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Abstract: Magnetite nanoparticles with different surface coverages are of great interest for many
applications due to their intrinsic magnetic properties, nanometer size, and definite surface mor-
phology. Magnetite nanoparticles are widely used for different medical-biological applications while
their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called
magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review
gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and
application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
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1. Introduction

Nanotechnology is a field of fundamental and applied science dealing with methods
of research, methods of production, and the use of materials with defined atomic structures
through the controlled manipulation of individual atoms and molecules. Nanotechnology is
focused on the creation, investigation, and application of new types of materials, called “nano-
materials”, of which the size of at least one dimension is from 1 to 100 nm. Nanomaterials find
their application in the broadest fields, including the chemical industry [1–3], agriculture [4,5],
engineering [6], pharmaceutics [7], sustainable energy [8], medicine [9–11], etc.

In the last two decades, nanomaterials such as magnetic nanoparticles (MNPs) were
widely utilized for a huge number of applications due to their specific magnetic properties,
high surface area, and unique dimensions. Among them are NPs of different magnetic
structures: nanodots [12], nanorods [13], nanowires [14,15], nanotubes [16], core–shell
nanoparticles [17], etc. The chemical composition of MNPs also varies widely, including
pure metals, alloys, metal oxides, and doped NPs. MNPs could be further coated and
functionalized according to the needs of their consumers. Here, we highlight magnetite
nanoparticles among a giant family of MNPs.

Considerable efforts are devoted to the creation of synthetic MNPs and to various
strategies for their synthesis. In general, two main approaches to nanomagnetite synthesis
exist: top-down and bottom-up. Top-down approaches consist of breaking up large pieces
of the initial material to produce nanoparticles and include the use of physical methods,
such as ball milling, electron beam lithography, etc. Bottom-up approaches imply the
creation of nanoparticles from molecules and include the use of both chemical and biological
methods. Attaining NPs in the range of nanometers using physical methods is difficult; thus,
more efforts should be directed toward creating and improving chemical and biological
methods of synthesis in order to obtain MNPs with desirable sizes, shapes, crystallinities,
and compositions. However, a question remains to be answered: what method is most
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suitable for MNP production? Every method has its limitation, so the choice of synthesis
method depends on the desired application of the MNP.

As MNPs are easily oxidizable by oxygen in the environment and agglomerate due to
their large specific surface area, developing specific functional coatings (surface functional-
ization) that would protect the MNPs and further decorate MNPs with therapeutic agents,
fluorescent labels, etc. is necessary.

MNPs are thought to be promising for a wide range of applications because of their
unique characteristics, including their high saturation magnetization, which makes them
easily operated by the magnetic field, and their low toxicity. They are broadly applied
and have potential for biomedical applications, such as magnetic drug targeting [18–20],
DNA/RNA purification [21–23], magnetofection [24,25], hyperthermia [26–29], MRI imag-
ing [30,31], cell separation [32], etc. MNPs also could be utilized for the creation of fer-
rofluids (FF)—colloidal suspension of NPs in polar or non-polar liquid carriers. The main
distinctive features of FFs are the fluidities of liquid material and the magnetism of MNPs.
FFs have unique magnetic properties in the presence of magnetic fields such as optical
anisotropy, birefringence, and field-dependent transmission. These unique properties of
FFs make them a promising platform for novel optoelectronic devices, such as optical fiber
sensors, optical gratings, organic light-emitting diods, agents for the enhancing of MRI
images, photonic materials, etc. The use of FFs in optics and nanophotonics faces numerous
challenges; thus, investigations in this field are necessary.

This review gives a comprehensive overview of nanomagnetite properties and syn-
thesis as well as focuses on recent developments in MNPs for optical application. First,
the structure and special properties of magnetite are briefly discussed (Section 2). We also
discuss various methods of nanomagnetite synthesis as well as the preparation of magnetic
FFs (Sections 3 and 4). Then, the application of magnetic FFs in optics and nanophotonics
is highlighted (Section 5). Finally, we discuss some challenges in this field of research and
their possible solutions (Conclusions). This review not only promotes recent state-of-the-art
methods of magnetite synthesis (biological routes) in comparison with routine chemical
methods but also discusses novel cutting-edge applications of magnetite nanoparticles
(magnetite ferrofluids) in optics and nanophotonics, such as “smart” windows, solar energy
harvesting, organic light-emitting diodes, etc.

2. Structure and Properties of Magnetite

Magnetite, Fe3O4, an iron oxide, has an inverse spinel structure (Figure 1). The details
of its structure were first established in 1915 by W.H. Bragg [33], who provided one of the
first mineral structures determined using the X-ray diffraction method. Magnetite has a
cubic unit cell with a lattice constant of a = 0.839 nm and is an iron oxide of mixed valences
Fe3+ and Fe2+ within the stoichiometry Fe2+/Fe3+ = 0.5. The main feature of the spinel
crystal lattice is the presence of two crystallographic positions of iron ions: Fe2+ and half of
the Fe3+ ions occupying octahedral sites (surrounded by six oxygen O2−), and the other half
of the Fe3+ ions occupying tetrahedral sites (surrounded by four oxygen O2−). Magnetite
is frequently non-stoichiometric, resulting in a cation-deficient Fe3+ layer. Fe2+ could also
be fully or partly replaced by other divalent ions (Mg2+, Co2+, Ni2+, etc.), which leads to
changes in the lattice constant.

The magnetic properties of magnetite are determined by its crystal structure. Namely,
the ordering of magnetic spin moments of iron cations in the crystal lattice occurs through
a special interaction between electrons of the 3d shell of neighboring cations. The ordering
of magnetic spin moments leads to the overall magnetic ordering in magnetite. Magnetite
possesses magnetocrystalline anisotropy, a special case of magnetic anisotropy that is
related to spin-orbit coupling. Magnetocrystalline anisotropy depends on the magnetite
crystal structure, shape, and chemical composition and plays a critical role in the magnetic
ordering of magnetite. The unique magnetic and structural properties of magnetite, in
comparison, for example, with ferrites, are determined also by the presence of so-called
hopping electrons. Briefly, 3d electron transfer occurs in the Fe2+–Fe+3 octahedral cation
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pair, which could be described in short as Fe2+(3d6) ↔ Fe3+(3d5). The concentration of
hopping electrons in magnetite is high in comparison with spinel ferrites, which have
similar lattice structures, and thus makes a significant contribution to the formation of its
magnetic properties. To conclude, magnetite at room temperature is ferrimagnetic with a
Curie temperature of 580 ◦C (Table 1), which has a rather high saturation magnetization
value of 92 A·m2/kg.
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Figure 1. Visualization of the magnetite unit cell identified using octahedral Fe2.5+ (dark grey),
tetrahedral Fe2+ (light grey), and oxygen (red). The local site symmetries are shown by the octahedral
and tetrahedral shapes around fully coordinated Fe sites within the unit cell. The different bond
angles between the Fe sites lead to dominant antiferromagnetic coupling between the tetrahedral
and octahedral sites, giving a bulk ferrimagnetic order (adapted from [34] with permission from
Springer Nature).

Table 1. Properties of magnetite.

Properties Magnetite

Molecular formula Fe3O4
Crystal structure Cubic
Density (g/cm3 ) 5.18

Melting point (◦C) 1583–1597
Boiling point (◦C) 2623

Color black
Hardness 5.5

Type of magnetism ferrimagnetic
Curie temperature (K) 580
Ms at 300 K (A·m2/kg) 92–100

Magnetism (nanoparticles) Superparamagnetic
Lustre Metallic

Diaphaneity Opaque
Crystal System Isometric
Birefringence Isotropic minerals have no birefringence

Refractive Index values n = 2.42

3. Synthesis and Characterization of Magnetite Nanoparticles

MNPs for various applications should possess certain parameters, namely, narrow
size distribution, biocompatibility, weak aggregation (stability), definite surface properties,
and high saturation magnetization. To fulfill the abovementioned requirements, a wide
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diversity of synthetic methods was developed. Here, we highlight two routes for magnetite
nanoparticle preparation: chemical and biological routes.

3.1. Chemical Synthesis of Magnetite Nanoparticles

Among diverse techniques developed for nanomagnetite synthesis, we could mention
the co-precipitation method, partial oxidation of ferrous hydroxide, reactions in constrained
environments, hydrothermal or high-temperature reactions, polyol method, sol–gel reac-
tions, sonochemical procedure, etc. Many authors [35–39] reported the features of this
chemical technique and indicated their advantages and disadvantages.

3.1.1. Co-Precipitation Method

The most commonly used method is the co-precipitation method first reported by
Massart [40], which has been extensively investigated and modified. This synthesis leads
to the formation of magnetite nanoparticles of defined size and high magnetic properties.
Magnetite nanoparticles are obtained by co-precipitation of ferrous and ferric salts in the
water medium at different Fe+3/Fe2+ ratios, with a strong basic solution (i.e., ammonia) at
room or elevated temperatures [41,42]. The reaction between the iron salts solution and
the precipitating agent is slightly exothermic [43]. The principal scheme of the magnetite
synthesis via the co-precipitation method is represented in Figure 2.
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Figure 2. Schematic representation of magnetite synthesis by co-precipitation method (adapted
from [44] with permission from the Taylor & Francis Group).

The following reactions were proposed for the mechanism of magnetite formation [45].
At the first stage, ferric and ferrous hydroxides are precipitated in the water solution:

Fe3+ + 3OH− = Fe(OH)3 (1)

Fe2+ + 2OH− = Fe(OH)2 (2)
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At the second stage, ferric hydroxide decomposes to FeOOH:

Fe(OH)3 = FeOOH + H2O, (3)

Finally, a solid state reaction between FeOOH and Fe(OH)2 takes place, resulting in
magnetite formation:

2FeOOH + Fe(OH)2 = Fe3O4 + 2H2O, (4)

The overall reaction is as follows:

2Fe3+ + Fe2+ + 8OH− = 2Fe(OH)3Fe(OH)2 → Fe3O4 + 4H2O, (5)

The concentration and size of magnetite nanoparticles are influenced by various
factors, including initial concentrations and molar ratios of ferrous and ferric salts, base
solution concentrations and nature, reaction temperature, presence/absence of external
magnetic field and/or microwave irradiation, inert atmosphere, stirring rate, etc.

A Scanning Electron Microscopy (SEM) image of magnetite nanoparticles synthesized
by the co-precipitation method is shown in Figure 3.
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Figure 3. Scanning Electron Microscopy (SEM) image of magnetite nanoparticles synthesized by
co-precipitation method (adapted from [41] with permission from IOP Publishing).

This method is simple and enables a large number of nanoparticles to be obtained. We
note that, among the disadvantages of the method, controlling the shape of the nanopar-
ticles is difficult (poor morphology), and particles with impurities (non-stoichiometric
magnetite) are obtained.

3.1.2. Partial Oxidation of Ferrous Hydroxide

The next widely used procedure for nanomagnetite fabrication was first reported by
Sugimoto and Matijevic [46]. They reported the next route of monodispersed spherical
nanomagnetite synthesis. Amorphous ferrous hydroxide was first precipitated from the
ferrous sulphate solution, and then the aqueous gel was aged at 90 ◦C in the presence
of nitrate ion, which results in magnetite formation. This route yields “monodispersed”
spherical magnetite particles over a broad range of diameters.

The properties of MNPs obtained by this method depend on the concentration of
the reagents, the pH of the reaction mixture, the nature of the nonconstituent anions and
cations, the presence/absence of oxygen in the aging system, and the influence of an
external magnetic field [47].

This method is convenient and has some advantages: the versatility of the method and
the fact that surface of these particles does not need to be modified further to make them
hydrophilic. The latter is especially relevant for biomedical applications of magnetic iron
oxide nanoparticles [48]. The disadvantages of the method are the formation of goethite in
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the presence of minor amounts of oxygen and extensive agglomeration of the synthesized
NPs [49].

3.1.3. Reaction in Constrained Environments

One of the ways to produce magnetite nanoparticles with uniform dimensions is
to perform the reaction in constrained environments. Different synthetic and biological
reactors could be used for this synthesis, such as apoferritin protein cages [50], phospholipid
membranes (micelles) [51], mesoporous materials [52], microemulsions [53], etc. Here,
we would focus on apoferritin protein cages as constrained environments for magnetite
nanoparticles synthesis.

In 1992, Mann was the first who synthesized magnetite inside a horse spleen ferritin
cavity [54]. Ferritin is an iron storage protein and has a spherical protein cage with an
exterior diameter of 12 nm and an interior cavity diameter of 6–8 nm. Yu et al. [50] have a
reported novel thermostable ferritin (PcFn), purified and characterized, that could success-
fully direct the synthesis of thermostable magnetoferritins (M-PcFn) with monodispersed
iron oxide nanoparticles in one step. They obtained good crystalline and superparamag-
netic magnetite nanoparticles with an average diameter of 4.7 nm (Figure 4). Xue et al. [55]
gave a comprehensive analysis of the synthesis, properties, modifications, and biomedi-
cal applications of magnetite nanoparticles, synthesized inside a ferritin cavity. Uchida
et al. [56] describes a protocol of nanoparticle synthesis in protein cages and the synthesis
of magnetite (or maghemite) nanoparticles (hard inorganic materials) within ferritin cages.
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Figure 4. High-resolution Transmission Electron Microscopy (TEM) images showing lattice fringes of
the magnetite cores (adapted from [50] with permission from The Royal Society of Chemistry 2019).

The cage-like property of ferritin is an ideal template for the synthesis of various
nanoparticles as the protein shell completely isolated the newly synthesized nanoparticles,
preventing their oxidation and particle interaction. It is a unique biomineralization system
that makes the final biomineral soluble and mobile yet biochemically inert [57]. Nowadays,
magnetite nanoparticles, synthesized inside ferritin protein shells, are widely used for
biomedical applications such as MRI contrast agents, cell targeting, gene therapy, etc.

3.1.4. Hydrothermal or High-Temperature Reactions

Hydrothermal or high-temperature reactions are another wet-chemical method of
synthesizing magnetite nanoparticles performed in a reactor or autoclave in an aqueous
media, where a pressure of >6000 Pa and a temperature of >200 ◦C are maintained [39].

To date, magnetite nanoparticles of various morphologies, such as spheres, cubes, and
wires have been synthesized using this method. The morphology of synthesized nanoparti-
cles could be determined by changing the reaction temperature, solvent type, precursor
salt, reducing agent, etc. Torres-Gómez et al. [58] presented a simple and efficient method
for pure phase magnetite nanoparticle synthesis via the hydrothermal method. The authors
tuned the morphology of obtained nanoparticles by changing the reaction temperature;
the nanoparticles were synthesized at 120 ◦C, 140 ◦C, and 160 ◦C. All of the nanoparticles
obtained were shown to be Fe3O4 in a pure magnetite phase with a high level of crystallinity
and uniform morphology at each temperature (Figure 5). The synthesized nanoparticles
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exhibited good saturation magnetization, and the resulting shapes were quasi-spheres,
octahedrons, and cubes. Cursaru et al. [59] reported the physical-chemical, structural,
magnetic, and biocompatible properties of magnetite prepared using the hydrothermal
method in different temperature and pressure conditions. The authors found that crys-
tallite size increases with increases in pressure and temperature while the hydrodynamic
diameter is influenced only by temperature. The magnetic core of particles synthesized at
high temperatures is larger (13 nm) than the magnetic cores of the particles, synthesized at
100 ◦C (11 nm). The particles show only minor toxicity, meaning that these particles could
be suited for biomedical application. Kumar et al. [60] presented a detailed investigation
of the temperature effect on the hydrothermal synthesis of magnetite nanoparticles. They
showed that temperature plays a crucial role in the single-phase synthesis of magnetite
nanoparticles. Thus, a single-phase cubic magnetite structure with high crystallinity was
found in the samples synthesized at 160 and 180 ◦C, whereas samples prepared at 120 and
140 ◦C were of a mixed phase (α-Fe2O3 and Fe3O4).
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Figure 5. SEM images of magnetite nanoparticles obtained after hydrothermal synthesis at different
temperatures: (a,d) 120 ◦C, (b,e) 140 ◦C, and (c,f) 160 ◦C (adapted from [58] with permission from
2019 Nayely Torres-Gómez et al.).

We can conclude that by using a hydrothermal or high-temperature reaction, one
could obtain magnetite nanoparticles of different shapes and morphologies. Among the
advantages of this method, we mention the high crystallinity of the nanoparticles obtained.
The main disadvantage of this method is the need for high temperatures and pressures,
which means expensive facilities.

3.1.5. Polyol Method

The polyol method is usually utilized to obtain magnetite nanoparticles with controlled
shapes and sizes. The type of polyol, salt ratio, salt concentration, etc. affects the growth,
shape, size, and yield of the particles [39]. Polyols are both reducing and stabilizing agents
used to control particle growth, which also prevents aggregation of the particles.
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Wan et al. [61] declared a simple and effective route for obtaining a new class of
magnetite nanoparticles based on a high-temperature decomposition of ferric acetylaceto-
nate in triethylene glycol at elevated temperatures. The synthesized nanoparticles were
uniform in size, highly crystalline, and superparamagnetic at room temperature. The
unique hydrophilic surface structures of the particles were shown to lead to stability not
only in aqueous solutions at a neutral pH but also in a physiological buffer. The authors
claimed that these novel magnetite nanoparticles should have great potential as high-
performance MRI contrast agents for cell or molecular imaging and diagnostic applications.
Oha et al. [62] synthesized superparamagnetic magnetite nanoparticles using the polyol
method, which is based on the polar polyol. They found that the particle size decreased as
the concentration of sodium acetate increased and decreased when the molar ratio of the
iron precursor was decreased. They obtained magnetite particles ranging from 11 nm to 338
nm in size. Hachani et al. [63] synthesized iron oxide nanoparticles of low polydispersity
through a polyol synthesis in high-pressure and high-temperature conditions. The authors
claimed that this process yields nanoparticles with a narrow particle size distribution
(Figure 6) in a simple, reproducible, and cost-effective manner without the need for an
inert atmosphere. Their potential as a magnetic resonance imaging (MRI) contrast agent
was confirmed.
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To conclude, the advantages of polyol synthesis are its low cost and hydrolytic stability.
Among the disadvantages of this method are its thermal instability and flammability.

3.1.6. Sol–Gel Synthesis

The sol–gel method is a wet-chemical process for nanoparticle preparation based
on hydrolysis and polycondensation of iron precursors with the formation of a colloidal
solution of nanoparticles (“sol”) and further drying (“gel” formation) to remove the solvent
and, finally, to obtain magnetite nanoparticles [64].

Shaker et al. [65] reported about magnetite nanoparticles prepared using the sol–gel
method combined with annealing at temperatures of 200, 300, and 400 ◦C. The characteri-
zation results showed that the size of magnetite nanoparticles can be changed by varying
the annealing temperature. They claimed that the sol–gel method offers several advantages
for the preparation of magnetite nanoparticles: the synthetic process is economical and
environmentally friendly, and size-controlled magnetite nanoparticles are produced at
different annealing temperatures. Takai et al. [66] demonstrated the preparation of mag-
netite nanoparticles using a sol–gel-assisted method with further annealing in a vacuum
at different temperatures (200–400 ◦C). The results indicated that magnetite nanoparticles
of different sizes were obtained, simply by varying the annealing temperatures. The mor-
phologies of the particles obtained at 400 ◦C are more spherical. The higher temperature,
the higher the mean particle size of the nanoparticles obtained.

The advantages of sol–gel synthesis include its monodispersity, good control of the
particle size, control of the microstructure, desirable shapes and lengths of the products,
its high purity, and good crystallinity of the products. Among the disadvantages of this
method are its long completion time, toxic organic solvents, and contamination of the
product with the matrix component.

3.1.7. Sonochemical Synthesis

Via the sonochemical procedure, the chemical reaction occurs due to the application
of ultrasound irradiation, which causes acoustic cavitation in the aqueous solutions. Such
cavitation leads to the formation, growth, and collapse of bubbles that produce a great
amount of energy and create high temperatures and pressures. This method was also
suitable for the synthesis of magnetite nanoparticles.

De Freitasa et al. [67] demonstrated that the preparation of MNPs using the sonochem-
ically assisted homogeneous co-precipitation method resulted in nanoparticles with sizes of
~35 nm. The authors concluded that the smaller diameter nanoparticles were obtained by
applying a higher power and demonstrated iron oxide nanoparticle synthesis at a pH lower
than 6 for the first time. The conclusion was made that ultrasonic energy accelerates the
reaction. Wang et al. [68] synthesized magnetite nanoparticles of a controlled size (~15 nm)
and size distribution via an ultrasound-assisted co-precipitation technique. The nanopar-
ticles obtained have rather high saturation magnetization (~50 A·m2/kg). Nevertheless,
the authors concluded that the magnetic characteristics of the nanoparticles obtained were
lower than that of nanoparticles produced without ultrasound assistance due to the size
difference. Fuentes-García and co-authors [69] developed a fast, single-step sonochemical
strategy for the green manufacturing of magnetite nanoparticles, using iron sulfate as the
sole source of iron and sodium hydroxide as the reducing agent in an aqueous medium.
They reported that the sodium hydroxide concentration was varied to optimize the final
size and magnetic properties of the magnetite nanoparticles and to minimize the number
of corrosive byproducts from the reaction. The proposed method allows for control of the
uniformity in size and shape of the produced MNPs within the ≈20−60 nm range, making
them promising for future biomedical applications.

The advantages of the sonochemical procedure are that the method reduces the growth
of crystals and increases the reaction rate. One could obtain nanoparticles with high crys-
tallinity, saturation magnetization, and narrow size distribution. However, the mechanism
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of this action is still not well understood, so the shape and size of the nanoparticles obtained
are difficult to control.

3.2. Biological Synthesis of Magnetite Nanoparticles

MNPs also could be produced using biological objects such as bacteria, plants, fungi,
etc. Biological synthesis is an efficient, environmentally friendly, and green process [39]. Be-
cause of this, the particles produced are less stable, have less homogeneity, and agglomerate
more [70]. The principal scheme of green synthesis for MNPs is shown in Figure 7.
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One of the methods of MNP production consists of mixing precursor salts with a green
substrate containing biological compounds [71]. Green substrates act as both reducing
and limiting agents, which can stabilize the NPs during the synthesis process. To obtain
NPs with different properties, one could modify the concentrations of precursor salt and
green substrate, time, temperature, and pH parameters during the synthesis. The authors
claimed that this approach is not only simple but also economical and produces less waste,
which makes it environmentally friendly. The MNPs synthesized using this method are
suitable for biomedical applications due to a coating formed of the biological compounds
of the green substrate that is not toxic and biocompatible [38].

Magnetotactic bacteria, which was first discovered by Blakemore in 1975 [72], also
could be utilized for MNPs’ synthesis. This process is called biologically controlled mineral-
ization and results in the formation of iron oxide NPs covered by a lipid bilayer membrane,
called magnetosome. Nowadays, some cultured strains of magnetotactic bacteria could
be used for MNP synthesis. The chemical composition, shape (morphology), and crystal
size of MNPs are uniform for each strain. Magnetite crystals in magnetosomes of cultured
strains could be in the form of a prism, a cuboctahedron, a bullet, or a combination of a
cube and dodecahedron [73]. Biologically synthesized MNPs possess features that differ
from chemically obtained nanoparticles. They have a narrow size distribution, a uniform
morphology, and high levels of magnetite crystallinity (Figure 8) [74]. They are usually
single magnetic domain NPs, which means that their magnetic moment is thermally sta-
ble at a physiological temperature. The arrangement of magnetosome chains inside the
bacteria prevents aggregation, thus yielding a high rate of internalization within human
cells. Magnetosomes are covered with lipids that result in a negative charge of their surface;
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thus, they can easily be functionalized. They exhibit high biocompatibility and low toxicity
towards living organisms. All of the abovementioned advantages make magnetotactic
bacteria a promising substrate for the creation of magnetite nanoparticles.
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Although biological synthesis of MNPs demonstrates eco-friendliness and non-toxicity,
regarding chemical synthesis, it also experiences great challenges, namely, low yield of NPs
as well as the need for further investigation of the mechanisms behind its synthesis.

To conclude Section 3, we have difficulty recommending one method as the most suit-
able for MNP production. Both chemical and biological routes have their own advantages
and disadvantages as well as challenges that need to be overcome (Table 2).

Table 2. Magnetic nanoparticles (MNP) synthesis and their comparison in terms of synthetic routes,
advantages, disadvantages, and challenges.

Method Conditions Advantages Disadvantages Challenges

C
he

m
ic

al
ro

ut
es

Co-precipitation

Co-precipitation of
ferrous and ferric salts in

water with a strong
basic solution at room
temperature or higher

Simple, large
quantity of

nanoparticles

Poor morphology and
non-stoichiometric

magnetite

Size- and
shape-controlled

synthesis with
reproducibility

Partial oxidation of
ferrous hydroxide

Precipitation of
amorphous ferrous
hydroxide from a
ferrous sulphate

solution with
subsequent aging at

90 ◦C in the presence of
nitrate ion

Versatility and
hydrophilic particles

Goethite formation
and extensive
nanoparticle

agglomeration

High oxidation of
ultrafine iron oxide
nanoparticles and

aggregation of
nanoparticles
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Table 2. Cont.

Method Conditions Advantages Disadvantages Challenges

C
he

m
ic

al
ro

ut
es

Reaction in
constrained

environments

Precipitation of iron
oxides using synthetic
and biological reactors

(apoferritin protein
cages, micelles,

mesoporous templates,
and microemulsion)

Nanoparticles with
uniform dimensions
preventing oxidation

and particle
interaction

Complicated
conditions

Purification of
nanoparticles and

scale-up procedures

Hydrothermal or
high-temperature

reactions

Wet-chemical method of
magnetite nanoparticles
obtained using reactor

or autoclave, with a
pressure of >6000 Pa and

a temperature of
>200 ◦C

Nanoparticles of
different shapes and
morphologies with
high crystallinity

High temperatures
and pressures

Need expensive
facilities

Polyol method

High-temperature
decomposition of ferric

precursors in the
polyol medium

Low cost, hydrolytic
stability, and

nanoparticles with
controlled shape

and size

Usage of toxic solvents Thermal instability
and flammability

Sol–gel synthesis

Wet-chemical process
based on hydrolysis and

polycondensation of
iron precursors with the
formation of a “sol” and

further drying
(“gel” formation)

Monodispersity,
good control of

particle size, control
of microstructure,

desirable shape and
length of the

products, high
purity, and good

crystallinity

Long completion time
and toxic organic

solvents

Contamination of the
product with the

matrix component

Sonochemical
synthesis

Chemical reaction
occurs due to the

application of
ultrasound irradiation,
which causes acoustic

cavitation in the
aqueous solutions

Nanoparticles with
high crystallinity,

saturation
magnetization, and

narrow size
distribution

Shape and size of
nanoparticles obtained
are difficult to control

Mechanism of reaction
is still not well

understood

Bi
ol

og
ic

al
ro

ut
es Bacterial

Precipitation of
magnetite nanoparticles

inside a bacterial
magnetosome

Non-toxic,
biocompatible, and

unique crystal shape

Culturing
microorganisms takes

more time and
complicated
equipment

Limited knowledge
about

biomineralization
process and

time-consuming

Plants

Mixing precursor salts
with green substrates

that act as reducing and
limiting agents

Non-toxic,
biocompatible, and

eco-friendly

Difficulty controlling
size and properties

Limited knowledge
about the mechanism

of the process and
time-consuming

As every method has its limitation, the choice of synthesis method needs to be made
based on the needs of the desired application of MNPs.

4. Preparation of Magnetic Ferrofluids

The first synthesis of ferrofluid was reported by Pappel [75] in 1965, and after that, the
number of publications in this area increased each year. Nanoparticles of ferromagnetic
metals as well as magnetic compounds can be used to produce magnetic ferrofluids (FFs).
The stability of FFs is one of the most critical challenges, and achieving appropriate stability
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in FFs remains a major challenge. Second, the increase in viscosity caused by the use of
nanofluids is a significant disadvantage due to the increased pumping power required.

The two main steps involved in the synthesis of magnetic ferrofluids are (i) the produc-
tion of nano-sized MNPs and (ii) the subsequent dispersion of the nanoparticles obtained
into carrier liquids [76]. Two types of magnetic fluids can be synthesized depending on the
method of colloidal stabilization: water-based fluid or organic surfaced-based fluids. Typi-
cally, the FFs consist of a magnetic phase, a carrier liquid, and additives. Nanosized iron
oxide is one of the most widespread magnetic phases in ferrofluids. Various approaches
were developed to synthesize and characterize high-quality magnetic iron oxide nanoparti-
cles. These nanoparticles are classified by the phases in which they form: liquid phase, gas
phase, and solid phase (Figure 9).
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MNPs are synthesized in the liquid phase by acoustic-chemical, microwave [77], ther-
mal decomposition [78], and chemical reduction methods [79] as well as by co-deposition
and microemulsion [80]. Chemical gas-phase deposition, arc discharge [81], and laser
pyrolysis are used to produce them in the gas phase, while combustion and annealing
are used to obtain them in the solid phase. An alternative method is grinding a magnetic
powder of micron sizes for several weeks in a ball mill by mixing it with a solvent and
dispersant [82].

In general, two approaches are used in producing nanofluids: one-step and two-step.
The manufacture of nanoparticles and the preparation of ferrofluid are coupled in the
one-step technique. The nanoparticles are manufactured initially and then dispersed in a
suitable carrier fluid in the second stage of the two-step procedure. Magnetic powders are
suspended in a carrier liquid, which acts as a medium [83].

The protection of colloid nanoparticles from oxidation and the prevention of agglom-
eration and coagulation in both the manufacturing and transformation of particles into
the colloidal state in the carrier liquid are significant goals in the production of FFs. These
fluids are created in a variety of carrier liquids, including water, silicone oil, synthetic or
semi-synthetic oil, mineral oil, lubricating oil, kerosene, and mixtures of these and many
other polar liquids. The carrier liquid must be inert with both the magnetic phase and the
substances used in the device. As an alternative to the traditional alcohol- and water-based
FFs, other solvents such as ionic liquids were tested. Studies on FFs employing ionic liquids
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were published in recent years, and they appear to be a promising subject of research.
Rodriguez-Arco and colleagues [84] described the synthesis of magnetic fluids made up of
magnetite nanoparticles suspended in ionic liquid in the presence of different additives. To
ensure the long-term stability of ionic liquid-based FFs, steric repulsion was required, and
the easiest approach to accomplishing this was to use surfactants adsorbed on the surface
of the particles with tails compatible with the liquid carrier [84]. Dispersants must be used
during the FFs synthesis to reduce particle agglomeration and to promote colloidal stability,
both of which are significant in FF applications. Nanofluids must have features such as
durability and stability, as well as a low proclivity for agglomeration. The additives must
also be chosen to fit the carrier liquid’s dielectric characteristics. Oleic acid (OA) is a typical
surfactant used to stabilize MNPs produced using the classic co-precipitation method [83].
Citric and tartaric acids, in addition to oleic acid, are utilized to stabilize FFs within a wide
range of pH (pH 3–11) [85]. Polymers such as silica [86], chitosan [87], polyvinyl alcohol
(PVA) [88], and ethylene glycol [89] are commonly employed to coat nanoparticles and to
prevent them from sticking together, thus improving aqueous medium dispersibility. To
avoid oxidation, anti-oxidant compounds might be added. pH control additives are also
employed in water-based FFs. The use of ultrasonication or the addition of surfactants can
successfully reduce agglomeration and can improve nanoparticle dispersion behavior. A
schematic representation of the water-based magnetic ferrofluids preparation is proposed
in Figure 10.
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Elsevier, 2019).
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The use of oil blend-based Ferro-nanofluids to improve thermal conductivity for heat
transfer applications was reported by Imran et al. [91]. This paper showed how to make oil-
based Ferro-nanofluids more efficiently with tunable thermal conductivity for heat transfer
applications. Elsaidy et al. [92] used size-customized clusters of iron oxide nanoparticles to
tune the thermal characteristics of aqueous nanofluids. Mohapatra and co-workers [93]
synthesized ferrofluid oil droplets containing superparamagnetic nanoparticles coated with
a surfactant or polymer distributed in water to form magnetic nanoemulsion. This work
showed how pH and magnetic field control may be used to tune the optical characteristics
of magnetic fluids.

To conclude, the stability of ferrofluids is critical for their different applications, which
have been increasing in recent years due to their tunable properties.

5. Application of Magnetic Ferrofluids in Optics and Nanophotonics

Magnetic fluids are utilized for various technological, biological, and medical purposes,
including machine element design applications (magnetic sealing, interior and viscous
dampers, FF film bearing, and FF lubrication), bio-medical applications (site-specific drug
delivery for hyperthermia and contrast agents for MRI), and thermal engineering appli-
cations (enhancement of thermal conductivity of FFs and pool boiling heat transfer of
FFs) [94,95]. In recent years, magnetic FFs found application in optics due to their unique
magneto-optical properties in the presence of the magnetic field, such as optical anisotropy,
birefringence, and field-dependent transmission.

5.1. Photonic Materials

Photonic materials are prospective materials for different technologies, such as tun-
able photonic crystals, switches, filters, as well as tags for biological applications, and
the methods of their production now are developing rapidly. Ge et al. [96] developed a
method for the preparation of polyacrylate-capped superparamagnetic magnetite colloidal
nanocrystal clusters with tunable sizes from 30 to 180 nm. After the synthesis of MNPs by
high-temperature hydrolysis of ferric iron with the addition of sodium hydroxide in a solu-
tion containing polyacrylic acid and diethylene glycol, the NPs obtained were dispersed in
water and remained stable in solution for at least several months. Such superparamagnetic
clusters were reported to be able to be employed directly in the construction of colloidal
photonic crystals with highly tunable stop bands that can be moved across the entire visible
spectral region owing to the highly charged polyacrylate-capped surfaces and the strong
interaction of the magnetite colloidal nanocrystal clusters with a magnetic field. The tuning
range of the diffraction wavelength is related to the average size of the colloidal nanocrystal
clusters. In general, large clusters (160–180 nm) preferentially diffract red light (~750 nm)
at relatively weak (~87 G) magnetic fields, while small clusters (60–100 nm) diffracted blue
(~430 nm) light in stronger (~350 G) magnetic fields. The optical response of the photonic
crystals to external magnetic was concluded to be rapid and fully reversible, which could
provide a new platform for the fabrication of novel optical microelectromechanical systems,
sensors, and color display units.

Yang et al. [97] reported the gram-scale hydrothermal synthesis of superparamagnetic
magnetite nanocrystal clusters and their long-term charge stability. Their investigation of
the yield and particle size of the products with different reaction volumes, from 20 mL to
340 mL, revealed that the hydrothermal route is scalable for preparing magnetite nanocrys-
tal clusters at the gram scale or even larger. The assembly and photonic properties of
the as-prepared magnetite nanocrystal clusters dispersed in water in response to external
magnetic fields were studied. For the colloidal nanoclusters prepared at sizes of ~123 nm,
a diffraction peak at 780 nm appeared when a magnetic field of 50 Oe was applied and the
diffraction peak gradually blue-shifted from 780 to 470 nm as the magnetic field strength
increased. The applications of the magnetite nanocrystal clusters as building blocks for
aqueous-form magnetically responsive photonic crystals with widely, rapidly, and re-
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versibly tunable diffractions across the visible and near infrared ranges as well as long-term
stability of photonic performances were also demonstrated.

Kostopoulou et al. [98] developed a modified synthetic protocol for the growth of
monodispersed, superparamagnetic, colloidal nanoclusters, which consisted of iron oxide
nanocrystals with adjustable sizes. The colloidal nanoclusters’ physical behaviors were
studied, and the influence of the grain size on their magnetic and optical response was
highlighted. The optical properties of the nanoclusters created were shown to be able to
be tuned by applying an external magnetic field: with an increase in the strength of the
external magnetic field, in the range of 160–600 G, the diffraction shifted towards the blue
region of the spectrum. The nanoclusters were concluded to combine useful attributes,
such as superparamagnetic behavior, with high saturation magnetization; to be stable in
water; and to be able to be easily synthesized from commercial starting materials.

He et al. [99] developed magnetically tunable photonic structures by assembling
superparamagnetic magnetite colloidal nanocrystal clusters with overall diameters in the
range of 100–200 nm. They showed that instantly (less than 1 s) assembling clusters into
ordered structures and rapidly tuning their photonic properties across the whole visible
region through the application of a relatively weak (typically 50–500 Oe) external magnetic
field are possible.

Wang et al. [100] constructed full-color tunable photonic materials using superparam-
agnetic citrate-capped magnetite nanoparticles with a spherical shape and an almost uni-
form particle diameter. The average diameter of the magnetite nanoparticles was ~135 nm,
and the saturation magnetization was ~70 A·m2/kg. Superparamagnetic nanoparticles
were assembled as photonic materials in deionized water through the application of a
magnetic field. In the absence of an external magnetic field, a classical FF appeared in
the superparamagnetic colloids, and the structural color of the colloids appeared black.
However, when a magnetic field was applied to the magnetite colloids, the structural color
of colloids immediately changed (Figure 11).
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Figure 11. Reversible optical responses of a 100 nm Fe3O4 colloid under increasing or decreasing
external magnetic field (H): (a) digital photos of the Fe3O4 colloid without H (left) and with H (right);
(b) blue shift in the reflection when H is enhanced; and (c) red shift in the reflection when H is
weakened (adopted from [100] with permission from Elsevier, 2019).
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Thus, under an external magnetic field, an orderly photonic structure forms. Mag-
netite colloids exhibit tunable structural colors under a magnetic field ranging from 20 to
800 G, and their reflection spectra have a wavelength range of approximately 420–800 nm,
which includes the entire visible range. Therefore, the nanoparticle diameter, nanoparticle
concentration, and shell thickness of the core–shell nanoparticles affect the reflection inten-
sity and spectral range. The abovementioned properties of synthesized nanoparticles are
promising candidates for achieving full-color display, and they also help in understanding
the mechanism of photonic materials.

The process of photonic material preparation is shown in Figure 12.
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To conclude, a wide range of magnetite nanoparticles was used for the fabrication of
photonic materials. Superparamagnetic magnetite nanocrystals or nanoclusters with tun-
able sizes from 30 to 200 nm, long-term stability, and rather high saturation magnetization
could be directly utilized for the constructing of colloidal photonic crystals through the
application of a magnetic field. The optical properties of such nanoclusters can be tuned
by applying an external magnetic field (typically 50–500 Oe), and the reflection spectra
of synthesized superparamagnetic colloids have a wavelength range of approximately
420–800 nm, which includes the entire visible range.

5.2. Organic Light-Emitting Diodes (OLEDs)

Organic light-emitting diodes (OLEDs) exhibit unique properties such as light bright-
ness and color tunability and are prospective candidates for full-color displays and solid-
state lighting applications. They are usually fabricated using organic molecules or conju-
gated polymers. During recent years, the role of nanoparticles of different types became
significant for OLED fabrication [101] due to their unique optical, electronic, and magnetic
properties. Magnetite nanoparticles were one of the metal oxide nanoparticles that are also
utilized for the improvement of OLED properties.

Zhang et al. [102] constructed a new approach to realizing the light extraction enhance-
ment in OLEDs using gold-coated magnetite nanoparticles with an optimized diameter.
The time-resolved photoluminescence and optical haze characterizations were performed
to study the influence of synthesized nanoparticles on the lifetime of excitons and the light-
scattering effect, respectively. The results reveal that the localized surface plasmonic effects
induced by gold nanoparticles and the strong light-scattering effect related to synthesized
gold-doped magnetite nanoparticles lead to double enhancement in light extraction, which
paves a new path for realizing high-efficiency and controllable OLEDs.

Lian et al. [103] analyzed the effect of three hybrid composite hole-injection layers,
namely, magnetite nanoparticles that are surface modified with graphene, silicon dioxide,
and gold nanoclusters. By optimizing the concentration of MNPs in hole-injection layers,
an obvious improvement in the performance of MNP-contained OLEDs was realized
compared with the control device. The enhancement in the electroluminescence efficiency
of the OLEDs was attributed to the combination of light-scattering, localized surface
plasmon resonance, and magnetism, leading to a simultaneous increase in the internal
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quantum efficiency and the out-coupling efficiency. The authors anticipated that the method
developed will have great potential application in high-performance OLED displays and
solid-state lighting.

Organic light-emitting diodes (OLEDs) are usually fabricated using organic molecules
or conjugated polymers. During recent years, magnetite nanoparticles were also uti-
lized for improvements in OLED properties. Gold-doped magnetite nanoparticles were
demonstrated to efficiently enhance the luminescence of OLEDs due to the combination of
light-scattering, plasmon resonance (gold), and magnetism (magnetite). Such a combination
is very promising for the fabrication of new, highly efficient OLEDs.

5.3. Magnetic Field Sensors

Magnetic field sensors integrated with magnetic FFs have attracted considerable
attention because of their ease of fabrication, high sensitivity, and low cost [104] as well
as due to their unique magneto-optical properties [105]. Cennamo et al. [106] presented a
novel methodology for magnetic field sensing by exploiting surface plasmon resonance
(SPR) sensors based on D-shaped plastic optical fiber (POF) and magnetic fluids. The
proposed sensor system utilizes a ferrofluid layer, deposited on a patch as input to a
multimode SPR-POF sensor, to change the mode profile inside a SPR-POF platform. A
proof-of-concept for this novel sensing approach was obtained by exploiting a prototype
sensor that was characterized in the range between 0.15 and 1.2 mT. In the linear range of
the sensor response, sensitivity was estimated to be about 6800 pm/mT, and the resolution
was estimated to be about 0.029 mT. Moreover, the comparison between the expected and
experimental behaviors showed a very good match with a mean squared error of about 5%.

Zheng et al. [107] proposed and demonstrated an intensity-modulated magnetic field
sensor operated in reflection mode based on a magnetic fluid-coated tilted-fiber Bragg
grating (TFBG) cascaded by a chirped fiber Bragg grating (CFBG). Transmission of the
TFBG is modulated by the refractive index of the magnetic fluid, which is sensitive to an
external magnetic field. The magnetic fluid used in this experiment was commercially
available water-based FF fabricated using the chemical co-precipitation technique. It is a
black-brown translucent liquid with a refractive index of ~1.40. The nominal diameter of
the magnetite nanoparticles was 10 nm. Transmission of the TFBG is modulated by the
refractive index of the MF, which is sensitive to an external magnetic field.

Taghizadeh et al. [108] proposed a novel magnetic field sensor that is based on the
combination of in-line tapered photonic crystal fiber (PCF) Mach–Zehnder interferometer
and MNPs, which was theoretically investigated and experimentally realized (Figure 13).

Magnetite-based FF was synthesized using the reverse co-precipitation method and
was injected inside the PCF air-holes using a syringe. The effect of the mechanical strain and
the magnetic field on the sensitivity of the sensor was studied. The experimental results
show that the refractive index changes of the MNP-infiltrated PCF under the applied
magnetic field lead to variations in the interferometric output. The results show a very
good linear response, which is an essential requirement for the practical sensors. The
proposed magnetic field sensor finds applications in various areas, such as optical sensing,
military, power industry, and tunable photonic devices.

Li et al. [109] proposed and investigated a novel magnetic field sensor that consists
of a U-bent single-mode fiber fixed in a magnetic-fluid-filled vessel. Neither mechanical
modification nor additional fiber grating is needed during the sensor fabrication. The results
show that the response of the magnetic fluid to the magnetic field can be used to measure
the direction and intensity of the magnetic field via whispering gallery modes supported
by the U-bent fiber structure with a suitable bending radius. The authors concluded that
the proposed sensor has the advantages of easy fabrication and high mechanical strength,
which has potential applications in various fields.
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The process of magnetic field sensors’ fabrication is shown in Figure 14.
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The main ideas of the abovementioned investigations were to combine different shapes
of the optical fibers and optical grating with magnetic FFs to fabricate magnetic field sensors.
The response of magnetic FFs to the magnetic field was used to measure the intensity of the
external magnetic field. Such sensors are easy to fabricate, and they could find application
in various fields, such as the power industry, optical sensing, and tunable photonic devices.

5.4. “Smart” Windows

Nowadays, “smart” windows have become more and more popular. This technology
means that the glass in windows changes its properties from transparent to opaque and
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vice versa. Some technologies alter the light transmission properties of the windows and
are grounded in the use of liquid crystals, polymers, etc. [110] (Figure 15). We believe
that the utilization of magnetic FFs for the fabrication of “smart” windows is a promising
technology due to the unique properties of FFs. In such technology, the light transmission
properties of the windows are altered by a magnetic field. We carefully investigated the
current state of the field of magnetic FFs applied in “smart” window fabrication and found
only some references that match this criterion.
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Figure 15. Suspended particle device (SPD) technologies for switchable shading and control of optical
transparency. An active fluid is contained within a glass–glass laminate in which an external trigger
allows for variable orientation of (a) suspended particles or (b) liquid crystals. (c) A passive fluid
with variable transparency flows through a microfluidic device (adapted from [111] with permission
from John Wiley and Sons).

Heiz et al. [111] presented a switchable, ultrathin suspended particle device (SPD)
for large-area integration with smart facades that is based on a fluidic window, rolled
glass, and a thin cover with high surface strength. Loading the circulating fluid with
nanoscale magnetite nanoparticles of particle sizes ranging from 50 to 100 nm enables
active shading and solar-thermal energy harvesting, whereby the loading state and, hence,
the optical properties of the liquid can be controlled via remote switching in a particle
collector-suspender device. In the fully shaded state, a typical harvesting efficiency of 45%
of the incoming solar power is obtained.

Seo et al. [112] reported a facile method for preparing anisotropic magnetic micro-rods
dispersed in a liquid mixture that can be utilized for “smart” windows by changing the
direction of the magnetic field (Figure 16). The Fe2O3 nanoparticles used were ~50 nm in
diameter. An isopropyl alcohol and polyethylene glycol mixture was used as the dispersion
liquid. The rod length was controlled by the nanoparticle concentration, magnetic field
application time, and dispersion liquid viscosity. The authors demonstrated that the Fe2O3
magnetic micro-rods remained stable even after one week. This simple preparation method
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for the anisotropic microfeatures was concluded to be key in addressing the economical
limitations of “smart” window technologies.
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Figure 16. Schematic illustration of the formation of the magnetic microrods by applying a magnetic
field (a). Schematic illustration of magnetic rods vertically oriented by controlling the magnetic
field (b). Smart phone screen showing the university logo through the transparent cavity filled
with magnetic rods (c). Microscopic image of the vertically oriented magnetic rods (d). Schematic
illustration of magnetic rods oriented parallel to the surface by controlling the magnetic field (e).
Smart phone screen showing the university logo through the transparent cavity filled with magnetic
rods when the rods are in parallel to the surface (f). Microscopic image of the parallel oriented
magnetic rods (g). The scale bars represent 100 µm (adapted from [112] with permission from the
Royal Society of Chemistry).

We emphasize that current technologies of “smart” windows (based on usage of liquid
crystals, polymers, etc.) are only effective in blocking visible light but not infrared radiation,
thus warming an interior space. As magnetite nanoparticles absorb and convert heat from
infrared irradiation, we conclude that the utilization of magnetite FFs for “smart” window
technology could serve as heat capture and provide some advantages in comparison with
other “smart” window technologies. The main challenge of magnetite “smart” window
technology is the long-term FF stability, as such technology needs FFs to be stable for, at
least, dozens of years.
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5.5. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) exploits MNPs as an agent used for contrast
enhancement. MRI contrast agents could be divided into two categories according to
different changes in relaxation times: negative (decreasing the brightness of the image)
or T2-contrast agents, and positive (increasing the brightness of the image) or T1-contrast
agents. Magnetic iron oxide NPs are widely used for various biomedical applications,
including MRI, due to their biocompatibility and non-toxicity. Magnetite (Fe3O4) is known
as a T2-contrast agent, and its application in MRI leads to dark signals, which makes
distinguishing naturally occurring hypointense areas in many diseases difficult, so its
usage is far from standard in clinical practice [31] (Figure 17).
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Thus, intensive research was focused on the development of non-toxic positive contrast
agents. Compared with well-studied Gd-based T1 and iron oxide nanoparticle-based T2
contrast agents, the development of ultrasmall iron oxide-based T1 contrast agents is still in
its infancy [114]. Further studies of biocompatibility, biodistribution, and pharmacokinetics
of ultrasmall iron oxides need to be performed. Nowadays, ferumoxitol is a commercially
available and US Food and Drug Administration (FDA)-approved drug for the treatment
of iron-deficient anemia, but it could serve as an alternative for gadolinium as a contrast
agent [115]. It consists of 3 to 10 nm mixed magnetite/maghemite cores coated with
a carbohydrate shell and is shortened to both T1 and T2. Due to the vast amount of
information concerning this topic, we briefly report about recent achievements in this area:

Marashdeh et al. [116] synthesized maghemite (γ-Fe2O3) NPs of different sizes (22 nm
and 30 nm) using the sol–gel method and investigated their potential application as mag-
netic resonance imaging contrast agents. The relaxation time (T2) of the NPs was measured
at room temperature. The size was found to affect the contrast enhancement of the MRI
image, with the T2 for 22 nm-sized γ-Fe2O3 NPs exhibiting a shorter dephasing compared
with the 30 nm-sized γ-Fe2O3 NPs. T2 relaxivity was shown to decrease with an increasing
concentration (9–84 µg/mL) of the nanoparticles. Based on the T2-weighted analysis, a
better signal (i.e., brighter image) was achieved for the 30 nm sized γ-Fe2O3 nanoparticles.
The conclusion was made that synthesized γ-Fe2O3 nanoparticles are promising materials
for use as MRI contrast agents.

C. Tao et al. [117] reported the synthesis of MNPs functionalized with natural bovine
serum albumin (BSA) and an artificial poly(acrylic acid)-poly(methacrylic acid (PMAA-
PTTM)). They obtained NPs of similar sizes and magnetization using the co-precipitation
method and compared their MRI performances. Fe3O4-BSA was shown to be a darken-
ing contrast enhancement for liver and kidney sites of mice, while Fe3O4-PMAA-PTTM
displayed brighter contrast enhancement for liver and kidney sites. The different MRI
behaviors of the synthesized NPs demonstrated that the surface ligands play an impor-
tant role in optimizing the MRI performance of MNPs. The authors expected that these
results would facilitate the design of macromolecule ligands for developing an iron oxide-
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based T1-weight contrast agent. Later on, this group [118] used poly(acrylic acid) (PAA),
poly(allylamine hydrochloride) (PAH), and polyvinyl alcohol (PVA), which possess neg-
ative, positive, and neutral charges with carboxylic acid, amino, and hydroxyl groups,
respectively, as templates and stabilizers to fabricate magnetite nanoparticles using a
co-precipitation reaction. The NPs obtained showed slight differences in size and water
dispersibility. Moreover, magnetite nanoparticles modified with PAA and PVA showed
good biocompatibility, while those modified using PAH displayed high cytotoxicity during
cell viability assay. In vitro and in vivo experiments demonstrated that both Fe3O4-PAA
and Fe3O4-PVA are adequate as T1-weighted contrast agents, but Fe3O4-PAA exhibited a
better T1 contrast performance (Figure 18).
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(dark yellow circle) sites (adapted from [118]).

The macromolecule ligands play an important role in the biocompatibility and T1
contrast performance of magnetic Fe3O4 NPs.

Weia et al. [119] designed and developed zwitterion-coated exceedingly small su-
perparamagnetic iron oxide NPs (ZES-SPIONs) by thermal decomposition of Fe(oleate)3
in the presence of oleic acid followed by oxidation with trimethylamine N-oxide. The
oxidation step ensures that particles with a maghemite structure are obtained. NPs consist
of ~3 nm inorganic cores and ~1 nm ultrathin hydrophilic shells. The ZES-SPIONs syn-
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thesized showed high T1 contrast power and potential for preclinical MRI and magnetic
resonance angiography.

Alipour et al. [120] synthesized a new class of cubic SPIONs as a dual-mode contrast
agent in MRI and showed the in vivo feasibility of these NPs as a simultaneous positive
and negative contrast agent. SPIONs of two different shapes (cubic and spherical) and three
different sizes—7 nm, 11 nm, and 14 nm—were synthesized, and contrast enhancement
in vitro was evaluated. Representative transmission electron microscopy images of the NPs
synthesized revealed that the particles are well dispersed in a solvent and do not aggregate.
By contrast enhancement analysis, among all six SPIONs tested, 11 nm cubic SPIONs were
shown to possess optimal contrast enhancement values, which can shorten the spin–lattice
and spin–spin relaxation times, simultaneously. It was reported that synthesized NPs are
non-toxic. These results demonstrate the promising potential of the synthesized 11 nm
silica-coated cubic SPIONs as a synergistic MRI contrast agent.

Li et al. [121] designed and synthesized a novel type of cross-linked iron oxide NP
assembly, IONAs, for tumor pH-sensitive T1 MR imaging. The cross-linked IONAs were
highly stable at a neutral pH even in extremely diluted conditions, which is advantageous
over conventional polymer-assisted nanoparticle assemblies that generally lose their inte-
gration after dilution. The authors claimed that their study was the first demonstration of
an iron oxide nanoparticle-based MR contrast agent that can amplify r1 relaxivity in the
acidic tumor microenvironment.

Shen et al. [122] synthesized exceedingly small magnetic iron oxide NPs (ES-MIONs)
with seven different sizes below 5 nm (i.e., 1.9, 2.6, 3.3, 3.6, 4.2, 4.8, and 4.9 nm) using
the co-precipitation method and found that 3.6 nm is the best particle size for ESMIONs
to be utilized as a T1-weighted MR contrast agent. A drug delivery system based on the
3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy was constructed. The
authors thus concluded that synthesized nanoparticles are promising for high-resolution
T1-weighted MR imaging and precise chemotherapy of tumors.

Vangijzegem et al. [123] were focused on the development of very small iron oxide
NPs as potential nanoplatforms for the high field (>3 T) T1 magnetic resonance angiography
(MRA) applications. Magnetite nanoplatforms smaller than 5 nm were prepared by hot
injection, and the aqueous transfer was optimized using the introduction of polyethylene
glycol (PEG)-based ligands. The as-obtained suspension was shown to be able to be stored
for three months in water or saline without any changes in their relaxivities, demonstrating
their stability. The concentration-dependent effect was shown using phantom MR images
for both T1 and T2 sequences. The feasibility of the developed system was evaluated in vivo
at 9.4 T, demonstrating its usefulness for MRA applications.

Huanga and co-authors [124] reported a new strategy for the fabrication of a single
hybrid nanostructure consisting of carbon quantum dots (CQDs), Gd(III) ions, and Fe3O4
nanoparticles as a new bimodal imaging agent and demonstrated that the nanocomposite
could emit fluorescence; thus, it had potential for reliable fluorescence imaging. The r1
and r2 relaxivities of the nanocomposite were measured to be 5.16 and 115.6 mM−1 s−1,
which nominated the nanocomposite as a suitable T1-T2 contrast agent. The authors
concluded that nanoparticles combining two synergetic imaging modalities showed great
potential in FI/MRI dual-modal imaging for a more complementary and accurate detection
in medical imaging.

Das and co-authors [125] proposed a new method of fabrication of a single nanoprobe
with dual-modality. The nanoprobe was synthesized by co-precipitation of ferrous and
ferric salts in the presence of carbon nanodots. The synthesized nanoprobe was shown to
be a biocompatible, hemocompatible, and excretable nanostructure, and carbon doping was
shown to enhance the r2 spin−spin relaxivity of the nanoprobe from 29 to 118.3 mM−1 s−1,
making it a promising T2 contrast agent. The authors concluded that carbon dot doping in
superparamagnetic iron oxide nanoparticles enhances the area of bioimaging by combining
complementary imaging modalities such as fluorescence imaging with MR imaging.
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Wang et al. [126] prepared a new type of hybrid nanoparticles integrated with mag-
netite nanocrystals and carbon dots using a one-pot solvothermal synthesis method. The
fabricated nanoparticles demonstrate high magnetic properties (Ms = 32.5 A·m2/kg) and
magnetic resonance imaging ability (r2 = 674.4 mM−1 s−1) from the magnetite nanocrys-
tal core and exhibited intriguing photoluminescent (quantum yield ~6.8%) properties
including upconversion fluorescence and excellent photostability from the carbon dots
produced in the porous carbon. The authors concluded that mesoporous structures and
hydrophilic surface functional groups endow the hybrid nanoparticles with a high drug
loading capacity and excellent dispersibility in aqueous solutions.

The investigations of positive (T1) non-toxic agents for MRI contrast enhancement
as an alternative for the gadolinium contrast agent as well as bimodal (FI/MRI) imaging
agents were widely developed. Exceedingly small superparamagnetic iron oxide NPs
(up to ~10 nm) with various surface modifications (natural bovine serum albumin, artifi-
cial poly(acrylic acid)-poly(methacrylic acid, poly(allylamine hydrochloride)), polyvinyl
alcohol, zwitterion-coated, etc.) were shown to have high T1 contrast power. Hybrid
nanostructures consisting of carbon quantum dots and Fe3O4 nanoparticles demonstrating
biocompatibility showed great potential as bimodal imagine agents.

Despite investigations in the area of the design and synthesis of novel contrast agents
for MRI being plentiful, the reproducibility and scalability of the synthesis of uniform NPs
with narrow-size distribution as well as functionalization of the surface for a specifical
target to different tissues and cells require further investigation.

5.6. Solar Energy Harvesting

The ability of MNPs to absorb solar irradiation can also be utilized for the fabrication
of new devices for sustainable and renewable energy production. During the last decade,
great progress in the creation and fabrication of new photovoltaic devices that could convert
solar energy directly to electricity was made. Nanofluids of different origins are utilized for
solar thermal applications and heat transfer processes [127], especially magnetic nanofluids.

Sani and co-authors [128] presented a functional fluid consisting of a stable colloidal
suspension of maghemite MNPs in water to evaluate its potential for direct electricity
generation from the thermoelectric effect enabled by the absorption of sunlight. The
ferrofluids studied were composed of maghemite (γ-Fe2O3) nanoparticles, obtained via the
Massart method, and coated with a statistical copolymer made of equimolar acrylic and
maleic acid monomers (PAAMA) of average molecular weight 3000 g/mol dispersed in
water. The authors investigated the thermoelectric and the optical absorption properties
and found that the inclusion of 0.5% of MNPs accelerates the mass transfer rate of the redox
couples within the thermocell when heated from the top, which leads to a 2–3 fold increase
in the cell’s power output. Moreover, the overall level of optical absorption and its spatial
distribution within the nanofluid volume were fully tailorable, acting on the concentration
of both MNPs and redox couple ions, allowing for the optimization of future sunlight-
enabled thermocell geometry. The authors concluded that these findings demonstrate the
nanofluid’s potential as a heat transfer fluid for co-generating heat and power in brand
new hybrid flat-plate solar thermal collectors where top-heating geometry is imposed.

Grosu et al. [129] utilized natural magnetite for thermal energy storage. For this
purpose, samples of natural magnetite were partially transformed under thermal treatment
into hematite, and as a result, the authors obtained a material with excellent thermophysical
properties and the ability to control thermal conductivity in a wide range of values. The
calculated thermal conductivity for the treated magnetite was very high, and the values
obtained were much greater (more than two times) than the average compared with other
ceramic materials (concrete, granite, marble, sandstone, etc.) reported that had the potential
for thermal energy storage applications. The authors concluded that the combination
of such properties is exceptional and crucially advantageous for thermal energy storage
applications such as packed-bed heat storage systems.
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Kannana et al. [130] fabricated a device for dye-sensitized solar cells based on mag-
netite nanoparticles. The authors reported the effect of demagnetizing fields caused by
magnetite nanoparticles on the efficiency of TiO2 based dye-sensitized solar cells. The
addition of magnetite nanoparticles to the photoanode enhanced the power conversion effi-
ciency of dye-sensitized solar cells. The authors believed that their work would stimulate
future studies on dye-sensitized solar cells devices based on the demagnetization field.

Cao et al. [131] proposed combining three energy storage materials—namely, microp-
orous foam, MNPs, and revolutionary tubes—for the first time to obtain a new flat plate
solar collector. The authors claimed that simultaneous use of three different materials in the
collector covers each material’s weaknesses. The collector was configured in the following
way: a thin metal foam was attached inside the tubes as porous fins to increase the contact
area for more heat transfer. The rotation in the tube circulates the nanofluid and pushes
it toward the porous fin by a centrifugal force. Such a configuration leads to the recovery
of up to 50% of the lost energy and to an increase in energetic performance from ~53% to
~76% in optimal conditions.

Wang and co-authors [132] investigated the influence of magnetite nanoparticles and
an external magnetostatic field on the power conversion efficiencies of polymer solar cells.
The authors introduced magnetite nanoparticles (with the size of ~5 nm) and orientated
them within a bulk heterojunction composite using an external magnetostatic field (Fig-
ure 19), which led to over 50% increased efficiency compared with the control polymer solar
cell. The authors concluded that the proposed application is an extraordinarily effective
way to enhance the power conversion efficiency of polymer solar cells.

Materials 2022, 15, x FOR PEER REVIEW 28 of 36 
 

 

addition of magnetite nanoparticles to the photoanode enhanced the power conversion 
efficiency of dye-sensitized solar cells. The authors believed that their work would 
stimulate future studies on dye-sensitized solar cells devices based on the 
demagnetization field. 

Cao et al. [131] proposed combining three energy storage materials—namely, 
microporous foam, MNPs, and revolutionary tubes—for the first time to obtain a new flat 
plate solar collector. The authors claimed that simultaneous use of three different 
materials in the collector covers each material’s weaknesses. The collector was configured 
in the following way: a thin metal foam was attached inside the tubes as porous fins to 
increase the contact area for more heat transfer. The rotation in the tube circulates the 
nanofluid and pushes it toward the porous fin by a centrifugal force. Such a configuration 
leads to the recovery of up to 50% of the lost energy and to an increase in energetic 
performance from ~53% to ~76% in optimal conditions. 

Wang and co-authors [132] investigated the influence of magnetite nanoparticles and 
an external magnetostatic field on the power conversion efficiencies of polymer solar cells. 
The authors introduced magnetite nanoparticles (with the size of ~5 nm) and orientated 
them within a bulk heterojunction composite using an external magnetostatic field (Figure 
19), which led to over 50% increased efficiency compared with the control polymer solar 
cell. The authors concluded that the proposed application is an extraordinarily effective 
way to enhance the power conversion efficiency of polymer solar cells. 

 
Figure 19. The molecular structures of PTB7-F20 and PC71BM (a); the conventional device structure 
of PSCs without incorporating any Fe3O4 magnetic nanoparticles (MNPs) (b); the conventional 
device structure of PSCs incorporated with Fe3O4 MNPs and aligned by an external magnetostatic 
field (c); the fabrication procedures of PSCs incorporated with Fe3O4 MNPs and aligned by an 
external magnetostatic field (d)–(f); BHJ active layer incorporated with Fe3O4 MNPs was spin-coated 
on a PEDOT:PSS-coated ITO substrate (d); and a ferromagnet was suspend above the surface of BHJ 
composite incorporated with the Fe3O4 MNP layer. The magnetic intensity was ~30–40 G, and the 
distance between the ferromagnet and BHJ composite layer was ~10 cm (e); oriented Fe3O4 MNPs 
inside BHJ active layer by an external magnetostatic field. In pre-devices (f), a drawing of a partial 
enlargement of the Fe3O4 MNP in (c), showing an antiparallel relation between the magnetic dipole 
(caused by the Fe3O4 crystal inside the particle) and electric dipole (caused by the difference in 
charge density between the inside Fe3O4 and outside organic coater) (g) (adapted from [132] with 
permission from Scientific Reports). 

Ansari and co-authors [133] reported a low-cost and stable perovskite solar cell using 
solution-processed nanostructured magnetite as a potential hole transport layer. They 
confirmed that magnetite nanoparticles could be a potential hole-transporting material 

Figure 19. The molecular structures of PTB7-F20 and PC71BM (a); the conventional device structure
of PSCs without incorporating any Fe3O4 magnetic nanoparticles (MNPs) (b); the conventional device
structure of PSCs incorporated with Fe3O4 MNPs and aligned by an external magnetostatic field
(c); the fabrication procedures of PSCs incorporated with Fe3O4 MNPs and aligned by an external
magnetostatic field (d)–(f); BHJ active layer incorporated with Fe3O4 MNPs was spin-coated on
a PEDOT:PSS-coated ITO substrate (d); and a ferromagnet was suspend above the surface of BHJ
composite incorporated with the Fe3O4 MNP layer. The magnetic intensity was ~30–40 G, and the
distance between the ferromagnet and BHJ composite layer was ~10 cm (e); oriented Fe3O4 MNPs
inside BHJ active layer by an external magnetostatic field. In pre-devices (f), a drawing of a partial
enlargement of the Fe3O4 MNP in (c), showing an antiparallel relation between the magnetic dipole
(caused by the Fe3O4 crystal inside the particle) and electric dipole (caused by the difference in charge
density between the inside Fe3O4 and outside organic coater) (g) (adapted from [132] with permission
from Scientific Reports).
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Ansari and co-authors [133] reported a low-cost and stable perovskite solar cell using
solution-processed nanostructured magnetite as a potential hole transport layer. They
confirmed that magnetite nanoparticles could be a potential hole-transporting material
candidate for perovskite solar cells. They showed that the fabricated device shows a
maximum power conversion efficiency of ~15% and long-term durability up to 30 days.

To conclude, MNPs are promising candidates for applications in solar energy harvest-
ing and in the conversion of solar irradiation into useful energy. However, the large-scale
utilization of magnetite nanoparticles for these purposes faces various obstacles, including
nanoparticles’ sedimentation and aggregation (dispersion stability), cost of nanomaterials,
their toxicity, etc. Therefore, further investigations are needed to find a possible route of
application of magnetite nanoparticles in solar energy harvesting and storage.

Summaries of the abovementioned techniques in optics and photonics that utilize
magnetite FFs are shown in Table 3.

Table 3. Magnetic ferrofluids (FF) applications, descriptions, and challenges in optics and nanophotonics.

Application Description Challenges

Photonic materials
Superparamagnetic magnetite nanocrystals or

nanoclusters with tunable sizes from 30 to
200 nm in water

NPs with controlled diameters and
stoichiometric structures

Organic light-emitting diodes
(OLEDs) Gold-doped magnetite nanoparticles Size of magnetite nanoparticles and

aggregation of nanoparticles

Magnetic field sensors Combination of different shape of optical fibers
and optical grating with magnetic FFs Long-term colloidal stability of FFs

“Smart” windows

Nanoscale magnetite nanoparticles from 50 to
100 nm used for shading and the optical

properties of the window controlled through
remote switching of magnetic field

Long-term colloidal stability of FFs

Magnetic resonance imaging
Exceedingly small superparamagnetic iron

oxide NPs (up to ~10 nm) with various
surface modifications

Reproducibility, scalability of synthesis, and
functionalization of the surface for
specifically targeting to different

tissues and cells

Solar energy harvesting Sensitized solar cells based on MNPs Nanoparticle sedimentation and aggregation,
cost of nanomaterials, and toxicity

6. Conclusions

Nowadays, ferrofluids are utilized for an extremely wide range of fascinating applica-
tions, including new optical devices and imaging techniques. Despite recent progress in
the field of synthesis and surface functionalization of iron oxide NPs with tunable sizes
and shapes for different applications, numerous challenges still need to be overcome. The
most important challenge is obtaining iron oxide NPs of controllable sizes, morpholo-
gies, and crystallinities. To obtain photonic materials across the entire visible region, one
needs to synthesize NPs with controlled diameters. Most synthesized iron oxide NPs have
non-stoichiometric structures, which leads to many complications. A non-stoichiometric
structure leads to failure when increasing the absorption band in the near-infrared wave-
length region, which restricts its application in the field of optics and photomedicine.
Therefore, new strategies for synthesizing MNPs need to be developed to achieve this
goal (i.e., synthesis in a constrained environment, bio-inspired synthesis, synthesis using
magnetotactic bacteria, etc.). One more challenge is the high oxidation of ultrafine iron
oxide NPs due to their large specific surface area and air sensitivity. Long-term stability of
iron-oxide-based ferrofluids during storage and application is also critical challenge. Thus,
surface coverage and functionalization of iron oxide NPs still need to be optimized for
the development of highly stable iron-oxide-based ferrofluids. The synthesis procedures
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need to be improved for large-scale or industrial production of iron oxide NPs for use in
commercial or clinical applications.

Magnetic FFs find their application in optics due to their unique magneto-optical
properties such as optical anisotropy, birefringence, and field-dependent transmission. The
applications presented in this review include photonic materials, organic light-emitting
diodes (OLEDs), magnetic field sensors, “smart” windows, magnetic resonance imaging,
and solar energy harvesting. All of these applications utilize the response of FFs to an
external magnetic field.

The optical properties of classical FFs can be tuned by applying an external magnetic
field with the formation of colloidal photonic crystals that could serve as a new platform
for the fabrication of novel optical microelectromechanical systems and sensors. The
main challenge of this application is the need for NPs with controlled diameters and
stoichiometric structures.

Gold-doped magnetite nanoparticles efficiently enhance luminescence of OLEDs and
are very promising for the fabrication of new high-efficient OLEDs with increased light
extraction. The following challenges still need to be overcome: controlled size of magnetite
nanoparticles and their aggregation.

A combination of different shape optical fibers and optical grating with magnetic
FFs allows for the fabrication of magnetic field sensors that use the response of magnetic
FFs to a magnetic field for measuring the intensity of the external magnetic field. Such
sensors find applications in the power industry, optical sensing, and the design of tunable
photonic devices. However, the long-term colloidal stability of FFs needs to be ensured for
such applications.

The use of magnetite FFs for “smart” window technology could improve heat capture
and shading. The main challenge of magnetite “smart” window technology is also long-
term FF stability, as such technology needs FFs to be stable for at least dozens of years.

MNPs are now widely investigated as positive (T1) agents for NMI contrast enhance-
ment as an alternative to the gadolinium contrast agent. Exceedingly small superpara-
magnetic iron oxide NPs (up to ~10 nm) with various surface modifications show high
T1 contrast power. The main challenges of these applications are its reproducibility, its
scalability of the synthesis methods, and its functionalization of the surface for specifically
targeting to different tissues and cells.

The ability of capture heat using MNPs has also since been utilized for the creation of
new devices for sustainable and renewable energy production based on solar cells. Magnetic
FFs substantially increase the power conversion efficiency of existing solar cells. The
main challenges of these applications are sedimentation and aggregation of nanoparticles
(colloidal stability of the suspension), the cost of nanomaterials, and the toxicity.

Despite the abovementioned challenges, iron-oxide-based magnetic ferrofluids are
promising as novel optical and photonic devices and techniques because of their unique
properties that can be tuned by an external magnetic field.
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