materials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4102 KiB  
Article
Face Mask Wastes as Cementitious Materials: A Possible Solution to a Big Concern
by Marta Castellote, Eva Jiménez-Relinque, María Grande, Francisco J. Rubiano and Ángel Castillo
Materials 2022, 15(4), 1371; https://doi.org/10.3390/ma15041371 - 12 Feb 2022
Cited by 22 | Viewed by 8486
Abstract
After more than two years wearing surgical masks due to the COVID-19 pandemic, used masks have become a significant risk for ecosystems, as they are producing wastes in huge amounts. They are a potential source of disturbance by themselves and as microplastic contamination [...] Read more.
After more than two years wearing surgical masks due to the COVID-19 pandemic, used masks have become a significant risk for ecosystems, as they are producing wastes in huge amounts. They are a potential source of disturbance by themselves and as microplastic contamination in the water system. As 5500 tons of face masks are estimated to be used each year, there is an urgent need to manage them according to the circular economy principles and avoid their inadequate disposal. In this paper, surgical wear masks (WM), without any further pretreatment, have been introduced as addition to mortars up to 5% in the weight of cement. Mechanical and microstructural characterization have been carried out. The results indicate that adding MW to the cement supposes a decrease in the properties of the material, concerning both strength and durability behavior. However, even adding a 5% of WM in weight of cement, the aspect of the mortars is quite good, the flexural strength is not significantly affected, and the strength and durability parameters are maintained at levels that—even lower than the reference—are quite reasonable for use. Provided that the worldwide production of cement is around 4.1 Bt/year, the introduction of a 5% of WM in less than 1% of the cement produced, would make it possible to get rid of the mask waste being produced. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Graphical abstract

26 pages, 7881 KiB  
Article
Cathodic Protection of Mild Steel Using Aluminium-Based Alloys
by Maria del Rosario Silva Campos, Carsten Blawert, Nico Scharnagl, Michael Störmer and Mikhail L. Zheludkevich
Materials 2022, 15(4), 1301; https://doi.org/10.3390/ma15041301 - 10 Feb 2022
Cited by 29 | Viewed by 5085
Abstract
Typically, steel is protected from corrosion by employing sacrificial anodes or coatings based on Zn, Mg, Al or Cd. However, stricter environmental regulations require new environmentally friendly alternatives to replace Cd. Traditionally, Al-based anodes have been employed to cathodically protect steel in marine [...] Read more.
Typically, steel is protected from corrosion by employing sacrificial anodes or coatings based on Zn, Mg, Al or Cd. However, stricter environmental regulations require new environmentally friendly alternatives to replace Cd. Traditionally, Al-based anodes have been employed to cathodically protect steel in marine applications or as ion vapour deposition (IVD)-Al sacrificial coatings for aerospace applications. However, Al tends to passivate, thus losing its protective effect. Therefore, it is important to identify possible alloys that can provide a constantly sufficient current. In this study, Al-X alloys (X = Ag, Bi, Ca, Cr, Cu, Ga, Gd, In, Mg, Mn, Ni, Sb, Si, Sn, V, Ti, Zn and Zr) were firstly tested for a screening of the sacrificial properties of binary systems. Al-0.5Cr, Al-1Sn, Al-0.2Ga, Al-0.1In, Al-2Si and Al-5Zn alloys were suggested as promising sacrificial Al-based alloys. Suitable heat treatments for each system were implemented to reduce the influence of the secondary phases on the corrosion properties by minimising localised attack. extensive evaluation of the corrosion properties, including galvanic coupling of these alloys to steel, was performed in the NaCl electrolyte. A comparative analysis was conducted in order to choose the most promising alloy(s) for avoiding the passivation of Al and for efficient cathodic protection to steel. Full article
(This article belongs to the Section Corrosion)
Show Figures

Graphical abstract

15 pages, 17149 KiB  
Article
Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate)
by Giulia Fredi, Mahdi Karimi Jafari, Andrea Dorigato, Dimitrios N. Bikiaris and Alessandro Pegoretti
Materials 2022, 15(4), 1316; https://doi.org/10.3390/ma15041316 - 10 Feb 2022
Cited by 12 | Viewed by 3165
Abstract
Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of [...] Read more.
Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of a second biopolymer, i.e., poly(decamethylene 2,5-furandicarboxylate) (PDeF), added in a weight fraction of 10 wt%, and a carbon-based nanofiller, i.e., reduced graphene oxide (rGO), added in concentrations of 0.25–2 phr. PLA and PDeF are immiscible, as evidenced by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, with PDeF spheroidal domains showing poor adhesion to PLA. The addition of 0.25 phr of rGO, which preferentially segregates in the PDeF domains, makes them smaller and considerably rougher and improves the interfacial interaction. Differential scanning calorimetry (DSC) confirms the immiscibility of the two polymer phases and highlights that rGO enhances the crystallinity of both polymer phases (especially of PDeF). Thermogravimetric analysis (TGA) highlights the positive impact of rGO and PDeF on the thermal degradation resistance of PLA. Quasi-static tensile tests evidence that adding 10 wt% of PDeF and a small fraction of rGO (0.25 phr) to PLA considerably enhances the strain at break, which raises from 5.3% of neat PLA to 10.0% by adding 10 wt% of PDeF, up to 75.8% by adding also 0.25 phr of rGO, thereby highlighting the compatibilizing role of rGO on this blend. On the other hand, a further increase in rGO concentration decreases the strain at break due to agglomeration but enhances the mechanical stiffness and strength up to an rGO concentration of 1 phr. Overall, these results highlight the positive and synergistic contribution of PDeF and rGO in enhancing the thermomechanical properties of PLA, and the resulting nanocomposites are promising for packaging applications. Full article
(This article belongs to the Special Issue Green Composites: Challenges and Opportunities)
Show Figures

Figure 1

23 pages, 6027 KiB  
Article
A Ternary Seismic Metamaterial for Low Frequency Vibration Attenuation
by Chen Chen, Jincheng Lei and Zishun Liu
Materials 2022, 15(3), 1246; https://doi.org/10.3390/ma15031246 - 8 Feb 2022
Cited by 24 | Viewed by 3473
Abstract
Structural vibration induced by low frequency elastic waves presents a great threat to infrastructure such as buildings, bridges, and nuclear structures. In order to reduce the damage of low frequency structural vibration, researchers proposed the structure of seismic metamaterial, which can be used [...] Read more.
Structural vibration induced by low frequency elastic waves presents a great threat to infrastructure such as buildings, bridges, and nuclear structures. In order to reduce the damage of low frequency structural vibration, researchers proposed the structure of seismic metamaterial, which can be used to block the propagation of low frequency elastic wave by adjusting the frequency range of elastic wave propagation. In this study, based on the concept of phononic crystal, a ternary seismic metamaterial is proposed to attenuate low frequency vibration by generating band gaps. The proposed metamaterial structure is periodically arranged by cube units, which consist of rubber coating, steel scatter, and soft matrix (like soil). The finite element analysis shows that the proposed metamaterial structure has a low frequency band gap with 8.5 Hz bandwidth in the range of 0–20 Hz, which demonstrates that the metamaterial can block the elastic waves propagation in a fairly wide frequency range within 0–20 Hz. The frequency response analysis demonstrates that the proposed metamaterial can effectively attenuate the low frequency vibration. A simplified equivalent mass–spring model is further proposed to analyze the band gap range which agrees well with the finite element results. This model provides a more convenient method to calculate the band gap range. Combining the proposed equivalent mass–spring model with finite element analysis, the effect of material parameters and geometric parameters on the band gap characteristic is investigated. This study can provide new insights for low frequency vibration attenuation. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

15 pages, 7332 KiB  
Article
Strain Rate and Stress Amplitude Effects on the Mechanical Behavior of Carbon Paste Used in the Hall–Héroult Process and Subjected to Cyclic Loadings
by Zahraa Kansoun, Hicham Chaouki, Donald Picard, Julien Lauzon-Gauthier, Houshang Alamdari and Mario Fafard
Materials 2022, 15(3), 1263; https://doi.org/10.3390/ma15031263 - 8 Feb 2022
Cited by 4 | Viewed by 1819
Abstract
Carbon products such as anodes and ramming paste must have well-defined physical, mechanical, chemical, and electrical properties to perform their functions effectively in the aluminum electrolysis cell. The physical and mechanical properties of these products are assigned during the shaping procedure in which [...] Read more.
Carbon products such as anodes and ramming paste must have well-defined physical, mechanical, chemical, and electrical properties to perform their functions effectively in the aluminum electrolysis cell. The physical and mechanical properties of these products are assigned during the shaping procedure in which compaction stresses are applied to the green carbon paste. The optimization of the shaping process is crucial to improving the properties of the carbon products and consequently to increasing the energy efficiency and decreasing the greenhouse gas emissions of the Hall–Héroult process. The objective of this study is to experimentally investigate the effect(s) of the strain rate, of the stress maximum amplitude, and of the unloading level on the behavior of a green carbon paste subjected to cyclic loading. To this end, experiments consisting of (1) cyclic compaction tests at different maximum stress amplitudes and strain rates, and (2) cyclic compaction tests with different unloading levels were carried out. The study obtained the following findings about the behavior of carbon paste subjected to cyclic loads. The strain rate in the studied range had no effect either on the evolution of the permanent strain as a function of the cycle number, nor on the shape of the stress–strain hysteresis during the cyclic loading. Moreover, samples of the same density that had been subjected to different maximum stress amplitudes in their loading history did not have the same shape of the stress–strain curve. On the other hand, despite having different densities, samples subjected to the same number of cycles produce the same stress–strain curve during loading even though they were subjected to different maximum stress amplitudes in their loading histories. Finally, the level of unloading during each cycle of a cyclic test proved significant; when the sample was unloaded to a lower level of stress during each cycle, the permanent strain as a function of the cycle number was higher. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

17 pages, 6845 KiB  
Article
Effect of Loading Rate and Initial Strain on Seismic Performance of an Innovative Self-Centering SMA Brace
by Yigang Jia, Bo Zhang, Sizhi Zeng, Fenghua Tang, Shujun Hu and Wenping Chen
Materials 2022, 15(3), 1234; https://doi.org/10.3390/ma15031234 - 7 Feb 2022
Cited by 9 | Viewed by 2131
Abstract
In order to improve the energy dissipation capacity and to reduce the residual deformation of civil structures simultaneously, this paper puts forwards an innovative self-centering shape memory alloy (SMA) brace that is based on the design concepts of SMA’s superelasticity and low friction [...] Read more.
In order to improve the energy dissipation capacity and to reduce the residual deformation of civil structures simultaneously, this paper puts forwards an innovative self-centering shape memory alloy (SMA) brace that is based on the design concepts of SMA’s superelasticity and low friction slip. Seven self-centering SMA brace specimens were tested under cyclic loading, and the hysteresis curves, bond curves, secant stiffness, energy dissipation coefficient, equivalent damping coefficient, and the self-centering capacity ratio of these specimens were investigated, allowing us to provide an evaluation of the effects of the loading rate and initial strain on the seismic performance. The test results show that the self-centering SMA braces have an excellent energy dissipation capacity, bearing capacity, and self-centering capacity, while the steel plates remain elastic, and the SMA in the specimens that are always under tension are able to return to the initial state. The hysteresis curves of all of the specimens are idealized as a flag shape with low residual deformation, and the self-centering capacity ratio reached 89.38%. In addition, both the loading rate and the initial strain were shown to have a great influence on the seismic performance of the self-centering SMA brace. The improved numerical models combined with the Graesser model and Bouc–Wen model in MATLAB were used to simulate the seismic performance of the proposed braces with different loading rates and initial strains, and the numerical results are consistent with the test results under the same conditions, meaning that they can accurately predict the seismic performance of the self-centering SMA brace proposed here. Full article
(This article belongs to the Special Issue Shape Memory Alloys for Civil Engineering)
Show Figures

Figure 1

29 pages, 9696 KiB  
Article
The Use of a High-Pressure Water-Ice Jet for Removing Worn Paint Coating in Renovation Process
by Grzegorz Chomka, Jarosław Chodór, Leon Kukiełka and Maciej Kasperowicz
Materials 2022, 15(3), 1168; https://doi.org/10.3390/ma15031168 - 3 Feb 2022
Cited by 4 | Viewed by 2644
Abstract
The paper presents the results of investigations into the possibility of using ahigh-pressure water-ice jet as a new method for removing a worn-out paint coating from the surface of metal parts (including those found in means of transportation) and for preparing the base [...] Read more.
The paper presents the results of investigations into the possibility of using ahigh-pressure water-ice jet as a new method for removing a worn-out paint coating from the surface of metal parts (including those found in means of transportation) and for preparing the base surface for the application of renovation paint coating. Experimental investigations were carried out in four stages, on flat specimens, sized S × H = 75 × 115 mm, cut from sheet metal made of various materials such as steel X5CrNi18-10, PA2 aluminium alloy and PMMA polymethyl methacrylate (plastic). In the first stage, the surfaces of the samples were subjected to observation of surface morphology under a scanning electron microscope, and surface topography (ST) measurements were made on a profilographometer. Two ST parameters were analysed in detail: the maximum height of surface roughness Sz and the arithmetic mean surface roughness Sa. Next, paint coatings were applied to the specimens as a base. In the third stage, the paint coating applied was removed by means of a high-pressure water-ice jet (HPWIJ) by changing the values of the technological parameters, i.e., water jet pressure pw, dry ice mass flow rate m˙L, distance between the sprinkler head outlet and the surface being treated (the so-called working jet length) l2 and spray angle κ for the following constants: the number of TS = 4 holes, water hole diameter φ = 1.2 mm and sprinkler head length Lk = 200 mm. Afterwards, the surface morphology was observed again and the surface topography of the specimen was investigated by measuring selected 3D parameters of the ST structure, Sz and Sa. The results of investigations into the influence of selected HPWIJ treatment parameters on the surface QF removal efficiency obtained are also presented. Univariate regression functions were developed for the mean stripping efficiency based on the following: dry ice mass flow rate m˙L, working jet length l2 and spray angle κ. Based on these functions, the values of optimal parameters were determined that allow the maximum efficiency of the process to be obtained. A 95% confidence region for the regression function was also developed. The results demonstrated that HPWIJ treatment does not interfere with the geometric structure of the base material, and they confirmed the possibility of using this treatment as an efficient method of removing a worn paint layer from bases made of various metal and plastic materials, and preparing it for applying a new layer during renovation. Full article
(This article belongs to the Special Issue Feature Papers in Materials Simulation and Design)
Show Figures

Figure 1

33 pages, 7644 KiB  
Review
Application of Graphene-Related Materials in Organic Solar Cells
by Lara Velasco Davoise, Ana M. Díez-Pascual and Rafael Peña Capilla
Materials 2022, 15(3), 1171; https://doi.org/10.3390/ma15031171 - 3 Feb 2022
Cited by 32 | Viewed by 5080
Abstract
Graphene-related materials (GRMs) such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoribbons (GNRs), and so forth have recently emerged as photovoltaic (PV) materials due to their nanodimensional structure and outstanding properties such as high electrical and thermal [...] Read more.
Graphene-related materials (GRMs) such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoribbons (GNRs), and so forth have recently emerged as photovoltaic (PV) materials due to their nanodimensional structure and outstanding properties such as high electrical and thermal conductivity, large specific surface, and unique combination of mechanical strength and flexibility. They can be a crucial part of transparent electrodes, hole/electron transport materials, and active layers in organic solar cells (OSCs). Besides their role in charge extraction and transport, GRMs act as device protectors against environmental degradation through their compact bidimensional structure and offer good durability. This review briefly presents the synthesis methods of GRMs and describes the current progress in GRM-based OSCs. PV parameters (short circuit current, open circuit voltage, power conversion efficiency, and fill factor) are summarized and comparatively discussed for the different structures. The efficiency recently surpassed 15% for an OSC incorporating polymer-modified graphene as a transparent electrode. The long-term stability of OSCs incorporating GRMs is also discussed. Finally, conclusions and the outlook for future investigation into GRM-based devices for PVs are presented. Full article
(This article belongs to the Special Issue Advanced Materials for Photonics and Photovoltaics Applications)
Show Figures

Figure 1

26 pages, 8120 KiB  
Review
Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation
by Zeyu Chi, Jacob J. Asher, Michael R. Jennings, Ekaterine Chikoidze and Amador Pérez-Tomás
Materials 2022, 15(3), 1164; https://doi.org/10.3390/ma15031164 - 2 Feb 2022
Cited by 46 | Viewed by 9087
Abstract
Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve [...] Read more.
Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve the XXI century climatic goals. Ultra-wide bandgap (UWBG) semiconductors are at the very frontier of electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and solar-blind deeper ultraviolet optoelectronics. Gallium oxide—Ga2O3 (4.5–4.9 eV), has recently emerged pushing the limits set by more conventional WBG (~3 eV) materials, such as SiC and GaN, as well as for transparent conducting oxides (TCO), such asIn2O3, ZnO and SnO2, to name a few. Indeed, Ga2O3 as the first oxide used as a semiconductor for power electronics, has sparked an interest in oxide semiconductors to be investigated (oxides represent the largest family of UWBG). Among these new power electronic materials, AlxGa1-xO3 may provide high-power heterostructure electronic and photonic devices at bandgaps far beyond all materials available today (~8 eV) or ZnGa2O4 (~5 eV), enabling spinel bipolar energy electronics for the first time ever. Here, we review the state-of-the-art and prospects of some ultra-wide bandgap oxide semiconductor arising technologies as promising innovative material solutions towards a sustainable zero emission society. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials Section)
Show Figures

Figure 1

22 pages, 42069 KiB  
Article
Investigation of an Impedimetric LaSrMnO3-Au/Y2O3-ZrO2-Al2O3 Composite NOx Sensor
by Nabamita Pal, Gaurab Dutta, Khawlah Kharashi and Erica P. Murray
Materials 2022, 15(3), 1165; https://doi.org/10.3390/ma15031165 - 2 Feb 2022
Cited by 8 | Viewed by 3801
Abstract
Composite NOx sensors were fabricated by combining partially and fully stabilized yttria-doped zirconia with alumina forming a composite electrolyte, Y2O3-ZrO2-Al2O3, and strontium-doped lanthanum manganese oxide mixed with gold to form the composite [...] Read more.
Composite NOx sensors were fabricated by combining partially and fully stabilized yttria-doped zirconia with alumina forming a composite electrolyte, Y2O3-ZrO2-Al2O3, and strontium-doped lanthanum manganese oxide mixed with gold to form the composite sensing electrode, La0.8 Sr0.2MnO3-Au. A surface chemistry analysis of the composite sensor was conducted to interpret defects and the structural phases present at the Y2O3-ZrO2-Al2O3 electrolyte, as well as the charge conduction mechanism at the LaSrMnO3-Au electrode surface. Based on the surface chemistry analysis, ionic and electronic transport properties, and microstructural features of sensor components, the working principle was described for NOx sensing at the composite sensor. The role of the composite materials on the NOx sensing response, cross-sensitivity to O2, H2O, CO, CO2, and CH4, and the response/recovery rates relative to sensor accuracy were characterized by operating the composite NOx sensors via the impedimetric method. The composite sensors were operated at temperatures ranging from 575 to 675 °C in dry and humidified gas environments with NO and NO2 concentrations varying from 0 to 100 ppm, where the balance gas was N2. It was found that the microstructure of the composite NOx sensor electrolyte and sensing electrode had a significant effect on interfacial reactions at the triple phase boundary, as well as the density of active sites for oxygen reactions. Overall, the composite NOx sensor microstructure enabled a high NOx sensing response, along with low cross-sensitivity to O2, CO, CO2, and CH4, and promoted NO detection down to 2 ppm. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

16 pages, 3925 KiB  
Article
Analysis of Efficiency of Thermoelectric Personal Cooling System Based on Utility Tests
by Anna Dąbrowska, Monika Kobus, Łukasz Starzak and Bartosz Pękosławski
Materials 2022, 15(3), 1115; https://doi.org/10.3390/ma15031115 - 31 Jan 2022
Cited by 6 | Viewed by 3849
Abstract
Thermoelectric modules can find practical application in clothing with a cooling function. A personal cooling system using Peltier modules integrated with clothing was developed and tested with the participation of a person. A dedicated electronic controller was designed that enabled the power or [...] Read more.
Thermoelectric modules can find practical application in clothing with a cooling function. A personal cooling system using Peltier modules integrated with clothing was developed and tested with the participation of a person. A dedicated electronic controller was designed that enabled the power or temperature to be controlled and recorded. In the research, the influence of heat sinks and the method of controlling the operation of the module on the cooling efficiency was assessed. The research was aimed at selecting the operating mode of the controller and choosing the arrangement of modules comparing cooling efficiency. The research showed that by selection of appropriate controlling mode, the electric power used can be reduced while keeping the cooling efficiency at the same level. The location of Peltier modules in places where they can tightly adhere to the body increases their performance. Full article
(This article belongs to the Special Issue Smart Fabrics and Intelligent Textiles)
Show Figures

Figure 1

22 pages, 9161 KiB  
Article
Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics
by Veronika Gajdosova, Beata Strachota, Adam Strachota, Danuse Michalkova, Sabina Krejcikova, Petr Fulin, Otakar Nyc, Adam Brinek, Marek Zemek and Miroslav Slouf
Materials 2022, 15(3), 1101; https://doi.org/10.3390/ma15031101 - 30 Jan 2022
Cited by 12 | Viewed by 3116
Abstract
We report a reproducible preparation and characterization of highly homogeneous thermoplastic starch/pol(ε-caprolactone) blends (TPS/PCL) with a minimal thermomechanical degradation and co-continuous morphology. These materials would be suitable for biomedical applications, specifically for the local release of antibiotics (ATB) from the TPS phase. The [...] Read more.
We report a reproducible preparation and characterization of highly homogeneous thermoplastic starch/pol(ε-caprolactone) blends (TPS/PCL) with a minimal thermomechanical degradation and co-continuous morphology. These materials would be suitable for biomedical applications, specifically for the local release of antibiotics (ATB) from the TPS phase. The TPS/PCL blends were prepared in the whole concentration range. In agreement with theoretical predictions based on component viscosities, the co-continuous morphology was found for TPS/PCL blends with a composition of 70/30 wt.%. The minimal thermomechanical degradation of the blends was achieved by an optimization of the processing conditions and by keeping processing temperatures as low as possible, because higher temperatures might damage ATB in the final application. The blends’ homogeneity was verified by scanning electron microscopy. The co-continuous morphology was confirmed by submicron-computed tomography. The mechanical performance of the blends was characterized in both microscale (by an instrumented microindentation hardness testing; MHI) and macroscale (by dynamic thermomechanical analysis; DMTA). The elastic moduli of TPS increased ca four times in the TPS/PCL (70/30) blend. The correlations between elastic moduli measured by MHI and DMTA were very strong, which implied that, in the future studies, it would be possible to use just micromechanical testing that does not require large specimens. Full article
Show Figures

Figure 1

11 pages, 2707 KiB  
Article
Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations
by Benoît Cosson, André Chateau Akué Asséko, Lukas Pelzer and Christian Hopmann
Materials 2022, 15(3), 1052; https://doi.org/10.3390/ma15031052 - 29 Jan 2022
Cited by 2 | Viewed by 2090
Abstract
The present paper addresses experimental and numerical investigations of a Large Scale Additive Manufacturing (LSAM) process using polymers. By producing large components without geometrical constraints quickly and economically, LSAM processes have the capability to revolutionize many industries. Accurate prediction and control of the [...] Read more.
The present paper addresses experimental and numerical investigations of a Large Scale Additive Manufacturing (LSAM) process using polymers. By producing large components without geometrical constraints quickly and economically, LSAM processes have the capability to revolutionize many industries. Accurate prediction and control of the thermal history is key for a successful manufacturing process and for achieving high quality and good mechanical properties of the manufactured part. During the LSAM process, the heat emitted by the nozzle leads to an increase in the temperature of the previously deposited layer, which prepares the surface for better adhesion of the new layer. It is therefore necessary to take into account this part of heat source in the transient heat transfer equation to correctly and completely describe the process and predict the temperature field of the manufactured part. The present study contributes to experimental investigations and numerical analysis during the LSAM process. During the process, two types of measurements are performed: firstly, the heat emitted by the nozzle is measured via a radiative heat sensor; secondly, the temperature field is measured using an infrared camera while varying the process speed. At the same time, a numerical simulation model is developed in order to validate the experimental results. The temperature fields of the manufactured parts computed by numerical simulations are in very good agreement with the temperature fields measured by infrared thermograph with the contribution of the nozzle’s heat exchange. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Polymer Composites)
Show Figures

Figure 1

18 pages, 2086 KiB  
Article
Influence of the hBN Dielectric Layers on the Quantum Transport Properties of MoS2 Transistors
by Sara Fiore, Cedric Klinkert, Fabian Ducry, Jonathan Backman and Mathieu Luisier
Materials 2022, 15(3), 1062; https://doi.org/10.3390/ma15031062 - 29 Jan 2022
Cited by 6 | Viewed by 4693
Abstract
The encapsulation of single-layer 2D materials within hBN has been shown to improve the mobility of these compounds. Nevertheless, the interplay between the semiconductor channel and the surrounding dielectrics is not yet fully understood, especially their electron–phonon interactions. Therefore, here, we present an [...] Read more.
The encapsulation of single-layer 2D materials within hBN has been shown to improve the mobility of these compounds. Nevertheless, the interplay between the semiconductor channel and the surrounding dielectrics is not yet fully understood, especially their electron–phonon interactions. Therefore, here, we present an ab initio study of the coupled electrons and phonon transport properties of MoS2-hBN devices. The characteristics of two transistor configurations are compared to each other: one where hBN is treated as a perfectly insulating, non-vibrating layer and one where it is included in the ab initio domain as MoS2. In both cases, a reduction of the ON-state current by about 50% is observed as compared to the quasi-ballistic limit. Despite the similarity in the current magnitude, explicitly accounting for hBN leads to additional electron–phonon interactions at frequencies corresponding to the breathing mode of the MoS2-hBN system. Moreover, the presence of an hBN layer around the 2D semiconductor affects the Joule-induced temperature distribution within the transistor. Full article
(This article belongs to the Special Issue Modeling of Advanced Metal-Oxide-Semiconductor Devices)
Show Figures

Figure 1

15 pages, 3291 KiB  
Article
Electronic and Optical Properties of InAs QDs Grown by MBE on InGaAs Metamorphic Buffer
by Paweł Wyborski, Paweł Podemski, Piotr Andrzej Wroński, Fauzia Jabeen, Sven Höfling and Grzegorz Sęk
Materials 2022, 15(3), 1071; https://doi.org/10.3390/ma15031071 - 29 Jan 2022
Cited by 7 | Viewed by 3341
Abstract
We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on [...] Read more.
We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences. Full article
Show Figures

Figure 1

16 pages, 2447 KiB  
Article
Dimensionality of the Superconductivity in the Transition Metal Pnictide WP
by Angela Nigro, Giuseppe Cuono, Pasquale Marra, Antonio Leo, Gaia Grimaldi, Ziyi Liu, Zhenyu Mi, Wei Wu, Guangtong Liu, Carmine Autieri, Jianlin Luo and Canio Noce
Materials 2022, 15(3), 1027; https://doi.org/10.3390/ma15031027 - 28 Jan 2022
Cited by 5 | Viewed by 3305
Abstract
We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance [...] Read more.
We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance experimental data and the analysis of superconducting fluctuations of the conductivity in external magnetic field indicate a weakly anisotropic three-dimensional superconducting phase. Full article
Show Figures

Figure 1

15 pages, 4035 KiB  
Article
Superhydrophobic Coating Based on Porous Aluminum Oxide Modified by Polydimethylsiloxane (PDMS)
by Klaudia Olkowicz, Zofia Buczko, Barbara Nasiłowska, Kamil Kowalczyk and Joanna Czwartos
Materials 2022, 15(3), 1042; https://doi.org/10.3390/ma15031042 - 28 Jan 2022
Cited by 13 | Viewed by 4130
Abstract
The aim of this study was to obtain a superhydrophobic coating by modifying anodized aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were treated by abrasive blasting, anodization [...] Read more.
The aim of this study was to obtain a superhydrophobic coating by modifying anodized aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were treated by abrasive blasting, anodization in sulfuric acid, impregnation by PDMS, rinsing in toluene to remove excess of PDMS, and curing. A rough surface with an additional low free energy layer on it resulted in a superhydrophobic effect. The coating obtained has an average contact angle of 159°. The specimens were tested in terms of durability in natural conditions. Additionally, anti-icing and anti-fouling properties were evaluated. The coating was compared with anodized aluminum obtained by a basic process. Full article
(This article belongs to the Special Issue Advances in the Fabrication of Superhydrophobic Polymeric Surfaces)
Show Figures

Figure 1

15 pages, 1640 KiB  
Article
Influence of the Fly Ash Content on the Fresh and Hardened Properties of Alkali-Activated Slag Pastes with Admixtures
by María Jimena de Hita and María Criado
Materials 2022, 15(3), 992; https://doi.org/10.3390/ma15030992 - 27 Jan 2022
Cited by 14 | Viewed by 2875
Abstract
A study on the influence of the inclusion of slag or fly ash and five types of superplasticizers on the fresh and hardened properties of alkali-activated cements is presented. Three alkali-activated slag formulations with different fly ash content (0, 15, and 30%) in [...] Read more.
A study on the influence of the inclusion of slag or fly ash and five types of superplasticizers on the fresh and hardened properties of alkali-activated cements is presented. Three alkali-activated slag formulations with different fly ash content (0, 15, and 30%) in the presence of five admixtures (vinyl copolymer, melamine, and three polycarboxylates with different chain lengths) were assessed for fluidity control and setting adjustment without loss of mechanical properties. Solid sodium metasilicate was used as an alkaline activator. Their fresh and hardened properties were studied through slump, setting time, isothermal calorimetry, mechanical strengths, and porosity tests. The results showed that the increase of fly ash content delayed the reaction and improved workability but reduced compressive strengths. Concerning the admixtures, these maintained fluidity especially for the one based on polycarboxylate with very long chains. The melamine and polycarboxylate with very long chain admixtures did not have a drastic impact on mechanical properties at early ages; even a gain of flexural and compressive strength was noted. Full article
Show Figures

Figure 1

13 pages, 5229 KiB  
Article
Corrosion Behavior of Ultrafine-Grained CoCrFeMnNi High-Entropy Alloys Fabricated by High-Pressure Torsion
by Haruka Shimizu, Motohiro Yuasa, Hiroyuki Miyamoto and Kaveh Edalati
Materials 2022, 15(3), 1007; https://doi.org/10.3390/ma15031007 - 27 Jan 2022
Cited by 23 | Viewed by 3552
Abstract
The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The [...] Read more.
The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion and pitting became higher in both the solutions, with higher passivation capability observed with increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with reports on nanocrystalline binary Fe–Cr alloys and stainless steels processed by SPD, where grain refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior with respect to grain refinement is discussed, based on the passivation process of Fe–Cr alloys and on the influence of the core effects of HEAs on the passivation process. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Inhibition of Metals and Their Alloys)
Show Figures

Figure 1

16 pages, 5082 KiB  
Article
Changes in the Properties in Bimodal Mg Alloy Bars Obtained for Various Deformation Patterns in the RSR Rolling Process
by Andrzej Stefanik, Piotr Szota, Sebastian Mróz and Marcin Wachowski
Materials 2022, 15(3), 954; https://doi.org/10.3390/ma15030954 - 26 Jan 2022
Cited by 7 | Viewed by 2315
Abstract
The paper presents the theoretical and experimental research conducted to date regarding the possibility of obtaining round bars from AZ31 magnesium alloy with a bimodal structure rolled in the radial shear rolling process (RSR) technology. There is no analysis of the impact of [...] Read more.
The paper presents the theoretical and experimental research conducted to date regarding the possibility of obtaining round bars from AZ31 magnesium alloy with a bimodal structure rolled in the radial shear rolling process (RSR) technology. There is no analysis of the impact of the deformation path (distribution of deformation in individual passes) on the mechanical properties and the obtained bar structure. The feedstock, namely, AZ31 magnesium alloy round bars with a diameter of 30 mm, were rolled in RSR to the final diameter of 15 mm with different levels of deformation in successive passes, at a temperature of 400 °C. The bars obtained as a result of the RSR rolling process have different hardness on the cross-section as well as a characteristic gradient grain size distribution. Based on the conducted research, it can be concluded that the use of a larger number of passes with a smaller cross-section reduction will result in an improved formation of a bimodal structure consisting of a highly fragmented near-surface structure and in the half of the radius of the structure of fragmented grains at the boundaries of larger grains. Full article
(This article belongs to the Special Issue Radial-Shear and Screw Rolling Process)
Show Figures

Figure 1

33 pages, 37468 KiB  
Review
Photocatalytic Reduction of Carbon Dioxide on TiO2 Heterojunction Photocatalysts—A Review
by Beatriz Trindade Barrocas, Nela Ambrožová and Kamila Kočí
Materials 2022, 15(3), 967; https://doi.org/10.3390/ma15030967 - 26 Jan 2022
Cited by 41 | Viewed by 9851
Abstract
The photocatalytic reduction of carbon dioxide to renewable fuel or other valuable chemicals using solar energy is attracting the interest of researchers because of its great potential to offer a clean fuel alternative and solve global warming problems. Unfortunately, the efficiency of CO [...] Read more.
The photocatalytic reduction of carbon dioxide to renewable fuel or other valuable chemicals using solar energy is attracting the interest of researchers because of its great potential to offer a clean fuel alternative and solve global warming problems. Unfortunately, the efficiency of CO2 photocatalytic reduction remains not very high due to the fast recombination of photogenerated electron–hole and small light utilization. Consequently, tremendous efforts have been made to solve these problems, and one possible solution is the use of heterojunction photocatalysts. This review begins with the fundamental aspects of CO2 photocatalytic reduction and the fundamental principles of various heterojunction photocatalysts. In the following part, we discuss using TiO2 heterojunction photocatalysts with other semiconductors, such as C3N4, CeO2, CuO, CdS, MoS2, GaP, CaTiO3 and FeTiO3. Finally, a concise summary and presentation of perspectives in the field of heterojunction photocatalysts are provided. The review covers references in the years 2011–2021. Full article
(This article belongs to the Special Issue Advanced Oxide-Based Materials for Photocatalytic Applications)
Show Figures

Figure 1

14 pages, 3425 KiB  
Article
Numerical Analysis of the Relationship between Friction Coefficient and Repose Angle of Blast Furnace Raw Materials by Discrete Element Method
by Shiyu Wei, Han Wei, Henrik Saxen and Yaowei Yu
Materials 2022, 15(3), 903; https://doi.org/10.3390/ma15030903 - 25 Jan 2022
Cited by 15 | Viewed by 3998
Abstract
In recent years, the discrete element method (DEM) has been widely used to study the factors affecting the repose angle and calibrate particle parameters for simulations. In this paper, DEM is used to study the effects of the coefficient of rolling and static [...] Read more.
In recent years, the discrete element method (DEM) has been widely used to study the factors affecting the repose angle and calibrate particle parameters for simulations. In this paper, DEM is used to study the effects of the coefficient of rolling and static friction of pellet, sinter and coke particles on the repose angle. By comparison of the results of simulations and physical experiments, the coefficients of rolling and static friction suitable for simulation work are determined. The results demonstrate that repose angle increases with the coefficient of rolling and static friction, but the rate of increase gradually decays, when the coefficient of rolling friction exceeds 0.4 or the coefficient of static friction exceeds 0.35. The coefficient of static friction has a greater impact on the repose angle than the coefficient of rolling friction. The rougher of the base surface, the larger the repose angle of the formed particle piled. It can be concluded that appropriate coefficient of rolling and static friction for simulations can be obtained by the outlined procedure. Full article
(This article belongs to the Special Issue Advances in Computational Materials Tribology)
Show Figures

Figure 1

17 pages, 12742 KiB  
Article
Optical Coherence Elastography as a Tool for Studying Deformations in Biomaterials: Spatially-Resolved Osmotic Strain Dynamics in Cartilaginous Samples
by Yulia Alexandrovskaya, Olga Baum, Alexander Sovetsky, Alexander Matveyev, Lev Matveev, Emil Sobol and Vladimir Zaitsev
Materials 2022, 15(3), 904; https://doi.org/10.3390/ma15030904 - 25 Jan 2022
Cited by 13 | Viewed by 3058
Abstract
This paper presents a recently developed variant of phase-resolved Optical Coherence Elastography (OCE) enabling non-contact visualization of transient local strains of various origins in biological tissues and other materials. In this work, we demonstrate the possibilities of this new technique for studying dynamics [...] Read more.
This paper presents a recently developed variant of phase-resolved Optical Coherence Elastography (OCE) enabling non-contact visualization of transient local strains of various origins in biological tissues and other materials. In this work, we demonstrate the possibilities of this new technique for studying dynamics of osmotically-induced strains in cartilaginous tissue impregnated with optical clearing agents (OCA). For poroelastic water-containing biological tissues, application of non-isotonic OCAs, various contrast additives, as well as drug solutions administration, may excite transient spatially-inhomogeneous strain fields of high magnitude in the tissue bulk, initiating mechanical and structural alterations. The range of the strain reliably observed by OCE varied from ±10−3 to ±0.4 for diluted and pure glycerol, correspondingly. The OCE-technique used made it possible to reveal previously inaccessible details of the complex spatio-temporal evolution of alternating-sign osmotic strains at the initial stages of agent diffusion. Qualitatively different effects produced by particular hydrophilic OCAs, such as glycerol and iohexol, are discussed, as well as concentration-dependent differences. Overall, the work demonstrates the unique abilities of the new OCE-modality in providing a deeper insight in real-time kinetics of osmotically-induced strains relevant to a broad range of biomedical applications. Full article
(This article belongs to the Special Issue Feature Paper in Optical and Photonic Materials)
Show Figures

Figure 1

13 pages, 7006 KiB  
Article
Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test
by Tadanobu Inoue and Yuuji Kimura
Materials 2022, 15(3), 867; https://doi.org/10.3390/ma15030867 - 24 Jan 2022
Cited by 17 | Viewed by 3691
Abstract
Improving the balance of strength and toughness in structural materials is an ongoing challenge. Delamination and grain refinement are some of the methods used to do this. In this paper, two different steels, 0.15% C–0.3% Si–1.5% Mn–Fe and 0.4% C–2% Si–1% Cr–1% Mo–Fe [...] Read more.
Improving the balance of strength and toughness in structural materials is an ongoing challenge. Delamination and grain refinement are some of the methods used to do this. In this paper, two different steels, 0.15% C–0.3% Si–1.5% Mn–Fe and 0.4% C–2% Si–1% Cr–1% Mo–Fe (mass %), were prepared. Two steel bars with an ultrafine elongated grain (UFEG) structure were fabricated via multipass warm caliber rolling. The UFEG steels were characterized by a strong <110>//rolling-direction fiber texture. The transverse grain size, dt, was 1.0 µm for the low-carbon steel and 0.26 µm for the medium-carbon steel. For comparison, conventional heat-treated steels were also fabricated. An instrumented Charpy impact test was performed, and the impact load (P) and deflection (u) during the test were recorded. The Pu relations at the test temperature at which delamination fracture occurred exhibited a unique curve. Delamination effectively enhances the low-temperature toughness, and this was characterized by a plateau region of constant load in the Pu curve. Assuming no delamination, two routes in the Pu curves, the ductile route and the brittle route, were proposed. The results showed that the proposed methods can be predicted by an energy curve for ultrafine grained steels. Delamination is a more effective method of enhancing toughness for ultra-high-strength steels. Full article
(This article belongs to the Special Issue Delamination and Fracture Problems in Modern Engineering Materials)
Show Figures

Figure 1

22 pages, 5492 KiB  
Article
Fragmentation of Beaded Fibres in a Composite
by Carol Winnifred Rodricks, Israel Greenfeld, Bodo Fiedler and Hanoch Daniel Wagner
Materials 2022, 15(3), 890; https://doi.org/10.3390/ma15030890 - 24 Jan 2022
Cited by 4 | Viewed by 3622
Abstract
The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of the interface may [...] Read more.
The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of the interface may provide mechanical interlocking and have wider possibilities and benefits. Here we investigate the introduction of polymer beads along the interface of a fibre and validate their contribution by a single fibre fragmentation test. Using glass fibres and the same epoxy system for both matrix and beads, an increase of 17.5% is observed in the interfacial shear strength of the beaded fibres compared to fibres with no polymer beads. This increase should lead to a similar improvement in the strength and toughness of a beaded fibre composite when short fibres are used. The beads were also seen to stabilise the fragmentation process of a fibre by reducing the scatter in fragment density at a given strain. A case could also be made for a critical beads number—4 beads in our experimental system—to describe interfacial shear strength, analogous to a critical length used in fibre composites. Full article
(This article belongs to the Special Issue Feature Collection in Advanced Composites Section)
Show Figures

Graphical abstract

29 pages, 4052 KiB  
Review
Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices
by Raffaella Lo Nigro, Patrick Fiorenza, Giuseppe Greco, Emanuela Schilirò and Fabrizio Roccaforte
Materials 2022, 15(3), 830; https://doi.org/10.3390/ma15030830 - 22 Jan 2022
Cited by 21 | Viewed by 6514
Abstract
High-κ dielectrics are insulating materials with higher permittivity than silicon dioxide. These materials have already found application in microelectronics, mainly as gate insulators or passivating layers for silicon (Si) technology. However, since the last decade, the post-Si era began with the pervasive introduction [...] Read more.
High-κ dielectrics are insulating materials with higher permittivity than silicon dioxide. These materials have already found application in microelectronics, mainly as gate insulators or passivating layers for silicon (Si) technology. However, since the last decade, the post-Si era began with the pervasive introduction of wide band gap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), which opened new perspectives for high-κ materials in these emerging technologies. In this context, aluminium and hafnium oxides (i.e., Al2O3, HfO2) and some rare earth oxides (e.g., CeO2, Gd2O3, Sc2O3) are promising high-κ binary oxides that can find application as gate dielectric layers in the next generation of high-power and high-frequency transistors based on SiC and GaN. This review paper gives a general overview of high-permittivity binary oxides thin films for post-Si electronic devices. In particular, focus is placed on high-κ binary oxides grown by atomic layer deposition on WBG semiconductors (silicon carbide and gallium nitride), as either amorphous or crystalline films. The impacts of deposition modes and pre- or postdeposition treatments are both discussed. Moreover, the dielectric behaviour of these films is also presented, and some examples of high-κ binary oxides applied to SiC and GaN transistors are reported. The potential advantages and the current limitations of these technologies are highlighted. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials Section)
Show Figures

Figure 1

22 pages, 5130 KiB  
Article
Accurate Estimation of Yield Strength and Ultimate Tensile Strength through Instrumented Indentation Testing and Chemical Composition Testing
by Martin Scales, Joel Anderson, Jeffrey A. Kornuta, Nathan Switzner, Ramon Gonzalez and Peter Veloo
Materials 2022, 15(3), 832; https://doi.org/10.3390/ma15030832 - 22 Jan 2022
Cited by 21 | Viewed by 5344
Abstract
Federal rule changes governing natural gas pipelines have made non-destructive techniques, such as instrumented indentation testing (IIT), an attractive alternative to destructive tests for verifying properties of steel pipeline segments that lack traceable records. Ongoing work from Pacific Gas and Electric Company’s (PG&E) [...] Read more.
Federal rule changes governing natural gas pipelines have made non-destructive techniques, such as instrumented indentation testing (IIT), an attractive alternative to destructive tests for verifying properties of steel pipeline segments that lack traceable records. Ongoing work from Pacific Gas and Electric Company’s (PG&E) materials verification program indicates that IIT measurements may be enhanced by incorporating chemical composition data. This paper presents data from PG&E’s large-scale IIT program that demonstrates the predictive capabilities of IIT and chemical composition data, with particular emphasis given to differences between ultimate tensile strength (UTS) and yield strength (YS). For this study, over 80 segments of line pipe were evaluated through tensile testing, IIT, and compositional testing by optical emission spectroscopy (OES) and laboratory combustion. IIT measurements of UTS were, generally, in better agreement with destructive tensile data than YS and exhibited about half as much variability as YS measurements on the same sample. The root-mean squared error for IIT measurements of UTS and YS, respectively, were 27 MPa (3.9 ksi) and 43 MPa (6.2 ksi). Next, a machine learning model was trained to estimate YS and UTS by combining IIT with chemical composition data. The agreement between the model’s estimated UTS and tensile UTS values was only slightly better than the IIT-only measurements, with an RMSE of 21 MPa (3.1 ksi). However, the YS estimates showed much greater improvement with an improved RMSE of 27 MPa (3.9 ksi). The experimental, mechanical, and metallurgical factors that contributed to IIT’s ability to consistently determine destructive UTS, and the differences in its interaction with composition as compared to YS, are discussed herein. Full article
Show Figures

Figure 1

11 pages, 2894 KiB  
Article
Improved Methane Production by Photocatalytic CO2 Conversion over Ag/In2O3/TiO2 Heterojunctions
by Patricia Reñones, Fernando Fresno, Freddy E. Oropeza and Víctor A. de la Peña O’Shea
Materials 2022, 15(3), 843; https://doi.org/10.3390/ma15030843 - 22 Jan 2022
Cited by 7 | Viewed by 3226
Abstract
In this work, the role of In2O3 in a heterojunction with TiO2 is studied as a way of increasing the photocatalytic activity for gas-phase CO2 reduction using water as the electron donor and UV irradiation. Depending on the [...] Read more.
In this work, the role of In2O3 in a heterojunction with TiO2 is studied as a way of increasing the photocatalytic activity for gas-phase CO2 reduction using water as the electron donor and UV irradiation. Depending on the nature of the employed In2O3, different behaviors appear. Thus, with the high crystallite sizes of commercial In2O3, the activity is improved with respect to TiO2, with modest improvements in the selectivity to methane. On the other hand, when In2O3 obtained in the laboratory, with low crystallite size, is employed, there is a further change in selectivity toward CH4, even if the total conversion is lower than that obtained with TiO2. The selectivity improvement in the heterojunctions is attributed to an enhancement in the charge transfer and separation with the presence of In2O3, more pronounced when smaller particles are used as in the case of laboratory-made In2O3, as confirmed by time-resolved fluorescence measurements. Ternary systems formed by these heterojunctions with silver nanoparticles reflect a drastic change in selectivity toward methane, confirming the role of silver as an electron collector that favors the charge transfer to the reaction medium. Full article
(This article belongs to the Special Issue Feature Paper in Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 2238 KiB  
Article
Structural, Electronic, and Physical Properties of a New Layered Cr-Based Oxyarsenide Sr2Cr2AsO3
by Yi-Qiang Lin, Hao Jiang, Hua-Xun Li, Shi-Jie Song, Si-Qi Wu, Zhi Ren and Guang-Han Cao
Materials 2022, 15(3), 802; https://doi.org/10.3390/ma15030802 - 21 Jan 2022
Cited by 3 | Viewed by 2249
Abstract
We report synthesis, crystal structure, and physical properties of Sr2Cr2AsO3. The new compound crystallizes in a Sr2GaO3CuS-type structure with two distinct Cr sites, Cr(1) in the perovskite-like block layers of “Sr3Cr [...] Read more.
We report synthesis, crystal structure, and physical properties of Sr2Cr2AsO3. The new compound crystallizes in a Sr2GaO3CuS-type structure with two distinct Cr sites, Cr(1) in the perovskite-like block layers of “Sr3Cr2O6” and Cr(2) in the ThCr2Si2-type layers of “SrCr2As2”. An inter-block-layer charge transfer is explicitly evidenced, which dopes electrons in the CrO2 planes and simultaneously dopes holes into the CrAs layers. Measurements of electrical resistivity, magnetization, and specific heat, in combination with density-functional theoretical calculations, indicate that the title material is an antiferromagnetic metal. The Cr(2) magnetic moments in the CrAs layers order at 420 K, while the Cr(1) spins in the CrO2 planes show quasi-two-dimensional magnetism with long-range ordering below 80 K. Both Néel temperatures are significantly reduced, compared with those of the cousin material Sr2Cr3As2O2, probably due to the intrinsic charge-carrier doping. Complex re-entrant magnetic transitions with a huge magnetic hysteresis were observed at low temperatures. Full article
(This article belongs to the Special Issue Quantum Materials: Superconductivity and Topology)
Show Figures

Figure 1

14 pages, 2209 KiB  
Article
Long-Term Water Balance Evaluation in Glass Ionomer Restorative Materials
by Howard Roberts, David Berzins and John Nicholson
Materials 2022, 15(3), 807; https://doi.org/10.3390/ma15030807 - 21 Jan 2022
Cited by 7 | Viewed by 2226
Abstract
The complex role of water in glass ionomer cement (polyalkenoate) dental restorative materials has been studied, but much of the present understanding concerning water balance within these materials is based on very early studies and short-term experiments. This study evaluated the nature of [...] Read more.
The complex role of water in glass ionomer cement (polyalkenoate) dental restorative materials has been studied, but much of the present understanding concerning water balance within these materials is based on very early studies and short-term experiments. This study evaluated the nature of the water species of six conventional and four resin modified glass ionomer restorative materials over 3 years using thermogravimetric analysis techniques. Materials were prepared, placed in crucibles, and stored in physiologic phosphate buffered saline and evaluated at 24 h, 1 week, and then at 1, 3, 6, 9, 12, 18, 24, 30 and 36 months. All materials demonstrated a significant increase in unbound water percentage content but except for the resin modified materials, the enthalpy required to remove the unbound water species did not significantly change over 36 months. Also, bound water content percentage and removal enthalpy was established at 24 h, as no significant increase was noted in both bound water content and removal enthalpy over the course of this evaluation. This study suggests that unbound water species may increase with time and is loosely held except for the resin modified materials. Protective coatings placement and re-evaluation are prudent to prevent unbound water loss. Full article
(This article belongs to the Special Issue Mechanical Properties and Microstructures of Glass-Ionomer Cements)
Show Figures

Figure 1

19 pages, 6857 KiB  
Article
Influence of Accelerating Admixtures on the Reactivity of Synthetic Aluminosilicate Glasses
by Laura Gonzalez-Panicello, Ines Garcia-Lodeiro, Francisca Puertas and Marta Palacios
Materials 2022, 15(3), 818; https://doi.org/10.3390/ma15030818 - 21 Jan 2022
Cited by 11 | Viewed by 2611
Abstract
This research aims at gaining a further understanding of the impact of accelerating admixtures on the reactivity of supplementary cementitious materials (SCMs), which are widely used as a clinker replacement in blended cements. This was done on synthetic glasses with controlled composition and [...] Read more.
This research aims at gaining a further understanding of the impact of accelerating admixtures on the reactivity of supplementary cementitious materials (SCMs), which are widely used as a clinker replacement in blended cements. This was done on synthetic glasses with controlled composition and structure that mimic two types of real SCMs (slag and calcium-rich fly ash). The effects of DEIPA, TIPA, NaSCN and Na2S2O3 on the glass dissolution, hydration kinetics and reaction products were investigated. The obtained results concluded that the pH of the NaOH solution and the composition of the synthetic glass play a key role on the effect of the admixtures. In 0.1 M NaOH (pH = 13.0), all the studied admixtures inhibited the dissolution of slag-like glasses while they enhanced the dissolution of Ca-rich fly ash-like glasses, being Na2S2O3 the admixture that led to the highest increase of the dissolution rate of the Ca-rich fly ash-type glasses. In 1 M NaOH solutions (pH = 13.8), only the alkali admixtures (NaSCN and Na2S2O3) enhanced the degree of reaction of both glasses. In slag-type glasses pastes mixed with 1 M NaOH, the addition of 2% Na2S2O3 induced the highest increase of their reactivity as inferred by the total heat release and the amount of bound water. This is related to the formation of a high amount of S(II)-AFm, in addition to C-A-S-H, that would increase the aluminium undersaturation of the pore solution and consequently the further dissolution of the glass. Full article
(This article belongs to the Special Issue Advances in Low-Clinker Cements)
Show Figures

Figure 1

19 pages, 16835 KiB  
Article
Image-Based vs. Parametric Modelling of Concrete Meso-Structures
by Jiaming Wang, Andrey P. Jivkov, Dirk L. Engelberg and Qingming Li
Materials 2022, 15(3), 704; https://doi.org/10.3390/ma15030704 - 18 Jan 2022
Cited by 9 | Viewed by 2422
Abstract
Damage initiation and crack propagation in concrete are associated with localisation of energy dissipation by the concrete meso-structure. Meso-scale models are, therefore, required for realistic analysis of concrete non-linear behaviour. Such models are constructed either from X-ray Computed Tomography images (image-based modelling) or [...] Read more.
Damage initiation and crack propagation in concrete are associated with localisation of energy dissipation by the concrete meso-structure. Meso-scale models are, therefore, required for realistic analysis of concrete non-linear behaviour. Such models are constructed either from X-ray Computed Tomography images (image-based modelling) or by in silico meso-structure generation (parametric modelling), while both approaches are widely used and their advantages and disadvantages are recognised, little work is done on comparing their performance in predicting measured macroscopic behaviour with equivalent constitutive relations for meso-structural features. This work uses microstructure characterisation and mechanical behaviour data to construct, validate and compare the two modelling approaches. The macroscopic behaviour obtained with both meso-structural models is found to be in good agreement with experimental data. Differences are observed only between the predicted distributions of damage within specimens. These outcomes suggest that the computationally simpler parametric meso-structures are sufficient to derive stress–strain behaviour for engineering-scale models in the absence of other environmental factors. The observed differences in damage distribution could be important for analysis of coupled behaviour, e.g., mass transport and chemical reactions affecting local mechanical properties and being affected by local damage. Establishing the importance of damage distribution is such cases requires further research. Full article
Show Figures

Figure 1

15 pages, 1700 KiB  
Review
Recent Advances in Materials and Flexible Sensors for Arrhythmia Detection
by Matthew Guess, Nathan Zavanelli and Woon-Hong Yeo
Materials 2022, 15(3), 724; https://doi.org/10.3390/ma15030724 - 18 Jan 2022
Cited by 21 | Viewed by 5139
Abstract
Arrhythmias are one of the leading causes of death in the United States, and their early detection is essential for patient wellness. However, traditional arrhythmia diagnosis by expert evaluation from intermittent clinical examinations is time-consuming and often lacks quantitative data. Modern wearable sensors [...] Read more.
Arrhythmias are one of the leading causes of death in the United States, and their early detection is essential for patient wellness. However, traditional arrhythmia diagnosis by expert evaluation from intermittent clinical examinations is time-consuming and often lacks quantitative data. Modern wearable sensors and machine learning algorithms have attempted to alleviate this problem by providing continuous monitoring and real-time arrhythmia detection. However, current devices are still largely limited by the fundamental mismatch between skin and sensor, giving way to motion artifacts. Additionally, the desirable qualities of flexibility, robustness, breathability, adhesiveness, stretchability, and durability cannot all be met at once. Flexible sensors have improved upon the current clinical arrhythmia detection methods by following the topography of skin and reducing the natural interface mismatch between cardiac monitoring sensors and human skin. Flexible bioelectric, optoelectronic, ultrasonic, and mechanoelectrical sensors have been demonstrated to provide essential information about heart-rate variability, which is crucial in detecting and classifying arrhythmias. In this review, we analyze the current trends in flexible wearable sensors for cardiac monitoring and the efficacy of these devices for arrhythmia detection. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials Section)
Show Figures

Figure 1

27 pages, 3328 KiB  
Article
DFT Modelling of Molecular Structure, Vibrational and UV-Vis Absorption Spectra of T-2 Toxin and 3-Deacetylcalonectrin
by Dmitrii Pankin, Mikhail Smirnov, Anastasia Povolotckaia, Alexey Povolotskiy, Evgenii Borisov, Maksim Moskovskiy, Anatoly Gulyaev, Stanislav Gerasimenko, Aleksandr Aksenov, Maksim Litvinov and Alexey Dorochov
Materials 2022, 15(2), 649; https://doi.org/10.3390/ma15020649 - 15 Jan 2022
Cited by 14 | Viewed by 3229
Abstract
This paper discusses the applicability of optical and vibrational spectroscopies for the identification and characterization of the T-2 mycotoxin. Vibrational states and electronic structure of the T-2 toxin molecules are simulated using a density-functional quantum-mechanical approach. A numerical experiment aimed at comparing the [...] Read more.
This paper discusses the applicability of optical and vibrational spectroscopies for the identification and characterization of the T-2 mycotoxin. Vibrational states and electronic structure of the T-2 toxin molecules are simulated using a density-functional quantum-mechanical approach. A numerical experiment aimed at comparing the predicted structural, vibrational and electronic properties of the T-2 toxin with analogous characteristics of the structurally similar 3-deacetylcalonectrin is performed, and the characteristic spectral features that can be used as fingerprints of the T-2 toxin are determined. It is shown that theoretical studies of the structure and spectroscopic features of trichothecene molecules facilitate the development of methods for the detection and characterization of the metabolites. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Studies of Solids)
Show Figures

Figure 1

23 pages, 7749 KiB  
Article
Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloys
by Felix Lohse, Karl Kopelmann, Henriette Grellmann, Moniruddoza Ashir, Thomas Gereke, Eric Häntzsche, Cornelia Sennewald and Chokri Cherif
Materials 2022, 15(2), 582; https://doi.org/10.3390/ma15020582 - 13 Jan 2022
Cited by 16 | Viewed by 2799
Abstract
Fiber-reinforced rubber composites with integrated shape memory alloy (SMA) actuator wires present a promising approach for the creation of soft and highly elastic structures with adaptive functionalities for usage in aerospace, robotic, or biomedical applications. In this work, the flat-knitting technology is used [...] Read more.
Fiber-reinforced rubber composites with integrated shape memory alloy (SMA) actuator wires present a promising approach for the creation of soft and highly elastic structures with adaptive functionalities for usage in aerospace, robotic, or biomedical applications. In this work, the flat-knitting technology is used to develop glass-fiber-reinforced fabrics with tailored properties designed for active bending deformations. During the knitting process, the SMA wires are integrated into the textile and positioned with respect to their actuation task. Then, the fabrics are infiltrated with liquid silicone, thus creating actively deformable composites. For dimensioning such structures, a comprehensive understanding of the interactions of all components is required. Therefore, a simulation model is developed that captures the properties of the rubber matrix, fiber reinforcement, and the SMA actuators and that is capable of simulating the active bending deformations of the specimens. After model calibration with experimental four-point-bending data, the SMA-driven bending deformation is simulated. The model is validated with activation experiments of the actively deformable specimens. The simulation results show good agreement with the experimental tests, thus enabling further investigations into the deformation mechanisms of actively deformable fiber-reinforced rubbers. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites)
Show Figures

Figure 1

13 pages, 3852 KiB  
Article
Utilizing a Diffractive Focus Beam Shaper to Enhance Pattern Uniformity and Process Throughput during Direct Laser Interference Patterning
by Mikhael El-Khoury, Bogdan Voisiat, Tim Kunze and Andrés Fabián Lasagni
Materials 2022, 15(2), 591; https://doi.org/10.3390/ma15020591 - 13 Jan 2022
Cited by 12 | Viewed by 3488
Abstract
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in [...] Read more.
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%. Full article
Show Figures

Figure 1

15 pages, 2168 KiB  
Article
Subtyping on Live Lymphoma Cell Lines by Raman Spectroscopy
by Klytaimnistra Katsara, Konstantina Psatha, George Kenanakis, Michalis Aivaliotis and Vassilis M. Papadakis
Materials 2022, 15(2), 546; https://doi.org/10.3390/ma15020546 - 12 Jan 2022
Cited by 8 | Viewed by 2605
Abstract
Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and [...] Read more.
Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantitative estimation of amino acids, lipids, nucleic acids, and carbohydrates. Lymphoma cell classification is a crucial task for accurate and prompt lymphoma diagnosis, prognosis, and treatment. Currently, it is mostly based on limited information and requires costly and time-consuming approaches. In this work, we are proposing a fast characterization and differentiation methodology of lymphoma cell subtypes based on Raman spectroscopy. The study was performed in the temperature range of 15–37 °C to identify the best cell measurement conditions. The proposed methodology is fast, accurate, and requires minimal sample preparation, resulting in a potentially promising, non-invasive strategy for early and accurate cell lymphoma characterization. Full article
Show Figures

Figure 1

28 pages, 11419 KiB  
Article
Chemical and Microstructural Properties of Designed Cohesive M-S-H Pastes
by Charlotte Dewitte, Alexandra Bertron, Mejdi Neji, Laurie Lacarrière and Alexandre Dauzères
Materials 2022, 15(2), 547; https://doi.org/10.3390/ma15020547 - 12 Jan 2022
Cited by 21 | Viewed by 3100
Abstract
Concretes can be exposed to a magnesium attack in several environments leading to the formation of magnesium silicate hydrates (M-S-H) and brucite (MH). The formation of M-S-H is likely to alter the properties of the cement matrix because it is linked to the [...] Read more.
Concretes can be exposed to a magnesium attack in several environments leading to the formation of magnesium silicate hydrates (M-S-H) and brucite (MH). The formation of M-S-H is likely to alter the properties of the cement matrix because it is linked to the decalcification of C-S-H. However, relatively few data on M-S-H exist in the literature. In order to characterize, physically and mechanically, the M-S-H phase, pure M-S-H cohesive pastes are needed. This work studies the formation of cohesive M-S-H pastes made with MgO-to-SiO2 atomic ratios of 0.78, 1 and 1.3, from two types of silica (silica fume or colloidal silica) and under 20 °C and 50 °C thermal curing. X-ray diffraction and thermogravimetric analyses confirmed that the consumption of brucite and the formation of M-S-H were quicker with a 50 °C curing. Energy-dispersive X-ray spectroscopy and microtomography showed that colloidal silica enabled a better distribution of the particles than silica fume. Microstructural characterizations were conducted under the protocol with colloidal silica and 50 °C thermal curing. Porosity investigations allowed to describe the M-S-H pastes as highly porous materials with a low content of micropores in comparison with mesopores. The type of mixing influenced the mesopore size distribution. Full article
(This article belongs to the Special Issue Feature Papers in Construction and Building Materials)
Show Figures

Figure 1

11 pages, 1354 KiB  
Article
Parametric Random Vibration Analysis of an Axially Moving Laminated Shape Memory Alloy Beam Based on Monte Carlo Simulation
by Ying Hao, Ming Gao and Jiajie Gong
Materials 2022, 15(2), 562; https://doi.org/10.3390/ma15020562 - 12 Jan 2022
Cited by 8 | Viewed by 1793
Abstract
The study of the bifurcation, random vibration, chaotic dynamics, and control of laminated composite beams are research hotspots. In this paper, the parametric random vibration of an axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timoshenko beam [...] Read more.
The study of the bifurcation, random vibration, chaotic dynamics, and control of laminated composite beams are research hotspots. In this paper, the parametric random vibration of an axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timoshenko beam theory and taking into consideration axial motion effects and axial forces, a random dynamic equation of laminated SMA beams was deduced. The Falk’s polynomial constitutive model of SMA was used to simulate the nonlinear random dynamic behavior of the laminated beam. Additionally, the numerical of the probability density function and power spectral density curves was obtained through the Monte Carlo simulation. The results indicated that the large amplitude vibration character of the beam can be caused by random perturbation on axial velocity. Full article
(This article belongs to the Special Issue Modeling and Simulations of Smart Materials)
Show Figures

Figure 1

11 pages, 7325 KiB  
Article
Correlation between Pitch Impregnation Pressure and Pore Sizes of Graphite Block
by Changkyu Kim, Woong Kwon, Moon Hee Lee, Jong Seok Woo and Euigyung Jeong
Materials 2022, 15(2), 561; https://doi.org/10.3390/ma15020561 - 12 Jan 2022
Cited by 8 | Viewed by 2566
Abstract
This study aimed to investigate the effect of impregnation pressure on the decrease in porosity of impregnated bulk graphite. The correlation between pitch impregnation behavior and the pore sizes of the bulk graphite block was studied to determine the optimal impregnation pressure. The [...] Read more.
This study aimed to investigate the effect of impregnation pressure on the decrease in porosity of impregnated bulk graphite. The correlation between pitch impregnation behavior and the pore sizes of the bulk graphite block was studied to determine the optimal impregnation pressure. The densities and porosities of the bulk graphite before and after pitch impregnation under various pressures between 10 and 50 bar were evaluated based on the Archimedes method and a mercury porosimeter. The density increased rates increased by 1.93–2.44%, whereas the impregnation rate calculated from the rate of open porosity decreased by 15.15–24.48%. The density increase rate and impregnation rate were significantly high when the impregnation pressures were 40 and 50 bar. Compared with impregnation pressures of 10, 20, and 30 bar, the minimum impregnatable pore sizes with impregnation pressures of 40 and 50 bar were 30–39 and 24–31 nm, respectively. The mercury intrusion porosimeter analysis results demonstrated that the pressure-sensitive pore sizes of the graphite blocks were in the range of 100–4500 nm. Furthermore, the ink-bottle-type pores in this range contributed predominantly to the effect of impregnation under pressure, given that the pitch-impregnated-into-ink-bottle-type pores were difficult to elute during carbonization. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

18 pages, 4399 KiB  
Article
In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloy
by Ana Maria Roman, Victor Geantă, Ramona Cimpoeșu, Corneliu Munteanu, Nicoleta Monica Lohan, Georgeta Zegan, Eduard Radu Cernei, Iulian Ioniță, Nicanor Cimpoeșu and Nicoleta Ioanid
Materials 2022, 15(2), 568; https://doi.org/10.3390/ma15020568 - 12 Jan 2022
Cited by 12 | Viewed by 2580
Abstract
Special materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace [...] Read more.
Special materials are required in many applications to fulfill specific medical or industrial necessities. Biodegradable metallic materials present many attractive properties, especially mechanical ones correlated with good biocompatibility with vivant bodies. A biodegradable iron-based material was realized through electric arc-melting and induction furnace homogenization. The new chemical composition obtained presented a special property named SME (shape memory effect) based on the martensite transformation. Preliminary results about this special biodegradable material with a new chemical composition were realized for the chemical composition and structural and thermal characterization. Corrosion resistance was evaluated in Ringer’s solution through immersion tests for 1, 3, and 7 days, the solution pH was measured in time for 3 days with values for each minute, and electro-corrosion was measured using a potentiostat and a three electrode cell. The mass loss of the samples during immersion and electro-corrosion was evaluated and the surface condition was studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). SME was highlighted with differential scanning calorimetry (DSC). The results confirm the possibility of a memory effect of the materials in the wrought case and a generalized corrosion (Tafel and cyclic potentiometry and EIS) with the formation of iron oxides and a corrosion rate favorable for applications that require a longer implantation period. Full article
(This article belongs to the Special Issue Corrosion Resistance Enhancement of the Materials Surface)
Show Figures

Figure 1

17 pages, 1574 KiB  
Article
Effects of Coal and Sewage Sludge Ashes on Macronutrient Content in Maize (Zea mays L.) Grown on Soil Contaminated with Eco-Diesel Oil
by Mirosław Wyszkowski, Jadwiga Wyszkowska, Natalia Kordala and Agata Borowik
Materials 2022, 15(2), 525; https://doi.org/10.3390/ma15020525 - 11 Jan 2022
Cited by 7 | Viewed by 2239
Abstract
Petroleum hydrocarbons, as aggressive components of diesel oils, after migration to the land environment can alter the activity and efficiency of ecosystems. They can also be dangerous to animal and human health. Eco-friendly methods for the reclamation of affected soils is necessary to [...] Read more.
Petroleum hydrocarbons, as aggressive components of diesel oils, after migration to the land environment can alter the activity and efficiency of ecosystems. They can also be dangerous to animal and human health. Eco-friendly methods for the reclamation of affected soils is necessary to manage degraded lands. One such method is the use of ashes. The aim of this research was to determine how soil pollution with diesel oil (brand name, Eco-Diesel) affects the chemical composition of maize (Zea mays L.) and whether the application of ash from a combined heat and power plant, as well as from sewage sludge incineration, could reduce the potentially adverse impact of diesel oil on plants. The research results demonstrated that soil contamination with Eco-Diesel oil modified the content of selected macronutrients in the analyzed crop plant. Eco-Diesel oil had a negative effect on maize yield. The highest diesel oil dose in a series without neutralizing substances had a positive effect on the accumulation of most elements, except nitrogen and sodium. Soil enrichment with ash differentiated the content of macronutrients, mainly nitrogen and phosphorus, in the aerial biomass of maize. The ashes increased the yield of maize and content of some macronutrients, mainly nitrogen but also calcium, the latter in a series where soil was treated with ash from sewage sludge thermal recycling. Both types of ash also resulted in a decrease in the plant content of phosphorus, while ash from hard coal caused a slight reduction in the content of potassium in maize. Ash of different origins can be an effective solution in the reclamation of degraded soils, which may then be used for growing energy crops. Full article
Show Figures

Figure 1

47 pages, 20844 KiB  
Review
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review
by Hung-Vu Tran, Nhat M. Ngo, Riddhiman Medhi, Pannaree Srinoi, Tingting Liu, Supparesk Rittikulsittichai and T. Randall Lee
Materials 2022, 15(2), 503; https://doi.org/10.3390/ma15020503 - 10 Jan 2022
Cited by 97 | Viewed by 12857
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in [...] Read more.
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy. Full article
Show Figures

Figure 1

10 pages, 1867 KiB  
Article
In Situ Observation of Liquid Solder Alloys and Solid Substrate Reactions Using High-Voltage Transmission Electron Microscopy
by Xin F. Tan, Flora Somidin, Stuart D. McDonald, Michael J. Bermingham, Hiroshi Maeno, Syo Matsumura and Kazuhiro Nogita
Materials 2022, 15(2), 510; https://doi.org/10.3390/ma15020510 - 10 Jan 2022
Cited by 4 | Viewed by 2459
Abstract
The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to “freeze” the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is [...] Read more.
The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to “freeze” the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in Cu6Sn5 between a Sn-3.0 wt%Ag-0.5 wt%Cu (SAC305) solder alloy and a Cu substrate in situ at temperatures above the solidus of the alloy. This enables the continuous surveillance of rapid grain boundary movements of Cu6Sn5 during soldering and increases the fundamental understanding of reaction mechanisms in solder solid/liquid interfaces. Full article
(This article belongs to the Special Issue Materials Characterizations Using In-Situ Techniques)
Show Figures

Figure 1

12 pages, 4541 KiB  
Article
Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control
by Johannes Mersch, Najmeh Keshtkar, Henriette Grellmann, Carlos Alberto Gomez Cuaran, Mathis Bruns, Andreas Nocke, Chokri Cherif, Klaus Röbenack and Gerald Gerlach
Materials 2022, 15(2), 520; https://doi.org/10.3390/ma15020520 - 10 Jan 2022
Cited by 8 | Viewed by 2537
Abstract
Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional [...] Read more.
Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary. In this work, a soft actuator is presented that incorporates fiber-based actuators and sensors to monitor both deformation and temperature. The soft actuator showed considerable deformation around two solid body joints, which was then compared to the sensor signals, and their correlation was analyzed. Both, the actuator as well as the sensor materials were processed by braiding and tailored fiber placement before molding with silicone rubber. Finally, the novel fiber-rubber composite material was used to implement closed-loop control of the actuator with a maximum error of 0.5°. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites)
Show Figures

Figure 1

10 pages, 3060 KiB  
Article
Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling
by Roberto Scaffaro, Maria Clara Citarrella, Emmanuel Fortunato Gulino and Marco Morreale
Materials 2022, 15(2), 465; https://doi.org/10.3390/ma15020465 - 8 Jan 2022
Cited by 33 | Viewed by 3671
Abstract
In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from [...] Read more.
In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts. Concerning FDM, 5% and 10% HC-filled composites proved also easily printable. Mechanical results showed filler effectively acted as reinforcement: Young’s modulus and tensile strengths of the composites increased from 74.3 MPa to 236 MPa and from 18.6 MPa to 33.4 MPa, respectively, when 20% of HC was added to the pure matrix. FDM samples, moreover, showed higher mechanical properties if compared with CM ones due to rectilinear infill and fibers orientation. In fact, regarding the 10% HC composites, Young’s modulus of the CM and FDM ones displayed a relative increment of 176% and 224%, respectively. Full article
(This article belongs to the Special Issue Green Composites: Challenges and Opportunities)
Show Figures

Graphical abstract

30 pages, 3469 KiB  
Review
Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles
by Eva Magovac, Bojana Vončina, Igor Jordanov, Jaime C. Grunlan and Sandra Bischof
Materials 2022, 15(2), 432; https://doi.org/10.3390/ma15020432 - 7 Jan 2022
Cited by 46 | Viewed by 6013
Abstract
A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current [...] Read more.
A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review. Full article
(This article belongs to the Special Issue Application of Functional Textile Materials and Films)
Show Figures

Figure 1

19 pages, 25489 KiB  
Article
A Systematic Characterization Approach for Vacuum Bag Only Prepregs towards an Accurate Process Design
by Muhammed H. Arikan, Fatih Eroglu, Volkan Eskizeybek, Emine Feyza Sukur, Mehmet Yildiz and Hatice S. Sas
Materials 2022, 15(2), 451; https://doi.org/10.3390/ma15020451 - 7 Jan 2022
Cited by 5 | Viewed by 3302
Abstract
Aerospace-grade composite parts can be manufactured using Vacuum Bag Only prepregs through an accurate process design. Quality in the desired part can be realized by following process modeling, process optimization, and validation, which strongly depend on a primary and systematic material characterization methodology [...] Read more.
Aerospace-grade composite parts can be manufactured using Vacuum Bag Only prepregs through an accurate process design. Quality in the desired part can be realized by following process modeling, process optimization, and validation, which strongly depend on a primary and systematic material characterization methodology of the prepreg system and material constitutive behavior. The present study introduces a systematic characterization approach of a Vacuum Bag Only prepreg by covering the relevant material properties in an integrated manner with the process mechanisms of fluid flow, consolidation, and heat transfer. The characterization recipe is practiced under the categories of (i) resin system, (ii) fiber architecture, and (iii) thermal behavior. First, empirical models are successively developed for the cure-kinetics, glass transition temperature, and viscosity for the resin system. Then, the fiber architecture of the uncured prepreg system is identified with X-ray tomography to obtain the air permeability. Finally, the thermal characteristics of the prepreg and its constituents are experimentally characterized by adopting a novel specimen preparation technique for the specific heat capacity and thermal conductivity. Thus, this systematic approach is designed to provide the material data to process modeling with the motivation of a robust and integrated Vacuum Bag Only process design. Full article
Show Figures

Figure 1

10 pages, 1147 KiB  
Article
Facile Fabrication of ZnO-ZnFe2O4 Hollow Nanostructure by a One-Needle Syringe Electrospinning Method for a High-Selective H2S Gas Sensor
by Kee-Ryung Park, Ryun Na Kim, Yoseb Song, Jinhyeong Kwon and Hyeunseok Choi
Materials 2022, 15(2), 399; https://doi.org/10.3390/ma15020399 - 6 Jan 2022
Cited by 11 | Viewed by 2731
Abstract
Herein, a facile fabrication process of ZnO-ZnFe2O4 hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFe2O4 nanofibers are simply created by controlling the metal precursor ratios of [...] Read more.
Herein, a facile fabrication process of ZnO-ZnFe2O4 hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFe2O4 nanofibers are simply created by controlling the metal precursor ratios of Zn and Fe. Moreover, the different diffusion rates of the metal oxides and metal precursors generate a hollow nanostructure during calcination. The hollow structure of the ZnO-ZnFe2O4 enables an enlarged surface area and increased gas sensing sites. In addition, the interface of ZnO and ZnFe2O4 forms a p-n junction to improve gas response and to lower operation temperature. The optimized ZnO-ZnFe2O4 has shown good H2S gas sensing properties of 84.5 (S = Ra/Rg) at 10 ppm at 250 °C with excellent selectivity. This study shows the good potential of p-n junction ZnO-ZnFe2O4 on H2S detection and affords a promising sensor design for a high-performance gas sensor. Full article
(This article belongs to the Special Issue Feature Paper in Section Smart Materials)
Show Figures

Graphical abstract

11 pages, 2854 KiB  
Article
Smart Surfaces: Photocatalytic Degradation of Priority Pollutants on TiO2-Based Coatings in Indoor and Outdoor Environments—Principles and Mechanisms
by Dimitrios Kotzias, Vassilios Binas and George Kiriakidis
Materials 2022, 15(2), 402; https://doi.org/10.3390/ma15020402 - 6 Jan 2022
Cited by 12 | Viewed by 3000
Abstract
Heterogeneous photocatalysis using semiconductor oxides such as TiO2, provides an up-and-coming solution for the degradation of environmental pollutants compared with other technologies. TiO2-containing construction materials and paints activated by UV/solar light destroy the ozone precursors NO and NO2 [...] Read more.
Heterogeneous photocatalysis using semiconductor oxides such as TiO2, provides an up-and-coming solution for the degradation of environmental pollutants compared with other technologies. TiO2-containing construction materials and paints activated by UV/solar light destroy the ozone precursors NO and NO2 up to 80% and 30%, respectively. The majority of TiO2 materials developed so far are primarily for outdoor use. In recent years, substantial efforts have been made to investigate further the photocatalytic activity of materials containing TiO2 toward priority air pollutants such as NO, NO2, and volatile organic compounds (VOCs) frequently accumulated at high concentration levels, particularly in indoor spaces. The intention of the investigations was to modify the titanium dioxide (TiO2), so that it may be activated by visible light and subsequently used as additive in building envelop materials and indoor paints. This has been achieved, to a high extent, through doping of TiO2 with transition metals such as V, Cr, Fe, Mn, Ni, Co, Cu, and Zn, which reduce the energy gap of TiO2, facilitating the generation of free electrons and holes, thus, extending the absorption spectral range of modified TiO2 to the area of visible light (bathochromic shift-redshift). A substantial problem using TiO2-containing paints and other building materials in indoor environments is the formation of byproducts, e.g., formaldehyde, through the heterogeneous photocatalytic reaction of TiO2 with organic matrices. This affects the air quality in confined spaces and, thus, becomes a possible risk for human health and wellbeing. This work describes the principles and mechanisms of the photocatalytic reactions at the air/catalyst interface of priority pollutants such as NO, benzene, and toluene as individual compounds or mixtures. Emphasis is placed on the reaction and recombination processes of the charge carriers, valence band positive holes (h+) and free electrons (e), on the surface of TiO2, and on key factors affecting the photocatalytic processes, such as humidity. A hypothesis on the role of aromatic compounds in suppressing the recombination process (h+ and e) is formulated and discussed. Furthermore, the results of the photocatalytic degradation of NO under visible light conditions using different admixtures of TiO2 and manganese doped (Mn–TiO2) are presented and discussed. Full article
Show Figures

Figure 1

Back to TopTop