θ12, x21 = x12, y21 = y12
θ31 = θ22, x31 = x22, y31 = y22

(15)

where the first subscript indicates the number of the beam, and the second one indicates
the number of the endpoint along s coordinate. The boundary conditions are derived from
symmetry conditions of the beams structure

θ11 = 0
q11 = 0
x32 = X32
y32 = Y32
θ32 = α

(16)
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A supplementary condition can be provided by the expression of bending moment

m11 = n11

[
R(1− cos α) +

L3

2
sin α− v11

]
(17)

If displacement load u11 is given, the unknown independent parameters are n11 and v11
in the initial point. The next section is to find a method to solve the above two parameters.

3. Solution Method

The boundary value problem of ODE in Equation (10) cannot be solved analytically, so
an effective numerical solution is needed. Moreover, the presented structure is composed
of three curved beams, and the governing equation is only applicable to a single part of the
structure. Actually, three coupled differential equations rather than one should be dealt
with. In this paper, the shooting method is employed, which can convert the boundary
value problem into an initial value problem of ODE.

According to the symmetry condition of the structure, θ11 = 0, and q11 = 0 are set at
the initial endpoint of beam I. According to the anti-symmetry condition of the structure,
u32 = v32 = 0 and θ32 = α are assigned at the end point of beam III. A vector Pij is used to
represent the displacements and forces components of the jth end of ith beams as follows

Pij =
{

uij, vij, θij, nij, qij, mij
}

(i = 1, 2, 3; j = 1, 2) (18)

When the initial values of n11 and v11 are given, P12 can be obtained by Equations (12)–(14).
Then, according to continuity conditions (Equation (15)), P21 = P12 is obviously. Going
through the same process twice, one can obtain the P32. Then, the obtained results are
compared with the boundary conditions in Equation (16). If the differences are within the
allowable error, the solution is found. Otherwise, adjust the initial values according to
Newton iteration method and recalculate again. Generally, one or two iterations can make
the results converge closely to the true value due to its high rate of convergence. Two or
more iterations can make the error percentage achieve 0.001%. The flow diagram is showed
in Figure 2. The mathematical software MAPLE undertakes the entire calculation process.
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4. Finite Element Analyses

In this section, three-dimensional finite element analyses (FEA) were employed to
validate the above analytic model. In the FEA, eight-node linear brick, reduced integration,
hourglass control solid elements were adopted to model the horseshoe-shaped structure.
The geometries are shown in Figure 1a. The specific mechanical and geometric parameters
are shown in Table 1, which is consisting with those in the following experiment section.
Specific displacement loadings are applied at both ends of the structure.

Table 1. Geometrical parameters and mechanical parameters.

L1/mm R/mm α L3/mm h/mm b/mm E/GPa

20 4 5π
6 20 2.5 20 2.5

In Figure 3, the applied strain εapp is defined as the ratio of the end point displacement
to the overall original length of the structure, i.e.,

εapp =
u11

L1 + (L3 − R) cos α
× 100% (19)

In Figure 3, the configurations of the curved beam predicted by the analytical model
fix well with those from FEA. The variation of the applied axial forces on the end with
the applied strain is shown in the Figure 4a, which also show good consistency. Figure 4b
shows the variation of strain on the upper surface of a half-periodic horseshoe-shaped
structure (shown in the inside of Figure 4b) with respect to 30% applied strain. Because
of the neglecting of shear strain, the longitudinal strain predicted by theoretical model
has some deviation. However, the first concern is always the deformation of the substrate,
which determine the strain in the upper mounted solar cells. The maximum strain occurs
at arc beam section where the solar cells are not placed.
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60% and 80%, respectively.

In order to optimize the structure design, it is necessary to study the influences of
geometric parameters of curved beams. The objective of optimization is to minimize the
strain on the upper surface of the substrate. There are five geometric parameters, L1, L3, α,
R and h. After dimensionless, the independent parameters are α, R/L1, L3/L1, h/L1. The
basic parameters are set as L1 = 20 mm, L3 = 20 mm, R = 4 mm, α = 5π

6 , h = 2 mm and
b = 20 mm.
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Figure 4. The comparisons between analytical and FEA results. (a) The variation of force with
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Figure 5 shows the effect of the four dimensionless parameters on strain and force at
the both ends. The left ordinate represents the maximum strain on the upper surface of the
structure and the right ordinate represents the force applied on both ends of the horseshoe-
shaped structure. It can be seen from Figure 5a that strain and force both decrease first and
then increase with the increase of α, and the minimum value appears near 5π

6 . Figure 5b
indicates the strain and force decrease gradually with the arc radius. However, the size
effects on fabrication and assembly should also be considered in design. Figure 5c shows
the influence of L3, which is the same as the influence of radius, and also shows a decreasing
trend with increasing L3. The influence of thickness is shown in Figure 5d. The strain
increases linearly with the increase of thickness, and the increase rate of force follows an
approximate exponential growth. Therefore, based on the above factors and the actual
situation, the combinations of the central angle of 5π

6 , a larger radius R, a larger L3 and a
smaller h, shows a better strain optimization of the structures.
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5. Experiments

This section further verifies the correctness of theoretical analyses via tensile exper-
iments. The experiments aim to obtain the deformations and the applied forces of the
horseshoe-shaped structures during stretching within the linear elastic range of the mate-
rial, and verify the accuracy of the theory in previous sections. Here, the horseshoe-shaped
structure is prepared by 3D printing technology. As shown in Figure 6, the experiments
are carried by INSTRON 5900 (measuring range 500N, accuracy 0.4%, INSTRON Co.,
Norwood, MA, USA). The deformations of the structures are captured by digital camera.
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Figure 6. The experiments of the horseshoe-shaped structure. (a) The horseshoe-shaped structure
prepared by 3D printer; (b) The stretching test through stretcher machine; (c) The stretching test
results obtained by digital camera.

The selected material is thermoplastic polylactic acid (PLA). The specific geometric
dimensions are shown in Table 1, which is consisting with the configurations in Figure 1a.
A clamping part with a length of 20 mm is reserved at both ends. At the same time, the
same printing parameters are used to fibrate the standard tensile samples, which are used
for elastic modulus and linear elastic range testing. In the tensile experiment, a stretcher
machine with a measuring range of 500 N is used, as shown in Figure 6b, and the tensile
rate is 2 mm/min. During the experiment, deformation maps under different tensile
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displacements are obtained by digital camera shooting. In order to reduce errors, the digital
camera was fixed by triangular bracket, and the angle of view was adjusted to make the
camera directly facing the target. The deformation diagram is shown in Figure 6c, where
an applied deformation of 10%, 20%, 30% and 40% are adopted, respectively.

The elastic modulus and elastic range are 2.5 GPa and 1.2%, respectively, obtained
by standard tensile test. In order to reduce the error, the middle period of the horseshoe-
shaped structure in Figure 6c was selected for comparisons. The comparison results are
shown in Figure 7a, where the overall deformations of 10%, 20%, 30% and 40% are applied,
respectively. In Figure 7a, the deformed configurations of the structures from experiment
and analytical model fix well for the applied deformation from 0 till 40%. The relations
between axil force and applied deformation also show high consistencies among results
from experiment, analytical model and FEA, as shown in Figure 7b. It shows that within
the range of linear elasticity of material, this proposed theoretical method is a powerful
tool in design of horseshoe-shaped structures.
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Figure 7. The comparisons between experiments and analytical results: (a) deformed configurations
with applied deformations of 10%, 20%, 30% and 40%, respectively; (b) force variations with applied
deformations. The square, round and triangle signs represent results from experiment, analytical
model and FEA, respectively.

Several solar array samples are fabricated to further illustrate the potentials of the
proposed horseshoe-shaped structures in solar arrays applications. The flexible substrate is
made of polydimethylsiloxane (PDMS). Nine foursquare solar cells with edge length of
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10 mm and thickness of 0.15 mm are adhered to polyethylene terephthalate (PET) shell struc-
tures, which are bonded to flexible substrate to maintain origami configurations (Figure 8a).
The solar arrays can bear 40% stretching (Figure 8b) and can conformably deform to spheri-
cal (Figure 8c) or cylindrical (Figure 8d) surfaces, respectively. In experiments, there is no
adhesive failure or solar cell damage after hundreds times of stretching. In addition, the
solar array structures recover to their initial state after standing for a few minutes.
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6. Conclusions

In this paper, we propose a new origami substrate of solar arrays. A simplified theo-
retical model is established via finite deformation theory for curved beam. The governing
equations for curved beam are derived and solved by shooting method. The results are in
good agreement with both of those from FEA and experiments. The theoretical analysis
shows a high accuracy in predictions of deformations and forces of the horseshoe-shaped
structures. This theory may serve as the guidelines for design of flexible solar arrays in
engineering applications.
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