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Abstract: Advances in flexible integrated circuit technology and piezoelectric materials allow high-
quality stretchable piezoelectric transducers to be built in a form that is easy to integrate with the
body’s soft, curved, and time-dynamic surfaces. The resulting capabilities create new opportunities
for studying disease states, monitoring health/wellness, building human–machine interfaces, and
performing other operations. However, more widespread application scenarios are placing new
demands on the high flexibility and small size of the array. This paper provides a 8 × 8 two-
dimensional flexible ultrasonic array (2D-FUA) based on laser micromachining; a novel single-layer
“island bridge” structure was used to design flexible array and piezoelectric array elements to improve
the imaging capability on complex surfaces. The mechanical and acoustoelectric properties of the
array are characterized, and a novel laser scanning and positioning method is introduced to solve
the problem of array element displacement after deformation of the 2D-FUA. Finally, a multi-modal
localization imaging experiment was carried out on the multi-target steel pin on the plane and curved
surface based on the Verasonics system. The results show that the laser scanning method has the
ability to assist the rapid imaging of flexible arrays on surfaces with complex shapes, and that 2D-FUA
has wide application potential in medical-assisted localization imaging.

Keywords: flexible ultrasound array; surface imaging; single-layer “island bridge”; array design

1. Introduction

Ultrasound imaging is an essential adjunct to modern medicine and its technology
is widely used to visualize the interior of objects for non-destructive evaluation, health
monitoring, and medical treatment due to its non-invasive, high-accuracy, high-sensitivity,
and strong penetration capabilities [1–3]. Ultrasound probes for conventional medical
imaging applications are almost always rigid and bulky, with the transducer requiring
external clamps to hold it in place and the patient requiring a fixed posture confined in a
specially designed frame [4]. Flexible ultrasonic transducer is an art of combining flexible
circuit design with rigid piezoelectric ceramic phase of ultrasound; rigid piezoelectric
materials can be laminated in a way suitable for a variety of complex surfaces, opening a
functional window for the realization of dynamic and static ultrasound diagnosis, ultra-
sound therapy, ultrasound imaging, and other medical aids [5,6]. Flexible transducers are
capable of producing sound waves with ultra-high frequencies, which have irreplaceable
advantages over conventional medical imaging such as portability, ease of access, and ease
of design and operation [7,8].

Therefore, many studies have been devoted to the development of flexible ultrasound
devices to achieve medical aids for imaging and treatment by means of extracorporeal
apposition (attached skin, head, etc.) [9,10] and human–machine interface (guided puncture,
localized debridement, etc.) [11,12], and are not limited to scenarios such as hospitals
allowing more widespread use of the modality. Flexible ultrasonic array fabrication has
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strict requirements for electrical connections, tensile properties, material design, and other
techniques, and the operating characteristics are the result of each array element being
excited by electrical circuit control [13]. Often encouraged by the growing needs for high
diagnostic/therapeutic efficacy and for new fields of applications, the development of
advanced array has been an active research topic with ever-challenging and ambitious
technical requirements. Flexible array design and fabrication is more interested in size
reduction, increased sensitivity, reduced number of elements, and wide bandwidth [14–16].
Ultrasonic array imaging places higher demands on increased flexibility, reduced array
elements, and algorithm matching [17–19]. Flexible ultrasound array working on flat
surfaces can achieve similar acoustic imaging functions to rigid ultrasound probes. The
development of a portable, human-fitted flexible ultrasound device for ultrasound imaging
of animals and even humans, dynamic health detection, and even neuromodulation of the
human brain is expected to be based on flexible ultrasound technology [20].

However, when a flexible ultrasound array is attached to a complex curved surface,
the relative positions of the array elements change depending on the shape of the surface
and can no longer be considered to be equally spaced. It is necessary to redefine the relative
positions between the array elements when the flexible array is attached to various curved
surfaces. There are several methods to solve the non-planar state array localization problem
by collecting information on the relative positions of the array elements attached to the
target surface by computed tomography (CT) [21,22] or by obtaining the time of flight
between each array element and the target point [23,24]. The time reversal method is often
selected to solve the array element coordinate offset, which is realized in three ways [25,26].
The first is that the micro acoustic reflector is placed at the target point to recapture the
reflected sound wave by each array element in the initial array. The second is to implant
the point sound source into the target point so that each array element on the initial array
can detect its spherical wave. The last way is to directly implant the micro pressure sensor
into the position of the target point to detect the sound waves independently emitted by
each array element on the initial array, and directly obtain the time of flight (TOF) data with
the target point. However, the main problem with these methods is that they are invasive,
and the relative position of array elements is obtained indirectly through TOF. Therefore, a
non-invasive laser scanning technology is used to directly obtain the offset array element
position, which can avoid invasive implantation, and explore a non-invasive, low-cost, and
fast array element positioning method in curved surface state.

This paper presents an 8 × 8 flexible ultrasonic array with a single-layer “island bridge”
structure that can be used for imaging curved surfaces. Firstly, a single-layer “island bridge”
is introduced to optimize the array structure and circuit. The array element size is simulated
to determine the optimal size. The mechanical and acoustoelectric properties of the 2D-FUA
are characterized. Secondly, a laser scanning positioning method is proposed to solve the
problem of array element displacement after flexible array deformation, and the surface
and experimental coordinates are fitted through displacement transformation. This method
is non-invasive space-time scanning. Finally, the multimodal imaging and positioning
experiment of multi-target steel needle is carried out based on a Verasonics system. The
results show that laser scanning can assist the flexible array in the rapid imaging of complex
shapes, and the flexible two-dimensional ultrasound array has broad potential application
prospects in medical assisted positioning imaging.

2. Array Design and Surface Guided Positioning
2.1. Piezoelectric Array Element Design

The most effective vibration mode of the ultrasonic transducer is the longitudinal
vibration mode of the piezoelectric arrays, and too much transverse vibration between
the arrays will weaken the longitudinal waves entering the medium. It is necessary to
optimize the size of the piezoelectric material (PZT-8 thickness 0.5 mm) to ensure that the
piezoelectric array elements can be in longitudinal vibration mode in the design. PZFlex
finite element simulation software simulates and designs the piezoelectric array element
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without setting the backing and matching layer. Figure 1 shows the simulation results
of electrical impedance and phase angle of piezoelectric array elements in different sizes.
Piezoelectric array elements with different side lengths show an obvious main peak of
resonance frequency, and the resonance frequency will shift to low frequency with the
increase of piezoelectric array element side length. It should be noted that when the side
length of the piezoelectric array element is greater than 1 mm, the main peak of resonance
frequency is relatively obvious, and there is no secondary peak interference of other obvious
vibration modes. The working mode of the piezoelectric array is relatively single. When
the side length of a piezoelectric array element is less than 0.9 mm, the secondary peak of
resonance frequency is particularly obvious, and the main peak of resonance frequency
will be affected by the secondary peak, indicating that the longitudinal vibration of the
piezoelectric array element will be disturbed by other vibration modes, and the emission
efficiency will be reduced. Therefore, the minimum side length of 0.9 mm is selected as the
final size of the piezoelectric array element.
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Figure 1. Simulation results of electrical impedance and phase angle.

2.2. Flexible Electrode Design

As shown in Figure 2, there are 64 controllable array elements in 2D-FUA which makes
it difficult for traditional electrode connection to achieve effective control. Stretchable
flexible electrode is designed based on the row column addressing principle. The double-
sided copper film covered by PI film undertakes the circuit interconnection, and 16 row and
column electrodes are provided on each side of the array to connect N2 inactive elements.
The electrode and circuit design were completed before packaging with silica gel material.
We strip 8 “row” copper films on the top of the array to obtain a single control column
matrix of leads, and we strip 8 “column” copper films in the vertical direction on the
bottom of the array. The non-stripped copper film electrode forms row and column circuit
addressing in the vertical direction, which can activate the corresponding row circuit and
column circuit with external independent leads as shown in Figure 2. Row and column
addressing electrode configuration has the ability to reduce the number of lead elements
from N2 to N + N. As shown in Figure 2a, the activated array element area is jointly
determined by the selected row electrode and column electrode. The principle that the
excitation signal directly activates the corresponding independent array element or the
activated array element area passes through the external lead is shown in Figure 2b. The
design of N + N flexible electrodes allows the array to realize independent excitation and
orderly excitation of any unit with 16 leads, which helps to reconstruct the shape of targets
in multi-section images.
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Figure 2. Flexible electrode activation: (a) column electrode, (b) row electrode.

2.3. Design of Single-Layer “Island Bridge” Array

Single-layer “island bridge” structure based on laser micromachining was used to
design 2D-FUA. The array elements are arranged in a matrix of 8 × 8 array electrodes,
and the circuit and flexible interconnection are realized between each unit in a single-
layer “island bridge” structure. As shown in Figure 3a, polyimide film (PI film 0.2 mm)
is wrapped and pretreated by conductive copper film. A single-layer “island bridge”
is processed directly on the surface of PI film by laser. The square groove provides a
solid and reliable framework for rigid PZT (PZT-8). The single-layer “island bridge”
has simple structure and is easy to manufacture. Compared with the “island-bridge”
structure proposed by Xu et al., the single-layer “island-bridge” structure can exhibit higher
flexibility to adapt to complex surfaces [27,28]. Figure 3b shows the structure and function
of a single-layer “island” in the 2D-FUA. The silver coating wraps the top and bottom of
the PI film. The silver paste coating on both sides of the array element provides excellent
electrical interconnection, effectively suppresses the ringing effect (excessive vibration),
and improves the axial resolution of the pattern. An improved superior serpentine hinge is
applied to realize array “island” and circuit interconnection [29]. The optimized superior
serpentine hinge is composed of a basic half hinge and an antisymmetric half hinge, and
the right angle connection is used at both ends of the hinge to replace the corner connection,
which can better resist the repeated shear stress at the hinge connection in tension. The
thickness of the entire flexible hinge matrix is designed to be 0.25 mm, the width of the
serpentine hinge is 0.2 mm, the center distance between the serpentine hinges is 0.4 mm,
and the spacing of the array elements is 3.4 mm.
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2.4. Laser Scanning Guided Surface Array Element Positioning

The laser scanning guided array element positioning flow chart is shown in Figure 4.
The focus and angle of the laser scanning are first adjusted, and the exposure and gain of
the camera are adjusted, and then the calibration points are identified by scanning through
a special calibration plate, which is used to determine the scan space before the formal
scanning. In the next step, a multi-angle spatiotemporal scan of the curved glassware with
the 2D-FUA is performed to obtain the complete scanned model. Finally, the scanned model
is imported into Geomagic Studio software for post-processing, such as noise reduction,
surface trimming, stitching, and merging.
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Figure 4. Laser scanning flow chart.

Laser scanning is an inverse modeling technique that can quickly and non-invasively
acquire the surface shape of the target object and capture the relative positions of the array
elements attached to the surface. Figure 5a shows the laser scanning system, which consists
of a laser scanner (Hangzhou Jusen Technology Co., Ltd., Hangzhou China), a target object,
and a computer. The 2D-FUA is attached to the outer surface of the curved glassware as
the scanning target, and black and white circular markers are attached to the array and the
glassware as the scanning identification points. These identification points allow for the
stitching together of different angle scanned models in the software to obtain a complete
surface profile.
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The brown sphere is the identification point of the scan, which reconstructs the surface
shape of the glassware and clearly shows the position of each element. The scanned
model was imported into Geomagic Studio software for noise reduction, surface trimming,
stitching, and merging, and was converted into a surface file in .igs format for transferring
graphics files between different software. The scanned model after post-processing is shown
in Figure 5b. The scanned model was imported into Creo Parametric software, and marker
points were created at the center of each array element, and the 3D absolute coordinates of
the marker points were obtained directly using the software measurement tools.

The scanning parameters are listed in Table 1. As shown in Figure 5b, the glassware
was sprayed with an inverse enhancement coating and the scanned identification points
automatically reconstructed the surface shape of the glassware in order to clearly see the
positions of the individual array elements. In order to fit the coordinates in the scanning
model with those of the ultrasonic imaging system, it is necessary to establish a transformed
coordinate system to realize the conversion of global, local, and relative coordinates. The
origin of the global coordinate system is defined as absolute zero, and the x-axis direction
is the same as the x’ direction of the local coordinate system, omitting the transformation
coordinates. Therefore, only the y and z axes of the global coordinate system need to be
converted to plane coordinates. A marker point is established at the center of each array
element to convert the absolute coordinates of the array element to Verasonics coordinates.
The global coordinate system z-y is converted and then rotated 53◦ counterclockwise to
obtain the transition coordinate system z”-y”.

Table 1. Basic parameters of the laser scanning.

Parameter Specification

Light source Blue light
Scanning mode Binocular scanning

Scanning method Raster scan
Scanning precision 50 µm

Single scanning time 0~5 s
Scan range 30 × 30 × 30 cm

3. Results and Discussion
3.1. Mechanical Properties Characterization

As shown in Figure 6, the superior serpentine hinge is able to recover its initial
state at the ultimate stretch length relying on the hinge rebound force. The array still
works positively under 40–60% simultaneous biaxial stretching conditions, and the array
maintains excellent conductivity at the extreme stretching state. PI films and copper films
may develop fatigue cracks or even fail during plastic deformation, and the mechanical
properties of the array are also expressed in terms of the fatigue resistance of the device,
which must be able to maintain mechanical integrity during repeated loading. As shown
in Figure 6a–c, the 2D-FUA is verified in practice by stretching, twisting, and bending
to verify the mechanical properties of the array and the encapsulator. The low modulus
(low modulus −70 kpa) and tensile properties of the silicon thin film material, as shown
in Figure 6d,e, provide a compatible platform for the device to seal various shapes of
components in the array. The silicon material that seals the array provides a thickness
of less than 15 mm silicon elastic film for the liner and bottom layers, which not only
provides insulation and adhesion between adjacent layers, but also provides acoustics and
device robustness to effectively avoid acoustic second resonance. Polyimide square groove
and silicon-filled material can effectively avoid transverse vibration, reduce crosstalk, and
induce longitudinal waves into the target body. As shown in Figure 6f, the encapsulation
material (silicone) can rely on its own van der Waals forces to adsorb on the surface of the
body, and the flexibility can be stretched to adapt to various curved surfaces and bumps.
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3.2. Acoustic Performance Characterization

The impedance analyzer (Agilent 4294A) was used to measure and characterize the
electrical impedance and acoustic properties of the 2D-FUA. As shown in Figure 7b, the
resonant frequency, fr, and anti-resonant frequency, fa, of the array were 1.95 MHz and
2.19 MHz, respectively, and the phase angle of the transducer was about −13.2◦. The
acoustic performance of the array was evaluated in water with an Olympus 5072PR pulse
receiver. As shown in Figure 7a, the 2D-FUA was attached to the inner wall of the water
tank, and the flexible array was excited at resonant frequencies for pulse-echo experiments.
Figure 7c shows the pulse–echo response of the array to verify that the array has excellent
transmitting and receiving acoustic performance. Crosstalk between 8 × 8 flexible ultra-
sonic arrays of piezoelectric elements was simulated by PZFlex (now renamed OnScale).
The simulation results show that the maximum crosstalk between the cells of the array
is −32 dB, which satisfies the theoretical requirement that the maximum crosstalk value
should be less than −35 dB [30,31].
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3.3. Curved Surface Imaging Experiment

As shown in Figure 8, the 2D-FUA curved surface imaging platform is built based
on the Verasonics system. The 2D-FUA is affixed along the curved surface of the inner
wall of the water tank, and the array performs B-type ultrasound scanning based on the
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array element spatial coordinates on the randomly placed steel column target to obtain
the location of the target object by imaging. As shown in Figure 8b, the curved glass
tank was filled with deionized water (acoustic impedance of water is about 1.5 MRayl,
acoustic impedance of biological soft tissue is about 1.6 MRayl), and the electrode wire
of the 2D-FUA was connected to the adapter of the ultrasound platform panel interface
through an adapter plate. The glassware was 100 mm in diameter and the wire was 1 mm
in diameter without matching and backing layers. Since the scanning area of the 2D-FUA is
a spatial cube, a B-scan of the surface array can yield any 2D cross section. The dimension
of the cross section in the x-direction is defined as the width of the array without bending,
and the depth in the z-direction is defined as 12. All the array elements transmit ultrasonic
waves simultaneously and reconstruct the received signals on the two-dimensional cross
section at once. In addition to this, planar experiments of 2D-FUA were also provided to
further validate the flexible array imaging performance in Figure 8a.
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3.4. Experimental Results and Discussion

Figure 9a shows the results of the 2D-FUA planar scan imaging with three randomly
placed steel pins in the sink at the theoretical distances of 52 mm, 55 mm, and 70 mm from
the array plane. The bright spots represent the three randomly placed steel pin positions,
and the bright spots occupy the vertical axis coordinate values representing the measured
wavelength distance between the steel pins and the array plane. Three different bright spot
locations were captured, and the wavelength–distance position relationship was calculated
to obtain 52.8 mm for the ellipse center of point a#, 56.8 mm for point b#, and 72.9 mm
for point c#. The results show that the target distance measurements are very close to the
theoretical values, with accuracy errors of 1.54%, 3.27%, and 4.14%, respectively.

Figure 9b shows the imaging results of the 2D-FUA, which verify that the laser
scanning technique identifies the position of the array element, and the discrete state
can assist in imaging. The positions of the targets can be identified by the white bright
spots in the coordinate system, and the vertical axis values of the white bright spots directly
correspond to the wavelengths of the three targets 1#, 2#, and 3# in relation to the array. By
locating the white bright spot, the longitudinal coordinate of the elliptical center point of
1# bright spot is 53.8 mm, the longitudinal coordinate of 2# bright spot is 54.4 mm, and the
longitudinal coordinate of 3# bright spot is 58.3 mm. The measured values are very close to
the theoretical values of 52 mm, 53 mm, and 56 mm, respectively. The above experimental
results verify the proposed laser scanning guided 2D-FUA imaging method.

Figure 9 shows that the imaging results have artifacts using both imaging methods,
and this phenomenon is more obvious on the curved surface. Figure 9a shows that the
bright spot 1# artifact is elliptical, which indicates that there is an accuracy error between
the measurement result and the actual size of the wire (diameter 1 mm). The errors were
mainly due to the fact that the 2D-FUA was not set up with a backing, which resulted in
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some acoustic energy not being transmitted, and that there was no matching layer between
the array encapsulation material and the target.The imaging resolution can be improved by
using 1–3 piezoelectric composites with low acoustic impedance and further optimizing the
structure, such as reducing the array pitch. The work verifies that the designed 2D-FUA can
be used for localization imaging, which provides a novel idea for medical flexible imaging.
The localization imaging method using laser scanning guidance proposed in this paper can
realize the function of contactless, spatiotemporal scanning and high-precision positioning,
which has the ability to help the flexible array imaging positioning and solve the difficult
problem of array element displacement during surface imaging.
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