Special Issue "Sustainability in Construction and Building Materials"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editor

Prof. Dr. Eddie Koenders
Website
Guest Editor
TU Darmstadt
Interests: multiscale modeling; modelling hydration and transport; sustainable binders; thermal energy storage; ultralight foams
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Sustainability has become the most important challenge for the building and construction industry, not just for the present, but also for the decades to come. Scientifically-based solutions should drive technological innovations that enable compliance with the still-growing environmental constraints. Research in this particular field of interest is advanced from the physical, chemical, biological, lifecycle assessment, engineering, and materials science perspective, often leading to synergistic approaches. Research on alternative binders, sustainable building materials, energy storage technologies, phase change materials, functional nanocomposites, recycling, reuse of industrial wastes and by-products, use of natural biomaterials, self-healing materials, CO2 and energy reductions, etc. are topics that define the cornerstones of this particular field of interest.

This first Special Issue of this new section is considered to reflect the current state-of-the-art and new developments on the relevant topics that characterize the research field of “Sustainability in Construction”. A wide range of research results on various topics that are contributing to an enhancement of the environmental footprint is expected. Collected topics, from an interdisciplinary, multiscale, synergistic, holistic, etc. viewpoint, are aimed at providing a resourceful background for readers, addressing the current state of research and innovation on sustainability in construction.

Within the scope of this Special Issue, emphasis will be given on fundamental, experimental, numerical, validation, and application research, inducing proven results on state-of-the-art solutions for sustainable construction. Various single-focused approaches or multidisciplinary combinations are also expected to add to the topic in general.

With this collection, it is our ambition to stimulate and circulate the latest knowledge on Sustainability in Construction and Building Materials. It will be a basis for new ideas on the various topics for young investigators as well as leading experts in the field.

Prof. Eddie Koenders
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Green building materials
  • Ecofriendly solutions
  • Durability and aging materials
  • Service life prediction
  • Recycling and reusability
  • Structural health assessment
  • Lifecycle assessment
  • Energy efficiency
  • Energy storage
  • Natural fibers
  • Nano- and fiber composites
  • Natural materials
  • CO2 reduction
  • Ceramics
  • limes
  • clays
  • bricks
  • Organic and inorganic types of building materials
  • Sustainable polymers
  • Phase change materials

Published Papers (49 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Study on Low-Temperature Cracking Performance of Asphalt under Heat and Light Together Conditions
Materials 2020, 13(7), 1541; https://doi.org/10.3390/ma13071541 - 27 Mar 2020
Abstract
The low-temperature cracking performance of asphalt is considered one of the main deteriorations in asphalt pavements. However, there have been few studies on the low-temperature cracking performance of asphalt under heat and light together. Hence, the ductility test, bending beam rheometer (BBR) test, [...] Read more.
The low-temperature cracking performance of asphalt is considered one of the main deteriorations in asphalt pavements. However, there have been few studies on the low-temperature cracking performance of asphalt under heat and light together. Hence, the ductility test, bending beam rheometer (BBR) test, and asphalt composition analysis test are combined to investigate the low-temperature cracking performance under heat and light together based on the climatic conditions of China. The styrene–butadiene–styrene block copolymer (SBS)-modified asphalt binders were prepared with different modifier types and base asphalt in this research. The results show that the low-temperature cracking resistance of asphalt reduces under heat and light together. It is obviously reduced at the early stage, and it becomes worse with the increase of the aging time, temperature, and ultraviolet (UV) intensity. The asphalt composition has a significant impact on its low-temperature cracking performance, and the SBS modifier can improve the low-temperature cracking resistance of asphalt. The rational selection of base asphalt and modifier can improve the low-temperature cracking performance of asphalt. Under heat and light together, whether base asphalt or modified asphalt, the change trends of their ductility and component content are similar. Therefore, to improve the anti-cracking ability of the asphalt pavement, it is suggested to use the ductility of asphalt aged by heat and light together for 15 days as the evaluation index of the low-temperature cracking performance of asphalt, and asphalt should be selected according to the temperature and UV intensity of the asphalt pavement use area. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of Elevated Temperature on Compressive Strength and Physical Properties of Neem Seed Husk Ash Concrete
Materials 2020, 13(5), 1198; https://doi.org/10.3390/ma13051198 - 06 Mar 2020
Abstract
High temperature rise mostly caused by a fire outbreak is currently becoming a threat that endangers concrete’s structural performance for buildings and the safety of occupants. The behavior of concrete after fire subjection has been of much interest for the structural materials design [...] Read more.
High temperature rise mostly caused by a fire outbreak is currently becoming a threat that endangers concrete’s structural performance for buildings and the safety of occupants. The behavior of concrete after fire subjection has been of much interest for the structural materials design purposes. This study investigated the physical properties and the compressive strength of M25 concrete incorporating Neem Seed Husk Ash (NSHA), exposed to and through targeted different levels of temperature (200 °C to 800 °C) for a period of three hours in an electric furnace. The NSHA was produced by calcining neem seed husks at 800 °C for six hours and then sieved through the 125 μm sieve. Different amounts of NSHA were investigated while considering the plain concrete as the control sample. 150 concrete cubes of 150 mm sizes were cast and properly cured for 7 and 28 days. The experimental results show that the compressive strength of the 5% NSHA concrete exposed to temperatures up to 400 °C is 21.3% and 23.8% better than the normal concrete at 7 and 28 curing days, respectively. Surface cracks and spalling are noticeable at 600 °C and 800 °C for all samples considered in this study. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Graphical abstract

Open AccessArticle
Synthesis and Characterization of a Hybrid Cement Based on Fly Ash, Metakaolin and Portland Cement Clinker
Materials 2020, 13(5), 1084; https://doi.org/10.3390/ma13051084 - 29 Feb 2020
Abstract
Hybrid cement has become one of the most viable options in the reduction of CO2 emissions to the environment that are generated by the cement industry. This could be explained by the reduction of the content of clinker in the final mixture [...] Read more.
Hybrid cement has become one of the most viable options in the reduction of CO2 emissions to the environment that are generated by the cement industry. This could be explained by the reduction of the content of clinker in the final mixture and substitution of the remaining percentage with supplementary cementitious materials with the help of an alkaline activation. Following that, properties that are provided by an Ordinary Portland Cement and of a geopolymer are mixed in this type of hybrid material and could be achieved at room temperature. Thereafter, the main objective of this research was to synthesize hybrid cements reducing the clinker content of Portland Cement up to 20% and use metakaolin and fly ash as supplementary cementitious materials in different proportions. The mixtures were alkaline activated with a mixture of sodium silicate and sodium hydroxide, calculating the amounts according to the percentage of Na2O that is present in each of the activators. The samples were then characterized using Compressive strength, X-ray diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy with energy-dispersive X-ray spectroscopy. The results indicated that the hybrid cements have similar mechanical properties than an Ordinary Portland Cement, and they resulted in a dense matrix of hydration products similar to those that are generated by cements and geopolymers. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Second-Generation Implants for Load Introduction into Thin-Walled CFRP-Reinforced UHPC Beams: Implant Optimisation and Investigations of Production Technologies
Materials 2019, 12(23), 3973; https://doi.org/10.3390/ma12233973 - 30 Nov 2019
Cited by 1
Abstract
Combining two high-performance materials—ultra-high-performance concrete (UHPC) as the matrix and carbon-fibre-reinforced composites (CFRP) as the reinforcement—opens up new possibilities for achieving very lightweight thin-walled concrete elements. This strategy, however, leads to a higher degree of material utilisation, resulting in the generation of higher [...] Read more.
Combining two high-performance materials—ultra-high-performance concrete (UHPC) as the matrix and carbon-fibre-reinforced composites (CFRP) as the reinforcement—opens up new possibilities for achieving very lightweight thin-walled concrete elements. This strategy, however, leads to a higher degree of material utilisation, resulting in the generation of higher forces around load introduction points and supports. The authors present a solution for increasing the performance of supports of very slender CFRP-reinforced UHPC beams by using metal implants. Implants are used in place of concrete in regions of stress concentrations and significant deviation forces. These are able to transfer high stresses and forces efficiently due to their ability to sustain both tension and compression in equal measure. A key issue in their development is the interface between the reinforced concrete and metal implant. Building on previous research, this paper deals with the conceptual design of three types of implants manufactured from different metals and with three different types of automated production technologies (water-jet cutting, metal casting with a 3D-printed plastic formwork and binder jetting of steel components). For this paper, tests were carried out to determine the load-bearing behaviour of beams with the three different types of support implants used for load introduction at the supports. A carbon rod served as bending reinforcement and a pre-formed textile reinforcement cage served as shear and constructive reinforcement. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Application of Natural Plant Fibers in Cement-Based Composites and the Influence on Mechanical Properties and Mass Transport
Materials 2019, 12(21), 3498; https://doi.org/10.3390/ma12213498 - 25 Oct 2019
Abstract
Recently, there is ongoing interest in the use of natural plant fibers as alternatives for conventional reinforcements in cementitious composites. The use of natural plant fibers makes engineering work more sustainable, since they are renewable, biodegradable, energy-efficient, and non-toxic raw materials. In this [...] Read more.
Recently, there is ongoing interest in the use of natural plant fibers as alternatives for conventional reinforcements in cementitious composites. The use of natural plant fibers makes engineering work more sustainable, since they are renewable, biodegradable, energy-efficient, and non-toxic raw materials. In this contribution, a comprehensive experimental program was undertaken to determine the influence of pineapple leaf fiber and ramie fiber on the mechanical properties and mass transport of cement-based composites. The compressive strength, tensile strength, modulus of elasticity, modulus of rupture, fracture energy, flexural toughness, coefficient of capillary water absorption, and chloride diffusion were measured. Natural plant fiber-reinforced cement-based composites (NPFRCCs) containing pineapple leaf fiber and ramie fiber, as compared to the plain control, exhibited a slight reduction in compressive strength and a considerable improvement in tensile strength, modulus of elasticity, modulus of rupture, and flexural toughness; the enhancement was remarkable with a higher fiber content. The coefficient of capillary absorption and chloride diffusion of NPFRCCs were significantly larger than the plain control, and the difference was evident with the increase in fiber content. The present study suggests that the specimen with 2% pineapple leaf fiber content can be used in normal environments due to its superior mechanical properties. However, one should be careful when using the material in marine environments. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents
Materials 2019, 12(21), 3485; https://doi.org/10.3390/ma12213485 - 24 Oct 2019
Cited by 2
Abstract
Geopolymers are inorganic binders based on mixtures of an aluminosilicate powder with an alkali-silicate solution. Properties of geopolymers are strongly determined by the type of reactive solid, the liquid/solid ratio of paste and, amongst others, the Si/Al ratio of the formed geopolymer network. [...] Read more.
Geopolymers are inorganic binders based on mixtures of an aluminosilicate powder with an alkali-silicate solution. Properties of geopolymers are strongly determined by the type of reactive solid, the liquid/solid ratio of paste and, amongst others, the Si/Al ratio of the formed geopolymer network. In this study, fly ash blended metakaolin based geopolymers with varying liquid/solid ratios (l/s), activated by potassium silicate solution, are investigated. Reactivity of metakaolin and fly ash was investigated by powder X-ray diffraction (XRD) and dissolution tests. Reactivity, mechanical properties and microstructure of hardened pastes were analyzed by setting and compressive strength tests, mercury intrusion porosimetry (MIP), capillary water absorption tests, thermogravimetric analysis-differential scanning calorimeter (TGA-DSC), isothermal calorimetry and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results show that substitution of metakaolin by fly ash as well as variation of l/s brings advantages up to a certain degree, but also has a considerable influence on the pore size distribution, mechanical properties, Si/Al ratio of the geopolymer network and the content of bound water. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effects of Calcium Silicate Slag on Hydration of Cementitious Pastes
Materials 2019, 12(19), 3094; https://doi.org/10.3390/ma12193094 - 23 Sep 2019
Abstract
Calcium silicate slag (CSS) is waste slag and it contains a large amount of beta-dicalcium silicate. This study is mainly focused on the effect of CSS on the hydration of cementitious pastes. CSS was used to partly replace cement, and composite pastes containing [...] Read more.
Calcium silicate slag (CSS) is waste slag and it contains a large amount of beta-dicalcium silicate. This study is mainly focused on the effect of CSS on the hydration of cementitious pastes. CSS was used to partly replace cement, and composite pastes containing CSS and cement were prepared. The mineral composition and particle size distribution of CSS were characterized. The chemically combined water of the paste sample was measured at a given test age. Based on the value of chemically combined water, the hydration degree and the hydration rate of composite pastes were analyzed. The flexural strength of the samples was established. The pore structure and micromorphology of the sample were also observed. The results indicate the chemically combined water decreased, the hydration degree decreased, the hydration rate declined, and the spherical micromorphology of the calcium silicate hydrate gel was reduced after more cement was replaced by CSS in the composite pastes. Besides, the amount of pores increased, its size was bigger, and air content in the pore was higher. However, flexural strength was lower. CSS has a significant impact on the hydration of cementitious pastes, and it is thus suitable to regulate hydration. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Waste Utilization: Insulation Panel from Recycled Polyurethane Particles and Wheat Husks
Materials 2019, 12(19), 3075; https://doi.org/10.3390/ma12193075 - 20 Sep 2019
Cited by 1
Abstract
This study provides a solution for the utilization of two waste materials, namely the residues of soft polyurethane foam from the production of mattresses and winter wheat husks. Thermal insulation panels with a nominal density of 50–150 kg/m3, bonded one-component moisture [...] Read more.
This study provides a solution for the utilization of two waste materials, namely the residues of soft polyurethane foam from the production of mattresses and winter wheat husks. Thermal insulation panels with a nominal density of 50–150 kg/m3, bonded one-component moisture curing polyurethane adhesive, were developed, and the effect of the ratio between recycled polyurethane foam and winter wheat husk on internal bond strength, compressive stress at 10% strain, water uptake, coefficient of thermal conductivity, and volumetric heat capacity was observed. The developed composite materials make use of the very good thermal insulation properties of the two input waste materials, and the coefficient of thermal conductivity of the resulting boards achieves excellent values, namely 0.0418–0.0574 W/(m.K). The developed boards can be used as thermal insulation in the structures of environmentally friendly buildings. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of Copper Tailing Content on Corrosion Resistance of Steel Reinforcement in a Salt Lake Environment
Materials 2019, 12(19), 3069; https://doi.org/10.3390/ma12193069 - 20 Sep 2019
Abstract
With the increasing proportions of copper tailings of concrete in the Qinghai Salt Lake area of China, there arises the problem of corrosion of steel reinforcement in concrete structures. In this study, we determine the corrosion rate (CR), crack width, and [...] Read more.
With the increasing proportions of copper tailings of concrete in the Qinghai Salt Lake area of China, there arises the problem of corrosion of steel reinforcement in concrete structures. In this study, we determine the corrosion rate (CR), crack width, and corrosion potential of the steel reinforcement with copper tailing. This was achieved by conducting the constant-current accelerated corrosion test with different proportions of copper tailing in the brine environment of the Qinghai province. The results demonstrate that the corrosion potential (Ecorr) and the passivation area of the polarization curve decrease with the increase in the corrosion time, and the corrosion rate and crack width increase with the increase in the corrosion time. When the corrosion time is the same, the corrosion potential, crack width, and corrosion depth of the reinforcement decrease first and then increase with the increase in the copper tailing powder content. When the copper tailing powder content is 20%, the above parameters reach the minimum value. In the salt lake environment of Qinghai, China, the copper tailing powder content is recommended to be 20%. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Graphical abstract

Open AccessArticle
Mechanical Behavior of Brick Masonry in an Acidic Atmospheric Environment
Materials 2019, 12(17), 2694; https://doi.org/10.3390/ma12172694 - 23 Aug 2019
Cited by 2
Abstract
In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and [...] Read more.
In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Composition Design and Performance Evaluation of Emulsified Asphalt Cold Recycled Mixtures
Materials 2019, 12(17), 2682; https://doi.org/10.3390/ma12172682 - 22 Aug 2019
Abstract
Based on an analysis of the cold regeneration mechanism of emulsified asphalt, the emulsified asphalt binders and cement were applied to prepare the cold recycled mixtures, and the main technical performances of the designed mixtures were evaluated, including high-temperature stability, water stability, and [...] Read more.
Based on an analysis of the cold regeneration mechanism of emulsified asphalt, the emulsified asphalt binders and cement were applied to prepare the cold recycled mixtures, and the main technical performances of the designed mixtures were evaluated, including high-temperature stability, water stability, and fatigue characteristics. A high content of 65% recycled asphalt pavement (RAP) material was used with some new aggregates and mineral powders, and the optimal emulsified asphalt binder and cement dosages were determined as 2.9% and 1.5% respectively. The technical performance test results show that: (1) The well-designed emulsified asphalt cold recycled mixtures have good high-temperature stability and water stability, and can meet the requirements of the road base layer and the lower layer. (2) When the stress level is lower, the fatigue performance of mixtures with lower emulsified asphalt binder dosage and lower cement content is better, but when the stress level is higher, the high dosage of emulsified asphalt binder is more favorable, while the cement content has little effect on the fatigue property. (3) The emulsified asphalt cold recycled mixtures have relatively poor fatigue resistance, and their fatigue life is significantly lower than that of the hot mixed asphalt mixtures. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Applicability of Yielding–Resisting Sand Column and Three-Dimensional Coordination Support in Stopes
Materials 2019, 12(16), 2635; https://doi.org/10.3390/ma12162635 - 19 Aug 2019
Abstract
In view of the existing problems of stope roadways, which are difficult to maintain under the influence of high ground and mining-induced stresses, the structural characteristics and movement regularities of stopes surrounding rocks were analysed. Through the construction of a three-dimensional mechanical model [...] Read more.
In view of the existing problems of stope roadways, which are difficult to maintain under the influence of high ground and mining-induced stresses, the structural characteristics and movement regularities of stopes surrounding rocks were analysed. Through the construction of a three-dimensional mechanical model of the coordination support of a stope, the adaptability index of the support in stope is presented, and its mechanism of operation is expounded. Yielding–resisting sand column (YRSC) sidewall-support technology with satisfactory compressibility and supporting strength was developed. The structure and actual mechanical properties of the YRSC were investigated through laboratory experiments, and the optimum ratio of filling materials was obtained. The good applicability of the load and deformation adaptability index of the three-dimensional coordination support in the stope and YRSC sidewall-support technology were demonstrated in practice at the No. 12306 working face of the Dongda coal mine. It was shown that the designed carrying capacity and compression of the sand columns satisfied the site requirements. The actual stress and deformation of the YRSC exhibited three stages: Slow growth at the initial stage, a large increase in the medium term, and a stable trend at the end. The adaptability index of the three-dimensional coordination support in the stope considers all bearing structure units of the stope as an interconnected whole, and the stability conditions of the stope roadway can be quantitatively described. The supporting effect of the YRSC is remarkable and can be applied to the construction of tunnels, bridge systems and other engineering fields. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Performance and Microstructure of Cold Recycled Mixes Using Asphalt Emulsion with Different Contents of Cement
Materials 2019, 12(16), 2548; https://doi.org/10.3390/ma12162548 - 10 Aug 2019
Abstract
Cold recycled mixes using asphalt emulsion (CRME) is an economical and environmentally-friendly technology for asphalt pavement maintenance and rehabilitation. In order to determine the optimum range of cement contents, the complex interaction between cement and asphalt emulsion and the effects of cement on [...] Read more.
Cold recycled mixes using asphalt emulsion (CRME) is an economical and environmentally-friendly technology for asphalt pavement maintenance and rehabilitation. In order to determine the optimum range of cement contents, the complex interaction between cement and asphalt emulsion and the effects of cement on performance of CRME were investigated with different contents of cement. The microstructure and chemical composition of the fracture surface of CRME with different contents of cement were analyzed in this paper as well. Results show that the high-temperature stability and moisture susceptibility of CRME increased with the contents of cement increasing. The low-temperature crack resistance ability gradually increased when the content of cement is increased from 0% to 1.5%. However, it gradually decreased when the content of cement is increased from 1.5% to 4%. Cold recycled mixes had better low-temperature cracking resistance when the contents of cement were in the range from 1% to 2%. The results of microstructure and energy spectrum analysis show that the composite structure is formed by hydration products and asphalt emulsion. The study will be significant to better know the effects of cement and promote the development of CRME. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Investigation on the Cooling and Evaporation Behavior of Semi-Flexible Water Retaining Pavement based on Laboratory Test and Thermal-Mass Coupling Analysis
Materials 2019, 12(16), 2546; https://doi.org/10.3390/ma12162546 - 09 Aug 2019
Cited by 1
Abstract
The Semi-Flexible Water Retaining Pavement (SFWRP) has the capability to cool down the temperature of the road surface through its evaporation behavior, including absorbing and evaporating water; this is an efficient approach to relieve the heat island effect in a big city. The [...] Read more.
The Semi-Flexible Water Retaining Pavement (SFWRP) has the capability to cool down the temperature of the road surface through its evaporation behavior, including absorbing and evaporating water; this is an efficient approach to relieve the heat island effect in a big city. The temperature feedback from different material surface were investigated in this paper in the same test condition, it has been proved that the SFWRP material can remarkably cool down the temperature of the road surface. The mechanism of the material evaporation behavior, including flux calculation formula of the water vapor inside the air void, were studied by inter-phase continuous function, in which the structural properties of the SFWRP material was taken into account. Furthermore, the function calculating the evaporation of the water vapor was then developed in this research through heat and mass transfer analogy. Besides, the calculating results can be captured by the self-coding program in Finite Element Modeling (FEM) for water evaporation simulation. Also, the results of laboratory tests were adopted to validate the calculating model. Finally, it has been proved that the mortar was recommended to be used in semi-flexible water retaining pavement to serve as material with permeable and water retaining property, and the semi-flexible water retaining pavement material is recommended to applied in the surface layer of the permeable pavement. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Laboratory Performance of Hot Mix Asphalt with High Reclaimed Asphalt Pavement (RAP) and Fine Reclaimed Asphalt Pavement (FRAP) Content
Materials 2019, 12(16), 2536; https://doi.org/10.3390/ma12162536 - 09 Aug 2019
Abstract
Recently, there has been an increasing interest in the applications of recycled mixtures with a high reclaimed asphalt pavement (RAP) content. However, many government departments are hesitant about the applications of that due to being worried about the durability of its pavement, and [...] Read more.
Recently, there has been an increasing interest in the applications of recycled mixtures with a high reclaimed asphalt pavement (RAP) content. However, many government departments are hesitant about the applications of that due to being worried about the durability of its pavement, and few findings has been reported in terms of the percentage of fine reclaimed asphalt pavement (FRAP, 0~5 mm) in recycled mixtures. In this paper, 25% or more RAP by the weight of aggregates is defined as high RAP and high FRAP refers to 10% or more FRAP by the weight of aggregates. This paper examines the laboratory performances of mixtures with high RAP (30%, 40%, and 50%) and FRAP (10%, 15%, and 20%). Performance evaluations have been conducted by conventional tests, including the low-temperature bending test, fatigue test, and the moisture susceptibility test. The results show that with the increasing RAP and FARP contents, 41% (30-R-10) to 63% (50-R-15) of virgin asphalt can be saved, both the low-temperature and fatigue performance decrease, and the moisture performance firstly increases and then decreases. The results of analysis of variance (ANOVA) in terms of low-temperature and moisture performance show that RAP contents in recycled mixtures have a significant effect on the performance, while the effect of FRAP contents on the performance of recycled mixtures is insignificant. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Optimal Design of the Cement, Fly Ash, and Slag Mixture in Ternary Blended Concrete Based on Gene Expression Programming and the Genetic Algorithm
Materials 2019, 12(15), 2448; https://doi.org/10.3390/ma12152448 - 31 Jul 2019
Cited by 1
Abstract
Concrete producers and construction companies are interested in improving the sustainability of concrete, including reducing its CO2 emissions and the costs of materials while maintaining its mechanical properties, workability, and durability. In this study, we propose a simple approach to the optimal [...] Read more.
Concrete producers and construction companies are interested in improving the sustainability of concrete, including reducing its CO2 emissions and the costs of materials while maintaining its mechanical properties, workability, and durability. In this study, we propose a simple approach to the optimal design of the fly ash and slag mixture in blended concrete that considers the carbon pricing, material cost, strength, workability, and carbonation durability. Firstly, the carbon pricing and the material cost are calculated based on the concrete mixture and unit prices. The total cost equals the sum of the material cost and the carbon pricing, and is set as the optimization’s objective function. Secondly, 25 various mixtures are used as a database of optimization. The database covered a wide range of strengths between 25 MPa and 55 MPa and a wide range of workability between 5 and 25 cm in slump. Gene expression programming is used to predict the concrete’s strength and slump. The ternary blended concrete’s carbonation depth is calculated using the efficiency factors of fly ash and slag. Thirdly, the genetic algorithm is used to find the optimal mixture under various constraints. We provide examples to illustrate the design of ternary blended concrete with different strength levels and environmental CO2 concentrations. The results show that, for a suburban region, carbonation durability is the controlling factor in terms of the design of the mixture when the design strength is less than 40.49 MPa, and the compressive strength is the controlling factor in the design of the mixture when the design strength is greater than 40.49 MPa. For an urban region, the critical strength for distinguishing carbonation durability control and strength control is 45.93 MPa. The total cost, material cost, and carbon pricing increase as the concrete’s strength increases. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Influence of Different Modifiers on Bonding Strength and Rheological Performance of Bitumen Emulsion
Materials 2019, 12(15), 2414; https://doi.org/10.3390/ma12152414 - 29 Jul 2019
Abstract
Styrene butadiene rubber latex (SBR), waterborne epoxy adhesive (WE) and colloidal silica sol (SiO2) were used to prepare modified bitumen emulsion for cold mix asphalt. The modification effects of the individual modifiers and the combination of these modifiers were investigated by [...] Read more.
Styrene butadiene rubber latex (SBR), waterborne epoxy adhesive (WE) and colloidal silica sol (SiO2) were used to prepare modified bitumen emulsion for cold mix asphalt. The modification effects of the individual modifiers and the combination of these modifiers were investigated by using bonding strength and dynamic shear rheological property. Test results showed that the modifier dosage helped to balance the performance of modified bitumen emulsion by improving its bonding strength without compromising its rheological properties. The critical dosage at which the peak bonding strength occurred was 4%, 12% and 4% for SBR, WE and SiO2 respectively. Improved rheological performance on the master curves was well distinguished, in particular, by increased complex modulus and reduced phase angle at the low frequency region. Abrupt changes, especially on phase angle occurred when the modifier dosage was beyond 12%. The measured ratio between bonding strength and complex shear modulus could vary ranging from 10−2 to 102. Highly-modified bitumen emulsion with good adhesion, rheology and compatibility can be prepared by using the combination of SBR, WE and SiO2. It is important to carefully select the type and dosage of modifier for a particular combination to optimize the performance of modified bitumen emulsion. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Improvement of the Concrete Permeability by Using Hydrophilic Blended Additive
Materials 2019, 12(15), 2384; https://doi.org/10.3390/ma12152384 - 26 Jul 2019
Cited by 1
Abstract
Crystalline hydrophilic additives are increasingly used as efficient methods for reducing water permeability in concrete. Their effectiveness in hindering water penetration has been proven in different cementitious materials, although scarce information has been reported concerning their action mechanism. In the present work, the [...] Read more.
Crystalline hydrophilic additives are increasingly used as efficient methods for reducing water permeability in concrete. Their effectiveness in hindering water penetration has been proven in different cementitious materials, although scarce information has been reported concerning their action mechanism. In the present work, the efficacy of a hydrophilic blended crystalline mix (Krystaline Add1) as a water-reducing additive has been confirmed. Furthermore, an extended study about how the presence of the additive influences both the fresh state and the hardened state properties is presented. Finally, characterization techniques such as Mercury Intrusion Porosimetry (MIP), X-ray Powder Diffraction (XRD) and Back-Scattered Scanning Electron Microscopy (BSEM) with Energy Dispersive X-ray analysis (EDAX) have been used for deducing the mechanism of the additive. No significant deleterious influence on the concrete properties due to the addition of the additive has been detected. In fact, the additive seems to have provided a positive influence on the concrete given that a slight reduction in the w/c ratio for similar consistency has been detected, with the subsequent improvement of the compressive strength values. Its effectiveness as a water permeability reducing additive has shown encouraging results having reduced the water permeability by approximately 50% during testing. The action mechanism of the studied additive seems to be related to hydration reactions in the presence of water, producing new solid amorphous phases in the concrete bulk. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Research on the Method of Predicting Corrosion width of Cables Based on the Spontaneous Magnetic Flux Leakage
Materials 2019, 12(13), 2154; https://doi.org/10.3390/ma12132154 - 04 Jul 2019
Cited by 3
Abstract
The detection of cable corrosion is of great significance to the evaluation of cable safety performance. Based on the principle of spontaneous magnetic flux leakage (SMFL), a new method for predicting the corrosion width of cables is proposed. In this paper, in order [...] Read more.
The detection of cable corrosion is of great significance to the evaluation of cable safety performance. Based on the principle of spontaneous magnetic flux leakage (SMFL), a new method for predicting the corrosion width of cables is proposed. In this paper, in order to quantify the width of corrosion, the parameter about intersecting point distance between curves of magnetic flux component of x direction at different lift off heights (Dx) is proposed by establishing the theoretical model of the magnetic dipole of the rectangular corrosion defect. The MATLAB software was used to analyze the influencing factors of Dx. The results indicate that there exists an obvious linear relationship between the Dx and the y (lift off height), and the Dxy curves converge to near the true corrosion width when y = 0. The 1/4 and 3/4 quantiles of the Dxy image were used for linear fitting, which the intercept of the fitting equation was used to represent the predicted corrosion width. After the experimental study on the corrosion width detection for the parallel steel wire and steel strand, it is found that this method can effectively improve the detection accuracy, which plays an important role in cable safety assessment. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Microstructural and Mechanical Properties of Alkali Activated Materials from Two Types of Blast Furnace Slags
Materials 2019, 12(13), 2089; https://doi.org/10.3390/ma12132089 - 28 Jun 2019
Cited by 7
Abstract
This paper investigated the effect of blast furnace slags (BFS) characteristics on the properties achievement after being alkali activated. The physical and chemical characteristics of BFS were determined by X-ray fluorescence (XRF), X-ray Diffraction (XRD) and laser granulometry. Multi-technical characterizations using calorimetry, XRD, [...] Read more.
This paper investigated the effect of blast furnace slags (BFS) characteristics on the properties achievement after being alkali activated. The physical and chemical characteristics of BFS were determined by X-ray fluorescence (XRF), X-ray Diffraction (XRD) and laser granulometry. Multi-technical characterizations using calorimetry, XRD, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG-DTG), scanning electron microscope (SEM), nitrogen sorption and uniaxial compressive strength (UCS) were applied to give an in-depth understanding of the relationship between the reaction products, microstructure and BFS characteristics. The test results show that the microstructure and mechanical properties of alkali activated blast furnace slags (BFS) highly depend on the characteristics of BFS. Although the higher content of basic oxide could accelerate the hydration process and result in higher mechanical properties, a poor thermal stabilization was observed. On the other hand, with a higher content of Fe, the hydration process in alkali activated BFS2 lasts for a longer time, contributing to a delayed compressive strength achievement. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of the Content of Micro-Active Copper Tailing on the Strength and Pore Structure of Cementitious Materials
Materials 2019, 12(11), 1861; https://doi.org/10.3390/ma12111861 - 09 Jun 2019
Cited by 1
Abstract
This study investigates the effect of micr-oaggregate filling with copper tailing on the pore structure of cement paste containing copper tailing (CPCT). The particle size of the CPCT and the pore structure of CPCT were analyzed by laser particle size analysis and mercury [...] Read more.
This study investigates the effect of micr-oaggregate filling with copper tailing on the pore structure of cement paste containing copper tailing (CPCT). The particle size of the CPCT and the pore structure of CPCT were analyzed by laser particle size analysis and mercury instruction porosimetry (MIP). Results showed that at the early stage of curing time, with increasing copper tailing content, the compressive strength of cement mortar with copper tailing (CMCT) was lower, and the porosity and pore diameter of CPCT were higher and greater; with the extension of curing age, when the content of copper tailing was less than 30%, the compressive strength of CMCT and the porosity of CPCT changed slightly with the increase of the content of copper tailing. However, the maximum hole diameter of CPCT decreased gradually (a curing age between 7 d and 365 d under standard conditions). Scanning electron microscopy analysis showed that at the early stage of cement hydration in the CPCT, the copper tailing did not fill the pores in CPCT well, while in the later stage of cement hydration, the microaggregates of copper tailing filled the pores well and closely combined with the surrounding hydration products. In the later stage of cement hydration, the microaggregate filling of copper tailing was primarily responsible for the strength increase of the CMCT. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Graphical abstract

Open AccessArticle
Real-Time Flow Behavior of Hot Mix Asphalt (HMA) Compaction Based on Rheological Constitutive Theory
Materials 2019, 12(10), 1711; https://doi.org/10.3390/ma12101711 - 27 May 2019
Abstract
Compaction is the most critical stage during pavement construction, but the real-time rheological behavior in the compaction process of hot mix asphalt has not received enough attention. Rheological properties directly reflect the of mixture performance, the intrinsic directly reflects the influencing factors of [...] Read more.
Compaction is the most critical stage during pavement construction, but the real-time rheological behavior in the compaction process of hot mix asphalt has not received enough attention. Rheological properties directly reflect the of mixture performance, the intrinsic directly reflects the influencing factors of compaction, and the pavement compactness and service life. Therefore, it is important to interpret the rheological properties of the asphalt mixture during the compaction process. In this paper, the improved Nishihara model was used to study the viscoelastic-plastic properties of the hot mix asphalt in the compaction process. Firstly, the improved Nishihara model was briefly introduced. Subsequently, the stress and strain correlation curves are obtained by the MTS (Material Testing System) compaction test, and the strain-time curve is fitted to determine the model parameter values. Finally, the parameters are substituted into the constitutive equation to obtain the strain-time curve and compared it with the test curve. The results show that the improved Nishihara model effectively depicts the real time behavior of the asphalt mixture in the compaction progress. The viscos and plastic parameters present certain differences, which reflects that the gradation and temperature have certain influence on the compaction characteristics of the mixture. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Facile Approach to Develop Hierarchical Roughness [email protected]2 Blocks for Superhydrophobic Paper
Materials 2019, 12(9), 1393; https://doi.org/10.3390/ma12091393 - 29 Apr 2019
Cited by 3
Abstract
Papers with nanoscaled surface roughness and hydrophobically modification have been widely used in daily life. However, the relatively complex preparation process, high costs and harmful compounds have largely limited their applications. This research aims to fabricate superhydrophobic papers with low cost and nontoxic [...] Read more.
Papers with nanoscaled surface roughness and hydrophobically modification have been widely used in daily life. However, the relatively complex preparation process, high costs and harmful compounds have largely limited their applications. This research aims to fabricate superhydrophobic papers with low cost and nontoxic materials. The surface of cellulose fibers was initially coated with a film of SiO2 nanoparticles via sol-gel process. After papermaking and subsequent modification with hexadecyltrimethoxysilane through a simple solution-immersion process, the paper showed excellent superhydrophobic properties, with water contact angles (WCA) larger than 150°. Moreover, the prepared paper also showed superior mechanical durability against 10 times of deformation. The whole preparation process was carried out in a mild environment, with no intricate instruments or toxic chemicals, which has the potential of large-scale industrial production and application. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of Microbiological Growth Components for Bacteria-Based Self-Healing on the Properties of Cement Mortar
Materials 2019, 12(8), 1303; https://doi.org/10.3390/ma12081303 - 20 Apr 2019
Cited by 2
Abstract
Previous studies of bacteria-based self-healing concrete have shown that it is necessary to encapsulate and separate the self-healing ingredients (bacteria, nutrients, and precursors) in the concrete so that when a crack forms, capsules rupture, which allows the self-healing ingredients to come together and [...] Read more.
Previous studies of bacteria-based self-healing concrete have shown that it is necessary to encapsulate and separate the self-healing ingredients (bacteria, nutrients, and precursors) in the concrete so that when a crack forms, capsules rupture, which allows the self-healing ingredients to come together and precipitate calcite into the crack. Because of the shearing action in the concrete mixer, there is a chance that these capsules, or other carriers, may rupture and release the self-healing ingredients. This would affect the efficiency of self-healing, but may detrimentally affect the concrete’s properties. This work investigated the effects of multi-component growth media, containing germination and sporulation aids for the bacterial aerobic oxidation pathway, on the basic properties of fresh and hardened concrete instead of the potential self-healing efficiency in a structural service. Tests were carried out to measure the effects of growth media on air content, fluidity, capillary absorption, strength development of cement mortar following corresponding standards, hydration kinetics, setting properties, and the microstructure of cement paste, according to certain specifications or using specific machines. The research has demonstrated that a multi-constituent growth media will not have a significant effect on the properties of concrete in the proportions likely to be released during mixing. This important conclusion will allow further development of these novel materials by removing one of the key technical barriers to increased adoption. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Value-Added Application of Waste Rubber and Waste Plastic in Asphalt Binder as a Multifunctional Additive
Materials 2019, 12(8), 1280; https://doi.org/10.3390/ma12081280 - 18 Apr 2019
Cited by 2
Abstract
The feasibility and effectivity of recycling waste rubber and waste plastic (WRP) into asphalt binder as a waste treatment approach has been documented. However, directly blending WRP with asphalt binder brings secondary environmental pollution. Recent research has shown that the addition of WRP [...] Read more.
The feasibility and effectivity of recycling waste rubber and waste plastic (WRP) into asphalt binder as a waste treatment approach has been documented. However, directly blending WRP with asphalt binder brings secondary environmental pollution. Recent research has shown that the addition of WRP into asphalt binder may potentially improve the workability of asphalt binder without significantly compromising its mechanical properties. This study evaluates the feasibility of using the additives derived from WRP as a multifunctional additive which improves both the workability and mechanical properties of asphalt binder. For this purpose, WRP-derived additives were prepared in laboratory. Then, three empirical characteristics—viscosity, rutting factor, fatigue life were analyzed. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to evaluate the effect of WRP-derived additive on the workability and chemical and mechanical properties of base binder. The dispersity of WRP-derived additive inside asphalt binder was also characterized using fluorescence microscope (FM). Results from this study showed that adding WRP-derived additive increases the workability of base binder. The WRP-derived additive appears positive on the high- and low- temperature performance as well as the fatigue life of base binder. The distribution of the WRP-derived additive inside base binder was uniform. In addition, the modification mechanism of WRP-derived additive was also proposed in this paper. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effect of Solid Waste-Petroleum Coke Residue on the Hydration Reaction and Property of Concrete
Materials 2019, 12(8), 1216; https://doi.org/10.3390/ma12081216 - 13 Apr 2019
Cited by 1
Abstract
Taking advantage of the desulfurization petroleum coke residue obtained from circulating fluidized bed boiler technology to replace a part of cement clinker and prepare the concrete can not only reduce the production of cement clinker and related CO2 emissions, but can also [...] Read more.
Taking advantage of the desulfurization petroleum coke residue obtained from circulating fluidized bed boiler technology to replace a part of cement clinker and prepare the concrete can not only reduce the production of cement clinker and related CO2 emissions, but can also improve the utilization rate and utilization level of petroleum coke waste, which has good environmental and economic benefits. In this study, through the comprehensive analysis of a compressive strength test, X-ray diffraction test, and Cl penetration resistance test, the hydration mechanism of desulfurized petroleum coke residue in concrete is revealed, and the optimum replacement ratios of single-added petroleum coke residue, multi-added petroleum coke residue, and mineral admixtures in concrete are evaluated and proposed. The results showed that mixing the 10% petroleum coke residue and 40% blast furnace slag would be most appropriate to replace the cement in concrete, thus the effective utilization of mineral admixtures and coke residue in concrete without strength loss could be realized. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Performance Evaluation of Asphalt Rubber Mixture with Additives
Materials 2019, 12(8), 1200; https://doi.org/10.3390/ma12081200 - 12 Apr 2019
Cited by 2
Abstract
Crumb rubber, as a recycled material used in asphalt mixture, has gained more attention in recent years due to environmental benefits and the advantages of its pavement, such as excellent resistance to cracking, improved durability, less road maintenance, lower road noise, etc. However, [...] Read more.
Crumb rubber, as a recycled material used in asphalt mixture, has gained more attention in recent years due to environmental benefits and the advantages of its pavement, such as excellent resistance to cracking, improved durability, less road maintenance, lower road noise, etc. However, the high-temperature performance of mixture with crumb rubber does not perform well. In order to improve the performance, this paper examined the effect of additives on the laboratory performance of asphalt rubber Stone Matrix Asphalt (AR-SMA) with additives. Three groups of AR-SMA: no additives, Styrene–Butadiene–Styrene (SBS) and Granular Polymer Durable additive (GPDa) were included, with no additives as a control group. Each group was investigated at three asphalt rubber content (ARC): 6.4%, 6.9%, 7.4% with regard to high-temperature and fatigue properties. The results show that with increasing ARC, the high-temperature performance of mixture without additive decreases, and the high-temperature performance increases first and then decreases for SBS and GPDa. Moreover, the rutting resistance of AR-SMA with GPDa at 6.9% ARC performs best. Under the condition of mixtures with appropriate ARC, AR-SMA with GPDa has higher fatigue life and sensitivity to fatigue cracking than the control group. Simultaneously, the fatigue performance of AR-SMA with GPDa is not as significant as that without additive with increasing ARC. In a word, GPDa is a good choice to improve the performance of AR-SMA. However, it should be noted that optimal asphalt content of AR-SMA mixtures with GPDa is higher than that of traditional mixtures. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations
Materials 2019, 12(8), 1199; https://doi.org/10.3390/ma12081199 - 12 Apr 2019
Cited by 3
Abstract
In order to meet the requirement of sustainable development, building materials are increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper looks at the development of fully bio-based composites where agro-resources are valued as bio-based aggregates (hemp) and [...] Read more.
In order to meet the requirement of sustainable development, building materials are increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper looks at the development of fully bio-based composites where agro-resources are valued as bio-based aggregates (hemp) and as binding materials (wheat). In a previous work, a feasibility study simultaneously investigated the processing and ratio of wheat straw required to ensure a gluing effect. In this paper, three kinds of hemp-straw composites are selected and compared with a hemp-polysaccharides composite. The gluing effect is analyzed chemically and via SEM. The developed composites were characterized multi-physically. They showed sufficiently high mechanical properties to be used as insulating materials. Furthermore, they showed good thermal performances with a low thermal conductivity (67.9–69.0 mW/(m · K) at 23 ° C, dry). Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Research on Internal Force Detection Method of Steel Bar in Elastic and Yielding Stage Based on Metal Magnetic Memory
Materials 2019, 12(7), 1167; https://doi.org/10.3390/ma12071167 - 10 Apr 2019
Cited by 2
Abstract
Based on the metal magnetic memory effect, this paper proposed a new non-destructive testing method for the internal tensile force detection of steel bars by analyzing the self-magnetic flux leakage (SMFL) signals. The variation of the SMFL signal of the steel bar with [...] Read more.
Based on the metal magnetic memory effect, this paper proposed a new non-destructive testing method for the internal tensile force detection of steel bars by analyzing the self-magnetic flux leakage (SMFL) signals. The variation of the SMFL signal of the steel bar with the tensile force indicates that the curve of the SMFL signal has a significant extreme point when the tensile force reaches about 65% of the yield tension, of which the first derivative curve has extreme points in the elastic and yielding stages, respectively. To study the variation of SMFL signal with the axial position of the steel bar under different tensile forces, a parameter reflecting the fluctuation of the SMFL signal along the steel bar is proposed. The linear relationship between this parameter and the tensile force can be used to quantitatively calculate the tensile force of steel bar. The method in this paper provides significant application prospects for the internal force detection of steel bar in the actual engineering. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Preparation and Short-Term Aging Properties of Asphalt Modified by Novel Sustained-Release Microcapsules Containing Rejuvenator
Materials 2019, 12(7), 1122; https://doi.org/10.3390/ma12071122 - 04 Apr 2019
Cited by 1
Abstract
Aged asphalt can enormously affect the performance of asphalt pavement and cause serious environmental hazards. Microcapsule-modified asphalt is one of the effective means to improve the anti-aging ability of asphalt. In this work, novel sustained-release microcapsules containing rejuvenator were prepared by the solvent [...] Read more.
Aged asphalt can enormously affect the performance of asphalt pavement and cause serious environmental hazards. Microcapsule-modified asphalt is one of the effective means to improve the anti-aging ability of asphalt. In this work, novel sustained-release microcapsules containing rejuvenator were prepared by the solvent evaporation method. The morphology of the microcapsules was characterized by scanning electron microscopy (SEM). The sustained-release properties of the microcapsules were investigated by static thermogravimetric analysis. The physical properties such as penetration, ductility, softening point, and Brookfield viscosity of the original asphalt and microcapsule-modified asphalt were studied. In addition, the viscoelasticity of the original asphalt and microcapsule-modified asphalt was investigated by means of a dynamic shear rheometer (DSR). The results show that the prepared microcapsules have a smooth surface and a complete encapsulation with an average particle size of 60 μm. After the heating treatment (above 140 °C), a large number of micropores were formed on the shell surface of microcapsules, which provided a structural basis for the sustained-release of rejuvenator. The release rate of the rejuvenator was obviously slowed down by the microcapsules. The aging behavior of sustained-release microcapsules containing rejuvenator-modified asphalt can be greatly improved. The enhanced anti-aging properties of sustained-release microcapsule-modified asphalt are attributed to the functions of the rejuvenator which can be slowly released from the micropores on the microcapsules’ surface, after which the light components lost in the original asphalt can be supplemented. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
The Effect of Elevated Curing Temperatures on High Ye’elimite Calcium Sulfoaluminate Cement Mortars
Materials 2019, 12(7), 1072; https://doi.org/10.3390/ma12071072 - 01 Apr 2019
Cited by 4
Abstract
This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were [...] Read more.
This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were explained by hydration characteristics from X-ray diffraction, thermal gravimetric analysis, porosimetry, and thermodynamic modeling. Decomposition of ettringite decreased compressive strength but re-formation of ettringite after additional curing at 30 °C helped to recover the strength in CSA cement with a high amount of calcium sulfate. CSA cement with a low amount of calcium sulfate which was designed to predominantly have monosulfate as the main hydration product, showed increased 1-day strength after higher temperature curing but this occurred was at the expense of decreased 28-day strength. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives
Materials 2019, 12(7), 1068; https://doi.org/10.3390/ma12071068 - 01 Apr 2019
Cited by 2
Abstract
The warm and ice-rich frozen soil (WIRFS) that underlies roadway embankments in permafrost regions exhibit large compression and thaw deformation, which can trigger a series of distresses. Cement and additives were used in this study to improve the compressibility and thaw-settlement properties of [...] Read more.
The warm and ice-rich frozen soil (WIRFS) that underlies roadway embankments in permafrost regions exhibit large compression and thaw deformation, which can trigger a series of distresses. Cement and additives were used in this study to improve the compressibility and thaw-settlement properties of WIRFS. We, therefore, selected optimum additives and studied the improvement effect on the frozen soil with 30% water content based on our previous research. Given constant load and variable temperatures, compression coefficients, thaw strains, and water content changes were obtained at temperatures of −1.0 °C, −0.5 °C, and 2.0 °C to evaluate the effect of improvements. A scanning electron microscope (SEM) was then used to observe the microstructure of improved soils and analyze causal mechanisms. Data show that hydration reactions, physical absorptions, cement, and additives formed new structures and changed the phase of water in frozen soil after curing at −1.0 °C for 28 days. This new structure, cemented with soil particles, unfrozen water, and ice, filled in the voids of frozen soil and effectively decreased the WIRFS compression coefficient and thaw strain. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Experimental Studies on the Effect of Properties and Micro-Structure on the Creep of Concrete-Filled Steel Tubes
Materials 2019, 12(7), 1046; https://doi.org/10.3390/ma12071046 - 29 Mar 2019
Cited by 1
Abstract
To study different lateral restraints, different constituents of expansion agents, the influence of different steel ratios, and concrete creep properties, we carried out experiments with lateral restraint and without lateral restraint conditions separately on 12 specimens with the expansion agent content accounting for [...] Read more.
To study different lateral restraints, different constituents of expansion agents, the influence of different steel ratios, and concrete creep properties, we carried out experiments with lateral restraint and without lateral restraint conditions separately on 12 specimens with the expansion agent content accounting for 4%, 8%, and 12% respectively. In addition, the creep tests were performed on specimens with different steel ratios of 0.0%, 3.8%, 6.6%, and 9.2%. The test results show that the lateral restraint improves the strength of the system (concrete-filled steel tubes) which resists further load after the concrete ultimate strength is surpassed and reduces the creep. The creep degree of the concrete-filled steel tube with lateral restraint is about 0.09–0.30 times smaller than that of the tube without lateral restraints. The creep degree of the concrete-filled steel tube increases as the steel ratio decreases. Creep tests with different amounts of expansion agent indicate that the creep degree of the concrete structure increases as expansion agent content decreases. To study the internal mechanism of the creep of concrete-filled steel tubes with different lateral restraints and different expansion agent concentrations, a microscopic pore structure test on the steel core concrete was conducted using the RapidAir457 pore structure instrument. Microscopic studies show that the air content and the length of the bubble chord of the laterally restrained core concrete are lower than those without lateral restraint core concrete. The amount of air content and the length of the bubble chord of core concrete specimens increase as the expansion agent content in the core concrete specimens decreases from 12% to 4%. Under the same external loading conditions, as steel ratio increases, the lateral restraint causes a further reduction of creep. The results of this study suggest that the creep of concrete can be reduced by selecting appropriate lateral restraint conditions and an optimal amount of expansion agent in the mix design of concrete for concrete-filled steel tubes. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Additive Manufacturing of Geopolymers Modified with Microalgal Biomass Biofiller from Wastewater Treatment Plants
Materials 2019, 12(7), 1004; https://doi.org/10.3390/ma12071004 - 27 Mar 2019
Abstract
This paper deals with the additive manufacturing of metakaolin-based geopolymers and with the use of microalgal biomass from wastewater treatment plants as biofiller in this kind of cementitious material. The study was developed following the evolution stages of the material, which was prepared [...] Read more.
This paper deals with the additive manufacturing of metakaolin-based geopolymers and with the use of microalgal biomass from wastewater treatment plants as biofiller in this kind of cementitious material. The study was developed following the evolution stages of the material, which was prepared and printed as a soft paste and then hardened thanks to an inorganic polymerization reaction (geopolymerization). Thus, the characterization techniques adopted encompassed rheometry, mechanical tests performed on the hardened material, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Microalgal biomass addition, evaluated in this study at 1, 3 and 5 php with respect to the powder weight, affected both the properties of the fresh and of the hardened material. Regarding the former aspect, biomass reduced the yield stress of the pastes, improving the ease of the extrusion process, but potentially worsening the ability to build structures in height. When hardened, geopolymers containing microalgae showed mechanical properties comparable to the unfilled material and a microstructure characterized by smaller pores. Finally, a printing test was successfully performed with a larger printer to assess the feasibility of producing large-scale structures. Taking into account these results, this study demonstrates the possibility of using microalgal biomass as biofiller in geopolymers for additive manufacturing. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar
Materials 2019, 12(6), 996; https://doi.org/10.3390/ma12060996 - 26 Mar 2019
Cited by 7
Abstract
The goal of the paper was development and testing of a novel type of ternary blended binder based on lime hydrate, metakaolin, and biomass ash that was studied as a binding material for production of lightweight mortar for renovation purposes. The biomass ash [...] Read more.
The goal of the paper was development and testing of a novel type of ternary blended binder based on lime hydrate, metakaolin, and biomass ash that was studied as a binding material for production of lightweight mortar for renovation purposes. The biomass ash used as one of binder components was coming from wood chips ash combustion in a biomass heating plant. The raw ash was mechanically activated by grinding. In mortar composition, wood chips ash and metakaolin were used as partial substitutes of lime hydrate. Silica sand of particle size fraction 0–2 mm was mixed from three normalized sand fractions. For the evaluation of the effect of biomass ash and metakaolin incorporation in mortar mix on material properties, reference lime mortar was tested as well. Among the basic physical characterization of biomass ash, metakaolin and lime hydrate, specific density, specific surface, and particle size distribution were assessed. Their chemical composition was measured by X-Ray fluorescence analysis (XRF), morphology was examined using scanning electron microscopy (SEM), elements mapping was performed using energy dispersive spectroscopy (EDS) analyser, and mineralogical composition was tested using X-Ray diffraction (XRD). For the developed mortars, set of structural, mechanical, hygric, and thermal properties was assessed. The mortars with ternary blended binder exhibited improved mechanical resistance, lower thermal conductivity, and increased water vapor permeability compared to the reference lime mortar. Based on good functional performance of the produced mortar, the tested biomass ash could potentially represent a novel sustainable alternative to other pozzolans commonly used in construction industry. Moreover, reuse of biomass ash in production of building materials is highly beneficial both from the environmental and economic reasons especially taking into account circular economy principles. The ternary blended binder examined in this paper can find use in both rendering and walling repair mortars meeting the requirements of culture heritage authorities and technical standards. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Graphical abstract

Open AccessArticle
Aging Mechanism of a Diatomite-Modified Asphalt Binder Using Fourier-Transform Infrared (FTIR) Spectroscopy Analysis
Materials 2019, 12(6), 988; https://doi.org/10.3390/ma12060988 - 26 Mar 2019
Cited by 5
Abstract
In this paper, Fourier-transform infrared (FTIR) spectroscopy was used to evaluate the effects of diatomite on aging properties of an asphalt binder. The modified asphalts included 5%, 10%, and 15% diatomite, and were prepared in the laboratory. The changes in functional groups of [...] Read more.
In this paper, Fourier-transform infrared (FTIR) spectroscopy was used to evaluate the effects of diatomite on aging properties of an asphalt binder. The modified asphalts included 5%, 10%, and 15% diatomite, and were prepared in the laboratory. The changes in functional groups of asphalt were employed to investigate the aging mechanisms of the modified and control asphalts. Effects of diatomite on the anti-aging properties of asphalt were analyzed via the changes in intensity of the absorption peaks. Results showed that there were no new functional groups generated after diatomite mixing with asphalt. This indicated that the process of diatomite modification was just physical mixing. Furthermore, parts of saturates and aromatics were volatilized in the aging process of modified asphalt. Polar molecules reacted with oxygen in aging. Meanwhile, carbonyl (C=O) and sulfoxide (S=O) were also generated. The aging resistance of modified asphalt was the best when the diatomite content was 10%. The work of this paper may provide a new perspective to evaluate asphalt aging. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Preparation and Physical Properties of High-Belite Sulphoaluminate Cement-Based Foam Concrete Using an Orthogonal Test
Materials 2019, 12(6), 984; https://doi.org/10.3390/ma12060984 - 25 Mar 2019
Cited by 1
Abstract
Prefabricated building development increasingly requires foam concrete (FC) insulation panels with low dry density (ρd), low thermal conductivity coefficient (kc), and a certain compressive strength (fcu). Here, the foam properties of a composite foaming [...] Read more.
Prefabricated building development increasingly requires foam concrete (FC) insulation panels with low dry density (ρd), low thermal conductivity coefficient (kc), and a certain compressive strength (fcu). Here, the foam properties of a composite foaming agent with different dilution ratios were studied first, high-belite sulphoaluminate cement (HBSC)-based FCs (HBFCs) with 16 groups of orthogonal mix proportions were subsequently fabricated by a pre-foaming method, and physical properties (ρd, fcu, and kc) of the cured HBFC were characterized in tandem with microstructures. The optimum mix ratios for ρd, fcu, and kc properties were obtained by the range analysis and variance analysis, and the final optimization verification and economic cost of HBFC was also carried out. Orthogonal results show that foam produced by the foaming agent at a dilution ratio of 1:30 can meet the requirements of foam properties for HBFC, with the 1 h bleeding volume, 1 h settling distance, foamability, and foam density being 65.1 ± 3.5 mL, 8.0 ± 0.4 mm, 27.9 ± 0.9 times, and 45.0 ± 1.4 kg/m3, respectively. The increase of fly ash (FA) and foam dosage can effectively reduce the kc of the cured HBFC, but also leads to the decrease of fcu due to the increase in mean pore size and the connected pore amount, and the decline of pore uniformity and pore wall strength. When the dosage of FA, water, foam, and the naphthalene-based superplasticizer of the binder is 20 wt%, 0.50, 16.5 wt%, and 0.6 wt%, the cured HBFC with ρd of 293.5 ± 4.9 kg/m3, fcu of 0.58 ± 0.02 MPa and kc of 0.09234 ± 0.00142 W/m·k is achieved. In addition, the cost of HBFC is only 39.5 $/m3, which is 5.2 $ lower than that of ordinary Portland cement (OPC)-based FC. If the surface of the optimized HBFC is further treated with water repellent, it will completely meet the requirements for a prefabricated ultra-light insulation panel. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Regulating the Expansion Characteristics of Cementitious Materials Using Blended MgO-Type Expansive Agent
Materials 2019, 12(6), 976; https://doi.org/10.3390/ma12060976 - 25 Mar 2019
Cited by 3
Abstract
To promote the application of MgO-type expansive agents (MEAs), the expansion stresses produced by compacted MEAs with different activities cured in water at 40 °C were measured using a self-designed expansion stress test apparatus. Based on these, different MEAs were divided into the [...] Read more.
To promote the application of MgO-type expansive agents (MEAs), the expansion stresses produced by compacted MEAs with different activities cured in water at 40 °C were measured using a self-designed expansion stress test apparatus. Based on these, different MEAs were divided into the early-type MgO expansive agent and the late-type MgO expansive agent classifications according to the stress curves of compacted MEAs. The two types of MEAs were blended with each other at different ratios and added into cement pastes. Results indicated that the expansion of the cement pastes added with blended MEAs lasted from the beginning to 200 days later, and the expansion characteristics can be regulated by adjusting the blending ratio of MEAs and the choice of types of MEAs. The results suggest that the expansion of MEAs can be improved by using blended MEAs in practical applications. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Microstructural Characterization of Porous Clay-Based Ceramic Composites
Materials 2019, 12(6), 946; https://doi.org/10.3390/ma12060946 - 21 Mar 2019
Cited by 1
Abstract
Clay-based materials are the most traditional components of buildings. To improve their performance in a sustainable way, agents can be mixed to fired clay acting as a pore-forming factor. However, firing temperatures highly influence their microstructure which is closely linked to a material’s [...] Read more.
Clay-based materials are the most traditional components of buildings. To improve their performance in a sustainable way, agents can be mixed to fired clay acting as a pore-forming factor. However, firing temperatures highly influence their microstructure which is closely linked to a material’s final performance as a ceramic block. To highlight the influence of the firing temperature on microstructure, and more specifically on the pore size distribution of clay-based materials, three innovative porous materials were manufactured. These materials were produced by mixing clay and pore-forming agents. They were characterized by optical and scanning electronic microscopy, x-ray diffraction, mercury intrusion and nitrogen adsorption. These techniques allow the phase identification of materials, show sample microstructure and quantify the pore size distribution at different scales. Furthermore, geometric parameters of sample microstructure such as grain diameter and roundness are estimated by using computer software. To conclude, results provide an enlightenment about the influence of material microstructure on the pore size distribution at two firing temperatures. These results can be useful to allow the tune of porous characteristics and, therefore, contribute to the production of more sustainable construction materials. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Reactivity and Hydration Property of Synthetic Air Quenched Slag with Different Chemical Compositions
Materials 2019, 12(6), 932; https://doi.org/10.3390/ma12060932 - 20 Mar 2019
Cited by 3
Abstract
Air quenched slag is processed by a fast air cooling method which is developed with the advantages of recovering heat from molten slag and water conservation compared to the water quenching method. Air quenched slags with different chemical compositions are synthesized in the [...] Read more.
Air quenched slag is processed by a fast air cooling method which is developed with the advantages of recovering heat from molten slag and water conservation compared to the water quenching method. Air quenched slags with different chemical compositions are synthesized in the lab by designing three chemical composition ratios: (CaO + MgO)/(SiO2 + Al2O3), CaO/MgO and SiO2/Al2O3, which are donated as CM/SA, C/M and S/A, respectively. The effect of different chemical compositions on the phase compositions of synthetic air quenched slag, the strength and hydration properties of slag blends were investigated by using various characterization techniques. The results show that the amorphous content of air quenched slag decreased with the increasing basicity CM/SA of slag. The S/A ratio of slag was the dominant factor for the compressive strength of slag blends at 28 days and negatively correlated with strength. Decreasing the S/A ratio of slag increased the reactivity of slag and its reaction degree indicated by higher hydration heat release, lower CH content, greater chemical combined water amount and denser microstructure. Moreover, thermodynamic modelling revealed that a higher S/A of slag leads to the increase of C-(A)-S-H and AFt contents, whilst decreasing the amounts of Ht, AFm-SO4 phases and the total volume of hydrates. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Evaluation and Selection of De-Icing Salt Based on Multi-Factor
Materials 2019, 12(6), 912; https://doi.org/10.3390/ma12060912 - 19 Mar 2019
Abstract
De-icing salts can greatly ease traffic congestion but introduce corrosion of concrete and damage to plant growth. The decision of which de-icing salt to use becomes a crucial issue. In this study, several representative de-icing salts were investigated, and the effects of de-icing [...] Read more.
De-icing salts can greatly ease traffic congestion but introduce corrosion of concrete and damage to plant growth. The decision of which de-icing salt to use becomes a crucial issue. In this study, several representative de-icing salts were investigated, and the effects of de-icing ability, salt freezing corrosion on concrete, and plant growth were comprehensively tested. Finally, the decision of de-icing salt was made based on analytic hierarchy process (AHP). Results show that de-icing salts achieving the best de-icing effect are not the same at different concentrations. De-icing salts of 3% concentration have the greatest corrosion to concrete. Notably, magnesium chloride and calcium magnesium acetate have the least impact on plants among all studied de-icing salts. Using AHP, ethylene glycol and calcium magnesium acetate are selected as optimal items under different priorities. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Construction Materials from Vitrified Lignite Fly Ash in Plasmatron Plasma Reactor
Materials 2019, 12(6), 905; https://doi.org/10.3390/ma12060905 - 19 Mar 2019
Abstract
This article presents results of an investigation of vitrified (melted) fly ash samples from lignite (brown coal) in a plasmatron plasma reactor, to determine its mechanical and chemical properties. The XRF elemental analysis results of sample tests, from before the vitrification process and [...] Read more.
This article presents results of an investigation of vitrified (melted) fly ash samples from lignite (brown coal) in a plasmatron plasma reactor, to determine its mechanical and chemical properties. The XRF elemental analysis results of sample tests, from before the vitrification process and after the vitrification process are shown. The experiments were carried out in a plasma plasmatron reactor with a total power of 65 kW, enabling testing on a quarter technical scale. During the tests, samples of fly ash of about 4 kg mass were processed under selected process conditions. Produced samples of vitrified materials were analyzed in accordance to the requirements for building/construction materials. Results from this investigation confirm its quality to be used as concrete and cement filler, as an addition, and as synthetic aggregate, safe for the environment and neutral for cements. Also the most important leaching of heavy metals to water was analyzed which confirmed meeting of all of requirements necessary to use this material in building materials. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Mechanical Performance of Warm-Mixed Porous Asphalt Mixture with Steel Slag and Crumb-Rubber–SBS Modified Bitumen for Seasonal Frozen Regions
Materials 2019, 12(6), 857; https://doi.org/10.3390/ma12060857 - 14 Mar 2019
Cited by 7
Abstract
In this paper, the performance of a warm-mixed porous asphalt mixture (PAM) with steel slag as aggregate and crumb-rubber–SBS (styrene-butadiene-styrene) modified bitumen as a binder was studied. Two kinds of warming additives were used, namely ethylene bis stearic acid amide (EBS) and stearic [...] Read more.
In this paper, the performance of a warm-mixed porous asphalt mixture (PAM) with steel slag as aggregate and crumb-rubber–SBS (styrene-butadiene-styrene) modified bitumen as a binder was studied. Two kinds of warming additives were used, namely ethylene bis stearic acid amide (EBS) and stearic acid amide (SA). The mixtures were investigated for their permeability, Marshall stability, low-temperature crack resistance, and underwent a rutting test, water sensitivity evaluation and Cantabro particle loss test. Then, the viscoelastic and dynamic characteristics of the mixtures were also analyzed. The results showed that the addition of the warming additives allowed the decrease of the manufacturing temperature by 10 °C. Thus, the addition of warming additives significantly improves the low-temperature crack resistance and slightly reduces the water sensitivity, weakly increases the permeability, and has little effect on the resilient modulus. Since the addition of SA significantly improves the low-temperature crack resistance and rutting resistance of the PAM, SA is therefore recommended for pavement engineering in seasonal frozen regions. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint
Materials 2019, 12(6), 851; https://doi.org/10.3390/ma12060851 - 13 Mar 2019
Cited by 4
Abstract
There is a common understanding that the environmental impacts of construction materials should be significantly reduced. This article provides a comprehensive environmental assessment within Life Cycle Assessment (LCA) boundaries for Ultra-High-Performance Concrete (UHPC) in comparison with Conventional Concrete (CC), in terms of carbon, [...] Read more.
There is a common understanding that the environmental impacts of construction materials should be significantly reduced. This article provides a comprehensive environmental assessment within Life Cycle Assessment (LCA) boundaries for Ultra-High-Performance Concrete (UHPC) in comparison with Conventional Concrete (CC), in terms of carbon, material, and water footprint. Environmental impacts are determined for the cradle-to-grave life cycle of the UHPC, considering precast and ready-mix concrete. The LCA shows that UHPC has higher environmental impacts per m3. When the functionality of UHPC is considered, at case study level, two design options of a bridge are tested, which use either totally CC (CC design) or CC enhanced with UHPC (UHPC design). The results show that the UHPC design could provide a reduction of 14%, 27%, and 43% of carbon, material, and water footprint, respectively. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Effective Medium Method for Chloride Diffusion Coefficient of Mature Fly Ash Cement Paste
Materials 2019, 12(5), 811; https://doi.org/10.3390/ma12050811 - 08 Mar 2019
Cited by 3
Abstract
The chloride diffusion coefficient of concrete plays an essential role in the durability assessment and design of concrete structures built in chloride-laden environments. The purpose of this paper is to present an effective medium method (EMM) for evaluating the chloride diffusion coefficient of [...] Read more.
The chloride diffusion coefficient of concrete plays an essential role in the durability assessment and design of concrete structures built in chloride-laden environments. The purpose of this paper is to present an effective medium method (EMM) for evaluating the chloride diffusion coefficient of mature fly ash cement paste. In this method, a numerical method is used to estimate the degrees of hydration of cement and fly ash. Fly ash cement paste is then modeled as a two-phase composite material, composed of a solid phase and a pore space. By introducing the percolation theory, the EMM is modified to derive the chloride diffusion coefficient of fly ash cement paste in an analytical manner. To verify the EMM, a chloride diffusion test of fly ash cement paste at a curing age of up to 540 days is conducted. It is shown that, within a reasonable fly ash content, a larger fly ash content and/or curing age results in a smaller chloride diffusion coefficient. The chloride diffusion coefficient decreases with a decreasing water/binder ratio. Finally, the validity of the EMM is verified with experimental results. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Production of Sustainable Construction Materials Using Agro-Wastes
Materials 2020, 13(2), 262; https://doi.org/10.3390/ma13020262 - 07 Jan 2020
Cited by 2
Abstract
The construction sector, in modern times, is faced by a myriad of challenges primarily due to the increase in the urban population and dwindling natural resources that facilitate the production of construction materials. Furthermore, higher awareness on climate change is forcing companies to [...] Read more.
The construction sector, in modern times, is faced by a myriad of challenges primarily due to the increase in the urban population and dwindling natural resources that facilitate the production of construction materials. Furthermore, higher awareness on climate change is forcing companies to rethink their strategies in developing more sustainable construction materials. Diverse types of agro-waste ranging from rice husk ash (RHA), sugarcane bagasse ash (SCBA), and bamboo leaves ash (BLA) among others have been identified as potent solutions in the development of sustainable construction materials. In this review paper, six different construction materials, made using agro-waste products, are examined. The materials include brick/masonry elements, green concrete, insulation materials for buildings, reinforcement materials for buildings, particleboards, and bio-based plastics. The main criterion adopted in selecting the materials regards their popularity and wide-scale use in modern construction applications. Additionally, as this research emphasizes identifying alternative approaches to develop sustainable construction materials, the focus is directed toward mainstream materials whose continued use has an adverse impact on the environment. The findings obtained from the review showed that the use of agro-waste to develop sustainable construction materials was effective, as the developed materials adhered to established building standards. Therefore, this indicates that agro-waste materials have the potential to replace conventional construction materials and hence achieve economic, environmental, and social sustainability in the long run. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessReview
Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use
Materials 2019, 12(19), 3052; https://doi.org/10.3390/ma12193052 - 20 Sep 2019
Cited by 2
Abstract
Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction [...] Read more.
Nanoparticles are defined as ultrafine particles sized between 1 and 100 nanometres in diameter. In recent decades, there has been wide scientific research on the various uses of nanoparticles in construction, electronics, manufacturing, cosmetics, and medicine. The advantages of using nanoparticles in construction are immense, promising extraordinary physical and chemical properties for modified construction materials. Among the many different types of nanoparticles, titanium dioxide, carbon nanotubes, silica, copper, clay, and aluminium oxide are the most widely used nanoparticles in the construction sector. The promise of nanoparticles as observed in construction is reflected in other adoptive industries, driving the growth in demand and production quantity at an exorbitant rate. The objective of this study was to analyse the use of nanoparticles within the construction industry to exemplify the benefits of nanoparticle applications and to address the short-term and long-term effects of nanoparticles on the environment and human health within the microcosm of industry so that the findings may be generalised. The benefits of nanoparticle utilisation are demonstrated through specific applications in common materials, particularly in normal concrete, asphalt concrete, bricks, timber, and steel. In addition, the paper addresses the potential benefits and safety barriers for using nanomaterials, with consideration given to key areas of knowledge associated with exposure to nanoparticles that may have implications for health and environmental safety. The field of nanotechnology is considered rather young compared to established industries, thus limiting the time for research and risk analysis. Nevertheless, it is pertinent that research and regulation precede the widespread adoption of potentially harmful particles to mitigate undue risk. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessFeature PaperReview
Amazing Types, Properties, and Applications of Fibres in Construction Materials
Materials 2019, 12(16), 2513; https://doi.org/10.3390/ma12162513 - 07 Aug 2019
Cited by 5
Abstract
Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical [...] Read more.
Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical properties of the composite material. When comparing fibre reinforcement to traditional reinforcement, the ratio of fibre required is significantly less, making fibre reinforcement both energy and economically efficient. More recently, waste fibres have been studied for their potential as reinforcement in construction materials. The build-up of waste materials all around the world is a known issue, as landfill space is limited, and the incineration process requires considerable energy and produces unwanted emissions. The utilisation of waste fibres in construction materials can alleviate these issues and promote environmentally friendly and sustainable solutions that work in the industry. This study reviews the types, properties, and applications of different fibres used in a wide range of materials in the construction industry, including concrete, asphalt concrete, soil, earth materials, blocks and bricks, composites, and other applications. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Open AccessReview
Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries
Materials 2019, 12(7), 1112; https://doi.org/10.3390/ma12071112 - 03 Apr 2019
Cited by 4
Abstract
Concrete production utilizes cement as its major ingredient. Cement production is an important consumer of natural resources and energy. Furthermore, the cement industry is a significant CO2 producer. To reduce the environmental impact of concrete production, supplementary cementitious materials such as fly [...] Read more.
Concrete production utilizes cement as its major ingredient. Cement production is an important consumer of natural resources and energy. Furthermore, the cement industry is a significant CO2 producer. To reduce the environmental impact of concrete production, supplementary cementitious materials such as fly ash, blast furnace slag, and silica fume are commonly used as (partial) cement replacement materials. However, these materials are industrial by-products and their availability is expected to decrease in the future due to, e.g., closing of coal power plants. In addition, these materials are not available everywhere, for example, in developing countries. In these countries, industrial and agricultural wastes with pozzolanic behavior offer opportunities for use in concrete production. This paper summarizes the engineering properties of concrete produced using widespread agricultural wastes such as palm oil fuel ash, rice husk ash, sugarcane bagasse ash, and bamboo leaf ash. Research on cement replacement containing agricultural wastes has shown that there is great potential for their utilization as partial replacement for cement and aggregates in concrete production. When properly designed, concretes containing these wastes have similar or slightly better mechanical and durability properties compared to ordinary Portland cement (OPC) concrete. Thus, successful use of these wastes in concrete offers novel sustainable materials and contributes to greener construction as it reduces the amount of waste, while also minimizing the use of virgin raw materials for cement production. This paper will help the concrete industry choose relevant waste products and their optimum content for concrete production. Furthermore, this study identifies research gaps which may help researchers in further studying concrete based on agricultural waste materials. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop