Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications
Abstract
:1. Introduction
2. Tm3+ Ion Laser Transitions: General Considerations
2.1. Tm3+ 3H4 → 3F4 Near-Infrared Emission at 1.5 µm
2.2. Tm3+ 3F4 → 3H6 Near-Infrared Emission at 2 µm
2.3. 3H4 → 3H5 Transition at 2.3 µm
2.4. Tm3+ Visible Laser Emissions
3. Mixed Ceramic Matrices
3.1. Thermal Conductivity of Mixed Ceramics
3.2. Description and Comparison of the Fabrication Techniques Used to Develop the Mixed Sesquioxides Ceramics
3.3. Tm3+: (Lu1−xScx)2O3 with 0 < x < 1
3.4. Tm3+: (Lu1−xYx)2O3 with 0 < x < 1
3.5. Tm3+: (Y1−xScx)2O3 with 0 < x < 1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.J.; Yao, B.Q.; Duan, X.M.; Zhu, G.; Wang, L.W.; Ju, Y.L.; Wang, Y.Z. 103 W in-band dual-end-pumped Ho:YAG laser. Opt. Lett. 2012, 37, 3558–3560. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.M. Review of Tm and Ho materials; spectroscopy and lasers. Laser Phys. 2009, 19, 855–866. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L. Ceramic laser materials. Nat. Photonics 2018, 2, 721–727. [Google Scholar] [CrossRef]
- Becker, T.; Clausen, R.; Huber, G.; Duczynski, E.W.; Mitzscherlich, P. Spectroscopic and Laser Properties of Tm-Doped YAG at 2 µm. In Advanced Solid State Lasers; Shand, M., Jenssen, H., Eds.; OSA Proceedings Series; Optical Society of America: Washington, DC, USA, 1989; Volume 5, p. DD1. [Google Scholar] [CrossRef]
- Peterson, P.; Gavrielides, A.; Sharma, M.P. Diode-pumped Tm: YAG solid-state lasers with indirect and direct manifold pumping. Appl. Phys. B 1995, 61, 195–200. [Google Scholar] [CrossRef]
- Honea, E.C.; Beach, R.J.; Sutton, S.B.; Speth, J.A.; Mitchell, S.C.; Skidmore, J.A.; Emanuel, M.A.; Payne, S.A. 115-W Tm:YAG diode-pumped solid-state laser. IEEE J. Quantum Electron. 1997, 33, 1592–1600. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Y.-B.; Zhou, J.; Liu, W.; Li, J.; Jiang, B.; Cheng, X.; Xu, J. Diode-pumped Tm:YAG ceramic laser. J. Am. Ceram. Soc. 2009, 92, 2434–2437. [Google Scholar] [CrossRef]
- Ma, Q.L.; Bo, Y.; Zong, N.; Pan, Y.-B.; Peng, Q.J.; Cui, D.F.; Xu, Z.Y. Light scattering and 2 µm laser performance of Tm:YAG ceramic. Opt. Commun. 2011, 284, 1645–1647. [Google Scholar] [CrossRef]
- Gao, W.L.; Ma, J.; Xie, G.Q.; Zhang, J.; Luo, D.W.; Yang, H.; Tang, D.Y.; Ma, J.; Yuan, P.; Qian, L.J. Highly efficient 2 µm Tm:YAG ceramic laser. Opt. Lett. 2012, 37, 1076–1078. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Kong, W.; Yang, Q.; Xu, J.; Jiang, B.; Pan, Y. Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser. Opt. Commun. 2013, 286, 288–290. [Google Scholar] [CrossRef]
- Zou, Y.; Wei, Z.; Wang, Q.; Zhan, M.; Li, D.; Zhang, Z.; Zhang, J.; Tang, D. High-efficiency diode-pumped Tm:YAG ceramic laser. Opt. Mater. 2013, 35, 804–806. [Google Scholar] [CrossRef]
- Koopmann, P.; Peters, R.; Petermann, K.; Huber, G. Highly Efficient, Broadly Tunable Tm:Lu2O3 Laser at 2 µm. In Proceedings of the CLEO/Europe and EQEC 2009 Conference Digest, Munich, Germany, 14–19 June 2009; Optical Society of America: Washington, DC, USA, 2009; p. CA10_3. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Zhou, S.; Gao, Q. High-Efficiency Diode-Resonantly-Pumped Tm:Lu2O3 Ceramic Laser with Near Diffraction-Limited Beam Quality. J. Russ. Laser Res. 2021, 42, 358–362. [Google Scholar] [CrossRef]
- Antipov, O.L.; Getmanovskiy, Y.A.; Balabanov, S.S.; Larin, S.V.; Sharkov, V.V. 1940 nm, 1966 nm and 2066 nm multi-wavelength CW and passively-Q-switched operation of L-shaped Tm3+:Lu2O3 ceramic laser in-band fiber-laser pumped at 1670 nm. Laser Phys. Lett. 2021, 18, 055001. [Google Scholar] [CrossRef]
- Lagatsky, A.A.; Antipov, O.L.; Sibbett, W. Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. Opt. Express 2012, 20, 19349–19354. [Google Scholar] [CrossRef] [Green Version]
- Antipov, O.L.; Novikov, A.A.; Zakharov, N.G.; Zinoviev, A.P. Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics. Opt. Mater. Express 2012, 2, 183–189. [Google Scholar] [CrossRef]
- Koopmann, P.; Lamrini, S.; Scholle, K.; Fuhrberg, P.; Petermann, K.; Huber, G. Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond. In Advanced Solid-State Photonics; Optical Society of America: Washington, DC, USA, 2011; p. ATuA5. [Google Scholar] [CrossRef] [Green Version]
- Lagatsky, A.A.; Koopmann, P.; Fuhrberg, P.; Huber, G.; Brown, C.T.A.; Sibbett, W. Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm. Opt. Lett. 2012, 37, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Krankel, C.; Tokurakawa, M. High quality-factor Kerr-lens mode-locked Tm:Sc2O3 single crystal laser with anomalous spectral broadening. Appl. Phys. Express 2020, 13, 052007. [Google Scholar] [CrossRef]
- Tokurakawa, M.; Fujita, E.; Suzuki, A.; Krankel, C. Sub-120 fs Kerr-lens mode-locked Tm:Sc2O3 laser at 2.1 µm wavelength range. In Proceedings of the International Conference Laser Optics (ICLO), St. Petersburg, Russia, 4–8 June 2018. [Google Scholar] [CrossRef]
- Lupei, V.; Lupei, A.; Gheorghe, C.; Ikesue, A. Spectroscopic characteristics of Tm3+ in Tm and Tm, Nd, Yb:Sc2O3 ceramic. J. Lumin. 2008, 128, 901–904. [Google Scholar] [CrossRef]
- Yue, F.; Jambunathan, V.; David, S.P.; Mateos, X.; Aguiló, M.; Díaz, F.; Šulc, J.; Lucianetti, A.; Mocek, T. Spectroscopy and diode-pumped continuous-wave laser operation of Tm:Y2O3 transparent ceramic at cryogenic temperatures. Appl. Phys. B 2020, 126, 44. [Google Scholar] [CrossRef] [Green Version]
- Ermeneux, F.S.; Sun, Y.; Cone, R.L.; Equall, R.W.; Hutcheson, R.L.; Moncorge, R. Efficient CW 2 µm Tm3+:Y2O3 Laser. In Advanced Solid State Lasers; Fejer, M., Injeyan, H., Keller, U., Eds.; OSA Trends in Optics and Photonics; Optical Society of America: Washington, DC, USA, 1999; Volume 26, p. TuB8. [Google Scholar] [CrossRef]
- Szela, J.W.; Sloyan, K.A.; Parsonage, T.L.; Mackenzie, J.I.; Eason, R.W. Laser operation of a Tm:Y2O3 planar waveguide. Opt. Express 2013, 21, 12460–12468. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Huang, H.; Liu, P.; Jin, L.; Shen, D.; Zhang, J.; Tang, D. Diode-pumped continuous-wave and Q-switched Tm: Y2O3 ceramics laser around 2050 nm. Opt. Mater. Express 2017, 7, 296–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Xu, B.; Yang, Y.; Hang, Y. Extending the wavelength tunability from 2.01 to 2.1 μm and simultaneous dual-wavelength operation at 2.05 and 2.3 µm in diode-pumped Tm:YLF lasers. J. Lumin. 2020, 218, 116873. [Google Scholar] [CrossRef]
- Schellhorn, M. High-power diode-pumped Tm:YLF laser. Appl. Phys. B 2008, 91, 71–74. [Google Scholar] [CrossRef]
- Camy, P.; Doualan, J.L.; Renard, S.; Braud, A.; Menard, V.; Moncorgé, R. Tm3+:CaF2 for 1.9 μm laser operation. Opt. Commun. 2004, 4–6, 395–402. [Google Scholar] [CrossRef]
- Ryabochkina, P.A.; Lyapin, A.A.; Osiko, V.V.; Fedorov, P.P.; Ushakov, S.N.; Kruglova, M.V.; Sakharov, N.V.; Garibin, E.A.; Gusev, P.E.; Krutov, M.A. Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics. Quantum Electron. 2012, 42, 853–857. [Google Scholar] [CrossRef]
- Lyapin, A.A.; Fedorov, P.P.; Garibin, E.A.; Malov, A.V.; Osiko, V.V.; Ryabochkina, P.A.; Ushakov, S.N. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials. Opt. Mater. 2013, 35, 1859–1864. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, R.; Mateos, X.; Li, J.; Li, C.; Suomalainen, S.; Härkönen, A.; Guina, M.; Petrov, V.; Griebner, U. Thulium doped LuAG ceramics for passively mode locked lasers. Opt. Express 2017, 25, 7084–7091. [Google Scholar] [CrossRef]
- Barnes, N.P.; Jani, M.G.; Hutcheson, R.L. Diode-pumped, room-temperature Tm:LuAG laser. Appl. Opt. 1995, 34, 4290–4294. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, X.; Guan, X.; Lan, J.; Xu, B.; Xu, H.; Cai, Z.; Liu, P.; Yan, D.; Xu, X.; et al. Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers. Opt. Mater. Express 2017, 7, 3441–3447. [Google Scholar] [CrossRef]
- Caird, J.A.; DeShazer, L.G.; Nella, J. Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YALO3. IEEE J. Quantum Electron. 1975, 11, 874–881. [Google Scholar] [CrossRef]
- Huber, G.; Duczynski, E.W.; Petermann, K. Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature. IEEE J. Quantum Electron. 1988, 24, 920–923. [Google Scholar] [CrossRef]
- Braud, A.; Tigreat, P.Y.; Doualan, J.L.; Moncorgé, R. Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser. Appl. Phys. B 2001, 72, 909–912. [Google Scholar] [CrossRef]
- Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Lukasiewicz, T. Effect of temperature on spectroscopic features relevant to laser performance of YVO4:Tm3+, GdVO4:Tm3+, and LuVO4:Tm3+ crystals. Opt. Lett. 2010, 35, 3940–3942. [Google Scholar] [CrossRef]
- Yu, H.; Pan, Z.; Zhang, H.; Wang, Z.; Wang, J.; Jiang, M. Efficient Tm:LuVO4 laser at 1.9 µm. Opt. Lett. 2011, 36, 2402–2404. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lan, J.L.; Zhou, Z.Y.; Guan, X.F.; Xu, B.; Xu, H.Y.; Cai, Z.P.; Wang, Y.; Tu, C.Y. Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal. Opt. Mater. 2017, 66, 185–188. [Google Scholar] [CrossRef]
- Qin, Z.P.; Liu, J.G.; Xie, G.Q.; Ma, J.; Gao, W.L.; Qian, L.J.; Yuan, P.; Xu, X.D.; Xu, J.; Zhou, D.H. Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal. Laser Phys. 2013, 23, 105806. [Google Scholar] [CrossRef]
- Lan, J.L.; Zhang, X.Y.; Zhou, Z.Y.; Xu, B.; Xu, H.Y.; Cai, Z.P.; Chen, N.; Wang, J.; Xu, X.D.; Soulard, R.; et al. Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber. IEEE Photonics Technol. Lett. 2017, 29, 515–518. [Google Scholar] [CrossRef]
- Moncorgé, R.; Guyot, Y.; Kränkel, C.; Lebbou, K.; Yoshikawa, A. Mid-infrared emission properties of the Tm3+-doped sesquioxide crystals Y2O3, Lu2O3, Sc2O3 and mixed compounds (Y,Lu,Sc)2O3 around 1.5-, 2- and 2.3-µm. J. Lumin. 2022, 241, 118537. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Pan, Z.; Bae, J.E.; Choi, S.Y.; Rotermund, F.; Loiko, P.; Serres, J.M.; Mateos, X.; Yu, H.; et al. 78 fs SWCNT-SA mode-locked Tm:CLNGG disordered garnet crystal laser at 2017 nm. Opt. Lett. 2018, 43, 4268–4271. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhao, Y.; Loiko, P.; Mateos, X.; Guina, M.; Pan, Z.; Mero, M.; Griebner, U.; Petrov, V. Sub-50 fs pulse generation from a SESAM mode-locked Tm,Ho-codoped calcium aluminate laser. Opt. Lett. 2021, 46, 2642–2645. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Pan, Z.; Loiko, P.; Bae, J.E.; Rotermund, F.; Mateos, X.; Griebner, U.; Petrov, V. Sub-100 fs mode-locked Tm:CLTGG laser. Opt. Express 2021, 29, 31137–31144. [Google Scholar] [CrossRef]
- Liu, Z.; Ikesue, A.; Li, J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics. J. Eur. Ceram. Soc. 2021, 41, 3895–3910. [Google Scholar] [CrossRef]
- Ivakin, E.V.; Kisialiou, I.G.; Antipov, O.L. Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties. Opt. Mater. 2013, 35, 499–503. [Google Scholar] [CrossRef]
- Senatsky, Y.; Shirakawa, A.; Sato, Y.; Hagiwara, J.; Lu, J.; Ueda, K.; Yagi, H.; Yanagitani, T. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver. Laser Phys. Lett. 2004, 1, 500–506. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Gaumé, R.; Viana, B.; Vivien, D.; Roger, J.-P.; Furnier, D. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Appl. Phys. Lett. 2003, 83, 1355–1357. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Guan, X.F.; Huang, X.X.; Xu, B.; Xu, H.Y.; Cai, Z.P.; Xu, X.D.; Liu, P.; Li, D.Z.; Zhang, J.; et al. Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: Effective 2.05 µm source operating in continuous-wave and passive Q-switching regimes. Opt. Lett. 2017, 42, 3781–3784. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chen, W.; Pan, Z.; Wang, Y.; Liu, P.; Xu, X.; Liu, Y.; Shen, D.; Zhang, J.; et al. SESAM mode-locked Tm:LuYO3 ceramic laser generating 54-fs pulses at 2048 nm. Appl. Opt. 2020, 59, 10493–10497. [Google Scholar] [CrossRef]
- Pirri, A.; Maksimov, R.N.; Shitov, V.A.; Osipov, V.V.; Sani, E.; Patrizi, B.; Vannini, M.; Toci, G. Continuously tuned (Tm0.05Sc0.2522Y0.698)2O3 ceramic laser with emission peak at 2076 nm. J. Alloys Compd. 2021, 889, 161585. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, W.; Loiko, P.; Zhao, Y.; Huang, H.; Mateos, X.; Suomalainen, S.; Härkönen, A.; Guina, M.; Griebner, U.; et al. Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Opt. Express 2018, 26, 10299–10304. [Google Scholar] [CrossRef]
- Xu, X.; Hu, Z.; Li, D.; Liu, P.; Zhang, J.; Xu, B.; Xu, J. First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic. Opt. Express 2017, 25, 15322–15329. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chen, W.; Loiko, P.; Wang, Y.; Pan, Z.; Yang, H.; Jing, W.; Huang, H.; Liu, J.; et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser. Opt. Lett. 2021, 46, 3428–3431. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.B.; Seltzer, M.D.; Hills, M.E.; Stevens, S.B.; Morrison, C.A. Energy levels and upconversion fluorescence in trivalent thulium-doped yttrium scandium aluminum garnet. J. Appl. Phys. 1993, 73, 1929–1935. [Google Scholar] [CrossRef]
- Feng, Y.; Toci, G.; Patrizi, B.; Pirri, A.; Hu, Z.; Chen, X.; Wei, J.; Pan, H.; Li, X.; Zhang, X.; et al. Fabrication, microstructure, and optical properties of Tm:Y3ScAl4O12 laser ceramics. J. Am. Ceram. Soc. 2020, 103, 1819–1830. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Wang, Y.; Zhang, J.; Liu, P.; Xu, X.; Liu, Y.; Shen, D.; Eun Bae, J.; Gwan Park, T.; et al. SWCNT-SA mode-locked Tm:LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 µm. Opt. Lett. 2020, 45, 459–462. [Google Scholar] [CrossRef]
- Scholle, K.; Lamrini, S.; Koopmann, P.; Fuhrberg, P. 2 µm Laser sources and their possible applications. In Frontiers in Guided Wave Optics and Optoelectronics; Pal, B., Ed.; BoD-Books on Demand; IntechOpen: London, UK, 2010; pp. 471–500. [Google Scholar] [CrossRef] [Green Version]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Singh, U.N.; Walsh, B.M.; Yu, J.; Petros, M.; Kavaya, M.J.; Refaat, T.F.; Barnes, N.P. Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Opt. Mater. Express 2015, 5, 827–837. [Google Scholar] [CrossRef]
- Walsh, B.M.; Lee, H.R.; Barnes, L.B. Mid infrared laser for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Cihelka, J.; Matulková, I.; Civiš, S. Laser diode photoacoustic and FTIR laser spectroscopy of formaldehyde in the 2.3 µm and 3.5 µm spectral range. J. Mol. Spectrosc. 2009, 256, 68–74. [Google Scholar] [CrossRef]
- Belyaev, A.N.; Chabushkin, A.N.; Khrushchalina, S.A.; Kuznetsova, O.A.; Lyapin, A.A.; Romanov, K.N.; Ryabochkina, P.A. Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-µm laser radiation. Lasers Med. Sci. 2016, 31, 503–510. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Luo, P.L.; Kuo, C.C.; Lee, C.C.; Shy, J.T. Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm. Appl. Phys. B 2012, 109, 327–331. [Google Scholar] [CrossRef]
- Fard, S.T.; Hofmann, W.; Fard, P.T.; Bohm, G.; Ortsiefer, M.; Kwok, E.; Amann, M.C.; Chrostowski, L. Optical absorption glucose measurements using 2.3 µm vertical-cavity semiconductor lasers. IEEE Photon. Technol. Lett. 2008, 20, 930–932. [Google Scholar] [CrossRef]
- Budni, P.A.; Pomeranz, L.A.; Lemons, M.L.; Miller, C.A.; Mosto, J.R.; Chicklis, E.P. Efficient midinfrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators. J. Opt. Soc. Am. B 2000, 17, 723–728. [Google Scholar] [CrossRef]
- Ell, R.; Morgner, U.; Kärtner, F.X.; Fujimoto, J.G.; Ippen, E.P.; Scheuer, V.; Angelow, G.; Tschudi, T.; Lederer, M.J.; Boiko, A.; et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 2001, 26, 373–375. [Google Scholar] [CrossRef]
- Hemming, A.; Richards, J.; Davidson, A.; Carmody, N.; Bennetts, S.; Simakov, N.; Haub, J. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt. Express 2013, 21, 10062–10069. [Google Scholar] [CrossRef]
- James, C. Thulium I. Am. Chem. Soc. 1911, 33, 1332–1344. [Google Scholar] [CrossRef] [Green Version]
- Gruber, J.B.; Hills, M.E.; Macfarlane, R.M.; Morrison, C.A.; Turner, G.A.; Quarles, G.J.; Kintz, G.J.; Esterowits, L. Spectra and energy levels of Tm3+:Y3Al5O12. Phys. Rev. B 1989, 40, 9464–9478. [Google Scholar] [CrossRef]
- Loiko, P.; Doualan, J.L.; Guillemot, L.; Moncorgé, R.; Starecki, F.; Benayad, A.; Dunina, E.; Kornienko, A.; Fomicheva, L.; Braud, A.; et al. Emission properties of Tm3+-doped CaF2, KY3F10, LiYF4, LiLuF4 and BaY2F8 crystals at 1.5 µm and 2.3 µm. J. Lumin. 2020, 225, 117279. [Google Scholar] [CrossRef]
- French, V.A.; Petrin, R.R.; Powell, R.C.; Kotka, M. Energy-transfer processes in Y3Al5O12:Tm,Ho. Phys. Rev. B 1992, 46, 8018–8026. [Google Scholar] [CrossRef]
- Stoneman, R.C.; Esterowitz, L. Continuous-wave 1.50 µm thulium cascade laser. Opt. Lett. 1991, 16, 232–234. [Google Scholar] [CrossRef]
- Diening, A.; Mobert, P.E.A.; Huber, G. Diode-pumped continuous-wave, quasi-continuous-wave and Q-switched laser operation of Yb3+,Tm3+:YLiF4 at 1.5 and 2.3 µm. J. Appl. Phys. 1998, 84, 5900–5904. [Google Scholar] [CrossRef]
- Braud, A.; Girard, S.; Doualan, J.L.; Thuau, M.; Moncorgé, R. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm. Phys. Rev. B 2000, 61, 5280–5292. [Google Scholar] [CrossRef]
- Androz, G.; Bernier, M.; Faucher, D.; Vallée, R. 2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 nm. Opt. Express 2008, 16, 16019–16031. [Google Scholar] [CrossRef]
- Antipenko, B.M.; Mak, A.A.; Raba, O.B.; Seirenyan, K.B.; Uvarova, T.V. New lasing transition in the Tm3+ ion. Sov. J. Quantum Electron. 1983, 13, 558–560. [Google Scholar] [CrossRef]
- Allain, J.Y.; Monerie, M.; Poignant, H. Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fiber. Electron. Lett. 1989, 25, 1660–1662. [Google Scholar] [CrossRef]
- Komukai, T.; Yamamoto, T.; Sugawa, T.; Miyajima, Y. Upconversion Pumped Thulium-Doped Fluoride Fiber Amplifier and Laser Operating at 1.47 µm. IEEE J. Quantum Electron. 1995, 31, 1880–1889. [Google Scholar] [CrossRef]
- Renard, S.; Camy, P.; Braud, A.; Doualan, J.L.; Moncorgé, R. CaF2 doped with Tm3+: A cluster model. J. Alloys Compd. 2008, 451, 71–73. [Google Scholar] [CrossRef]
- Kintz, G.J.; Allen, R.; Esterowitz, L. Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 26 April–1 May 1987; Optical Society of America: Washington, DC, USA, 1987; p. ThU4. [Google Scholar]
- Johnson, L.F.; Geusic, J.E.; Uitert, L.G.V. Coherent oscillations from Tm3+, Ho3+,Yb3+ and Er3+ ions in yttrium aluminum garnet. Appl. Phys. Lett. 1965, 7, 127–129. [Google Scholar] [CrossRef]
- Allen, R.; Esterowitz, L. CW diode pumped 2.3 µm fiber laser. Appl. Phys. Lett. 1989, 55, 721–722. [Google Scholar] [CrossRef]
- Canbaz, F.; Yorulmaz, I.; Sennaroglu, A. Kerr-lens mode-locked 2.3-µm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Opt. Lett. 2017, 42, 3964–3967. [Google Scholar] [CrossRef]
- Soulard, R.; Tyazhev, A.; Doualan, J.L.; Braud, A.; Hideur, A.; Laroche, M.; Xu, B.; Camy, P. 2.3 µm Tm3+:YLF mode-locked laser. In Laser Congress 2017 (ASSL, LAC); Optical Society of America: Washington, DC, USA, 2017; p. ATh3A.3. [Google Scholar] [CrossRef]
- Muti, A.; Tonelli, M.; Petrov, V.; Sennaroglu, A. Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3 µm. Opt. Lett. 2019, 44, 3242–3245. [Google Scholar] [CrossRef]
- Walsh, B.M.; Barnes, N.P.; Petros, M.; Yu, J.; Singh, U.N. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4. J. Appl. Phys. 2004, 95, 3255–3271. [Google Scholar] [CrossRef]
- Pinto, J.F.; Esterowitz, L.; Rosenblatt, G.H. Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm. Opt. Lett. 1994, 19, 883–885. [Google Scholar] [CrossRef]
- Guillemot, L.; Loiko, P.; Braud, A.; Doualan, J.L.; Hideur, A.; Koselja, M.; Moncorge, R.; Camy, P. Continuous-wave Tm:YAlO3 laser at ~2.3 µm. Opt. Lett. 2019, 44, 5077–5080. [Google Scholar] [CrossRef]
- Guillemot, L.; Loiko, P.; Kifle, E.; Doualan, J.L.; Braud, A.; Starecki, F.; Georges, T.; Rouvillain, J.; Hideur, A.; Camy, P. Watt-level mid-infrared continuous-wave Tm:YAG laser operating on the 3H4->3H5 transition. Opt. Mater. 2020, 101, 109745. [Google Scholar] [CrossRef]
- Baer, J.E.; Knights, M.G.; McCarthy, J.C.; Chicklis, E.P.; Jenssen, H.P. 450-nm operation of XeF-pumped Tm: YLF. In Conference on Lasers and Electro-Optics; Abbott, F., Ready, J., Li, T., Sincerbox, G., Eds.; OSA Technical Digest; Optica Publishing Group: Washington, DC, USA, 1981; p. WA5. [Google Scholar] [CrossRef]
- Tanabe, S.; Yoshii, S.; Hirao, K.; Soga, N. Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses. Phys. Rev. B 1992, 45, 4620–4625. [Google Scholar] [CrossRef]
- Kermaoui, A.; Barthou, C.; Denis, J.P.; Blanzat, B. Excited state absorption mechanisms of red to UV and blue conversion luminescence in Tm3+ doped fluorophosphate glass. J. Lumin. 1984, 29, 85–96. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Faulkner, G.E.; Dulick, M. Blue-green (450-nm) upconversion Tm3+:YLF laser. Appl. Opt. 1989, 28, 3553–3555. [Google Scholar] [CrossRef]
- Hebert, T.; Wannemacher, R.; Macfarlane, R.M.; Length, W. Blue continuously pumped upconversion lasing in Tm:YLiF4. Appl. Phys. Lett. 1992, 60, 2592–2594. [Google Scholar] [CrossRef]
- Thrash, R.J.; Johnson, L.F. Upconversion laser emission from Yb3+-sensitized Tm3+ in BaY2F8. J. Opt. Soc. Am. B 1994, 11, 881–885. [Google Scholar] [CrossRef]
- Zinkevich, M. Thermodynamics of rare earth sesquioxides. Prog. Mater. Sci. 2007, 52, 597–647. [Google Scholar] [CrossRef]
- Ikesue, A.; Furusato, I.; Kamata, K. Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid-State Reaction Method. J. Am. Ceram. Soc. 1995, 78, 225–228. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Taira, T.; Kamimura, T.; Yoshida, K.; Messing, G.L. Progress in ceramic lasers. Annu. Rev. Mater. Res. 2006, 36, 397–429. [Google Scholar] [CrossRef]
- Pirri, A.; Toci, G.; Patrizi, B.; Vannini, M. An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1602108. [Google Scholar] [CrossRef]
- Kim, W.-J.; Park, J.Y.; Oh, S.J.; Kim, Y.S.; Hong, G.W.; Kuk, I.-H. Characteristics and sintering behavior of Yttria powders synthesized by the combustion process. J. Mater. Sci. Lett. 1999, 18, 411–413. [Google Scholar] [CrossRef]
- Roy, S.; Sigmund, W.; Aldinger, F. Nanostructured Yttria powders via gel combustion. J. Mater. Res. 1999, 14, 1524–1531. [Google Scholar] [CrossRef]
- Sharma, P.K.; Jilavi, M.H.; Naû, R.; Schmidt, H. Seeding effect in hydrothermal synthesis of nanosize Yttria. J. Mater. Sci. Lett. 1998, 17, 823–825. [Google Scholar] [CrossRef]
- Ramanathan, S.; Shankar, P.; Subramanian, K.; Ramakrishnan, S.S.; Angelo, P.C.; Venkataraman, H. Synthesis of nanocrystalline yttria by sol-gel method. Mater. Lett. 2001, 48, 342–346. [Google Scholar] [CrossRef]
- Ikegami, T.; Mori, T.; Yajima, Y.; Takenouchi, S.; Misawa, T.; Moriyoshi, Y. Fabrication of transparent Yttria ceramics through the synthesis of Yttrium hydroxide at low temperature and doping by sulfate ions. J. Ceram. Soc. Jpn. 1999, 107, 297–299. [Google Scholar] [CrossRef] [Green Version]
- Noriko Saito, N.; Matsuda, S.-I.; Ikegami, T. Fabrication of transparent Yttria ceramics at low temperature using carbonate-derived powder. J. Am. Ceram. Soc. 1998, 81, 2023–2028. [Google Scholar] [CrossRef]
- Tool, C.J.J.; Cordfunke, E.H.P. Influence of precipitation on the microstructure and sinterability of yttria. Solid State Ion. 1989, 32–33, 691–697. [Google Scholar] [CrossRef]
- Osipov, V.V.; Shitov, V.A.; Maksimov, R.N.; Solomonov, V.I. Properties of transparent Re3+:Y2O3 ceramics doped with tetravalent additives. Opt. Mater. 2015, 50, 65–70. [Google Scholar] [CrossRef]
- Pirri, A.; Patrizi, B.; Maksimov, R.N.; Shitov, V.A.; Osipov, V.V.; Vannini, M.; Toci, G. Spectroscopic investigation and laser behaviour of Yb-doped laser ceramics based on mixed crystalline structure (ScxY1−x)2O3. Ceram. Int. 2021, 47, 29483–29489. [Google Scholar] [CrossRef]
- Jiang, B.; Hu, C.; Li, J.; Kou, H.; Shi, Y.; Liuy, W.; Pan, Y. Synthesis and properties of Yb:Sc2O3 transparent ceramics. J. Rare Earths 2011, 29, 951–953. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Zhang, J.; Liu, P.; Luo, D.; Yin, D.; Tang, D.; Kong, L.B. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing. Opt. Mater. 2017, 71, 117–120. [Google Scholar] [CrossRef]
- Seeley, Z.M.; Kuntz, J.D.; Cherepy, N.J.; Payne, S.A. Transparent Lu2O3: Eu ceramics by sinter and HIP optimization. Opt. Mater. 2011, 33, 1721–1726. [Google Scholar] [CrossRef]
- Gazza, G.E.; Roderick, D.; Levine, B. Transparent Sc2O3 by hot-pressing. J. Mater. Sci. 1971, 6, 1137–1139. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Baker, C.; Villalobos, G.; Frantz, J.; Shaw, B.; Lutz, A.; Sadowski, B.; Miklos, R.; Hunt, M.; et al. Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic. Opt. Mater. 2011, 33, 670–674. [Google Scholar] [CrossRef]
- An, L.; Ito, A.; Goto, T. Fabrication of transparent lutetium oxide by spark plasma sintering. J. Am. Ceram. Soc. 2011, 94, 695–698. [Google Scholar] [CrossRef]
- Futami, Y.; Yanagida, T.; Fujimoto, Y.; Pejchal, J.; Sugiyama, M.; Kurosawa, S.; Yokota, Y.; Ito, A.; Yoshikawa, A.; Goto, T. Optical and scintillation properties of Sc2O3, Y2O3 and Lu2O3 transparent ceramics synthesized by SPS method. Radiat. Meas. 2013, 55, 136–140. [Google Scholar] [CrossRef]
- Zhou, D.; Shi, Y.; Xie, J.; Ren, Y.; Yun, P. Fabrication and luminescent properties of Nd3+-Doped Lu2O3 transparent ceramics by pressureless sintering. J. Am. Ceram. Soc. 2009, 92, 2182–2187. [Google Scholar] [CrossRef]
- Jing, W.; Loiko, P.; Serres, J.M.; Wang, Y.; Vilejshikova, E.; Aguiló, M.; Díaz, F.; Griebner, U.; Huang, H.; Petrov, V.; et al. Synthesis, spectroscopy, and efficient laser operation of "mixed" sesquioxide Tm:(Lu,Sc) 2O3 transparent ceramics. Opt. Mater. Express 2017, 7, 4192–4202. [Google Scholar] [CrossRef]
- Wu, H.; Pan, G.H.; Hao, Z.; Zhang, L.; Zhang, X.; Zhang, L.; Zhao, H.; Zhang, J. Laser-quality Tm:(Lu0.8Sc0.2)2O3 mixed sesquioxide ceramics shaped by gelcasting of well-dispersed nanopowders. J. Am. Ceram. Soc. 2019, 102, 4919–4928. [Google Scholar] [CrossRef]
- Loiko, P.; Koopmann, P.; Mateos, X.; Serres, J.; Jambunathan, V.; Lucianetti, A.; Mocek, T.; Aguilo, M.; Diaz, F.; Griebner, U.; et al. Highly efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding. IEEE J. Sel. Top. Quantum Electron. 2019, 24, 1–13. [Google Scholar] [CrossRef]
- Liferovich, R.P.; Mitchell, R.H. A structural study of ternary lanthanide orthoscandate perovskites. J. Solid State Chem. 2004, 177, 2188–2197. [Google Scholar] [CrossRef]
- Sarkarainadar, B.; Rodewald, U.C.; Thomas, H.; van Wüllen, L.; Mohr, D.; Heinz, D.; Eckert, H.; Pöttgen, R. PbO/PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals—Structure and Solid-State NMR Spectroscopy. Z. Nat. B 2010, 65, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Ueda, K. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3. J. Solid State Chem. 2016, 242, 170–174. [Google Scholar] [CrossRef]
- Clark, J.B.; Richter, P.W.; DuToit, L. High-Pressure Synthesis of YScO3, HoScO3, ErScO3, and TmScO3, and a Reevaluation of the Lattice Constants of the Rare Earth Scandates. J. Solid State Chem. 1978, 23, 129–134. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 2005, 98, 1035141–10351414. [Google Scholar] [CrossRef]
- Klemens, P.G. Thermal resistance due to point defects at high temperatures. Phys. Rev. 1960, 119, 507–509. [Google Scholar] [CrossRef]
- Peters, R.; Kränkel, C.; Fredrich-Thornton, S.T.; Beil, K.; Petermann, K.; Huber, G.; Heckl, O.H.; Baer, C.R.E.; Saraceno, C.J.; Südmeyer, T.; et al. Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides. Appl. Phys. B 2011, 102, 509–514. [Google Scholar] [CrossRef]
- Liu, W.; Lu, D.; Guo, R.; Wu, K.; Pan, S.; Hang, Y.; Sun, D.; Yu, H.; Yu, H. Broadening of the Fluorescence Spectra of Sesquioxide Crystals for Ultrafast Lasers. Cryst. Growth Des. 2020, 20, 4678–4685. [Google Scholar] [CrossRef]
- Kränkel, C.; Uvarova, A.; Haurat, É.; Hülshoff, L.; Brützam, M.; Guguschev, C.; Kalusniak, S.; Klimm, D. Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu2O3-Sc2O3-Y2O3. Acta Cryst. 2021, B77, 550–558. [Google Scholar] [CrossRef]
- Hu, Q.; Jia, Z.; Tang, C.; Lin, N.; Zhang, J.; Jia, N.; Wang, S.; Zhao, X.; Tao, X. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties. CrystEngComm 2017, 19, 537–545. [Google Scholar] [CrossRef]
- Pan, Z.; Loiko, P.; Wang, Y.; Zhao, Y.; Yuan, H.; Tang, K.; Dai, X.; Cai, H.; Serres, J.M.; Slimi, S.; et al. Disordered Tm3+,Ho3+-codoped CNGG garnet crystal: Towards efficient laser materials for ultrashort pulse generation at 2 µm. J. Alloys Compd. 2021, 853, 157100. [Google Scholar] [CrossRef]
- Pirri, A.; Toci, G.; Patrizi, B.; Maksimov, R.N.; Osipov, V.V.; Shitov, V.A.; Vannini, M. Yb3+:(LuxY1−x)2O3 mixed sesquioxide ceramics for laser applications. Part I: Fabrication, microstructure and spectroscopy. J. Alloys Compd. 2021, 869, 159227. [Google Scholar] [CrossRef]
- Badie, J.M.; Foex, M. Determination experimentale, calcul et prevision de certains diagrammes Sc2O3-Ln2O3. J. Sol. State Chem. 1978, 26, 311–319. [Google Scholar] [CrossRef]
- Badie, J.M. High-temperature phases and phase-transitions in the systems Sc2O3-Ln2O3 (Ln= lanthanide and yttriun). Rev. Int. Hautes Temp. Refract. 1978, 15, 183–189. Available online: https://scholar.google.com/scholar?q=High-temperature%20phases%20and%20phase-transitions%20in%20the%20systems%20Sc2O3Ln2O3 (accessed on 8 February 2022).
- Li, J.G.; Ikegami, T.; Mori, T.; Yajima, Y. Monodispersed Sc2O3 precursor particles via homogeneous precipitation: Synthesis, thermal decomposition, and the effects of supporting anions on powder properties. J. Mater. Res. 2003, 18, 1149–1156. [Google Scholar] [CrossRef]
- Barrera, E.W.; Pujol, M.C.; Cascales, C.; Zaldo, C.; Park, K.H.; Choi, S.B.; Rotermund, F.; Carvajal, J.J.; Mateos, X.; Aguilo, M.; et al. Spectroscopic characterization of sol-gel synthesized Tm:Lu2O3 nanocrystals. Appl. Phys. B 2012, 106, 409–417. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, Z.F.; Hreniak, D.; Li, S.S.; Liu, W.B.; Wang, W.; Luo, W.; Li, C.; Dai, J.; Chen, H.; et al. Fabrication of Yb:Sc2O3 laser ceramics by vacuum sintering co-precipitated nano-powders. Opt. Mater. 2017, 72, 482–490. [Google Scholar] [CrossRef]
- Liu, W.; Kou, H.; Li, J.; Jiang, B.; Pan, Y. Transparent Yb:(LuxSc1−x)2O3 ceramics sintered from carbonate co-precipitated powders. Ceram. Int. 2015, 41, 6335–6339. [Google Scholar] [CrossRef]
- Jing, W.; Loiko, P.; Serres, J.M.; Wang, Y.; Kifle, E.; Vilejshikova, E.; Aguiló, M.; Díaz, F.; Griebner, U.; Huang, H.; et al. Synthesis, spectroscopic characterization and laser operation of Ho3+ in "mixed" (Lu,Sc)2O3 ceramics. J. Lumin. 2018, 203, 145–151. [Google Scholar] [CrossRef]
- Koopmann, P.; Lamrini, S.; Scholle, K.; Fuhrberg, P.; Petermann, K.; Huber, G. Laser Operation and Spectroscopic Investigation of Tm:LuScO3 CLEO/Europe and EQEC 2011 Conference Digest; OSA Technical Digest (CD); Optical Society of America: Washington DC, USA, 2011; p. CA1_4. [Google Scholar] [CrossRef]
- Koopmann, P.; Peters, P.; Petermann, K.; Huber, G. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm. Appl. Phys. B 2011, 102, 19–24. [Google Scholar] [CrossRef]
- Lagatsky, A.A.; Koopmann, P.; Antipov, L.; Brown, C.T.A.; Huber, G.; Sibbett, W. Femtosecond pulse generation with Tm-doped sesquioxides. In Proceedings of the Conference on Lasers and Electro-Optics—International Quantum Electronics Conference, Munich, Germany, 12–16 May 2013; Optical Society of America: Washington, DC, USA, 2013; p. CA_6_3. [Google Scholar]
- Stevenson, N.K.; Brown, C.T.A.; Hopkins, J.M.; Dawson, M.D. Diode-pumped femtosecond Tm3+-doped LuScO3 laser near 2.1 µm. Opt. Lett. 2017, 43, 1287–1290. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Kong, L.; Xu, X.; Liu, P.; Xie, G.; Zhang, J.; Xu, J. Spectroscopy and mode-locking laser operation of Tm:LuYO3 mixed sesquioxide ceramic. Opt. Express 2019, 27, 24416–24425. [Google Scholar] [CrossRef]
- Ryabochkina, P.A.; Chabushkin, A.N.; Kopylov, Y.L.; Balashov, V.V.; Lopukhin, K.V. Two-micron lasing in diode-pumped Tm:Y2O3 ceramics. Quantum Electron. 2016, 46, 597–600. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Pan, Z.; Wang, Y.; Zhang, J.; Liu, P.; Xu, X.; Shen, D.; Xu, J.; Suomalainen, S.; et al. Sub-60 fs SESAM mode-locked Tm:LuYO3 ceramic laser. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019; OSA Technical Digest; Optical Society of America: Washington, DC, USA, 2019; p. ca_6_2. [Google Scholar]
- Chen, G.; Li, S.; Zhang, L.; Tan, X.; Deng, W.; He, M.; Xu, M.; Yang, Y.; Zhang, S.; Hang, Y. Growth and spectra of Tm3+ doped LuYO3 single crystal for 2 µm lasers. Infrared Phys. Technol. 2020, 109, 103431. [Google Scholar] [CrossRef]
- Bagdasarov, K.S.; Kaminskii, A.A.; Kevorkov, A.M.; Li, L.; Prokhorov, A.M.; Tevosyan, T.A.; Sarkisov, S.E. Investigation of the stimulated emission of cubic crystals of YScO3 with Nd3+ ions. Sov. Phys. Dokl. 1976, 20, 681–683. [Google Scholar]
- Tissue, B.M.; Cockroft, N.J.; Lu, L.; Nguyen, D.C.; Yen, W.M. Comparison of the spectra and dynamics of Er3+:Y2−xScxO3 (x= 0, 1, 2). J. Lumin. 1991, 48, 477–480. [Google Scholar] [CrossRef]
- Alimov, O.; Dobretsova, E.; Guryev, D.; Kashin, V.; Kiriukhina, G.; Kutovoi, S.; Rusanov, S.; Simonov, S.; Tsvetkov, V.; Vlasov, V.; et al. Growth and characterization of neodymium-doped yttrium scandate crystal fiber with a bixbyite-type crystal structure. Cryst. Growth Des. 2020, 20, 4593–4599. [Google Scholar] [CrossRef]
- Lu, S.; Yang, Q.; Shi, Z. The effect of Sc2O3 on Yb3+-doped Y2O3 transparent ceramics. Adv. Mater. Res. 2011, 299, 629–632. [Google Scholar] [CrossRef]
- Lu, S.; Yang, Q.; Zhang, H.; Wang, Y.; Huang, D. Fabrication and spectral properties of Yb:(Sc0.9Y0.1)O3 transparent ceramics. Opt. Mater. 2013, 35, 793–797. [Google Scholar] [CrossRef]
- Pirri, A.; Maksimov, R.N.; Shitov, V.A.; Osipov, V.V.; Tikhonov, E.V.; Toci, G.; Patrizi, B.; Vannini, M. Novel Tm:(Y,Sc) 2O3 Transparent Ceramics for Laser Applications. In Proceedings of the Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 21–25 June 2021; p. ce_10_3. [Google Scholar] [CrossRef]
- Liu, Z.; Toci, G.; Pirri, A.; Patrizi, B.; Li, J.; Hu, Z.; Wei, J.; Pan, H.; Xie, T.; Vannini, M.; et al. Fabrication and laser operation of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. J. Am. Ceram. Soc. 2019, 102, 7491–7499. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Q.; Toci, G.; Vannini, M.; Pirri, A.; Babin, V.; Nikl, M.; Wang, W.; Chen, H.; Li, J. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. J. Eur. Ceram. Soc. 2018, 38, 1632–1638. [Google Scholar] [CrossRef]
- Toci, G.; Pirri, A.; Patrizi, B.; Maksimov, R.N.; Osipov, V.V.; Shitov, V.A.; Yurovskikh, A.S.; Vannini, M. High efficiency emission of a laser based on Yb-doped (Lu,Y)2O3 ceramic. Opt. Mater. 2018, 83, 182–186. [Google Scholar] [CrossRef]
- Toci, G.; Pirri, A.; Li, J.; Xie, T.; Pan, Y.; Babin, V.; Beitlerova, A.; Nikl, M.; Vannini, M. First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics. Opt. Express 2016, 24, 9611–9616. [Google Scholar] [CrossRef]
Sample | Doping at.% | σabs (×10−21 cm−2) | λabs (nm) | σem (×10−21 cm−2) | λem (nm) | Grain Size (µm) | Lattice Const. (Å) | Ref. |
---|---|---|---|---|---|---|---|---|
LuScO3 | 2 | 3.5 | 793 | - | 1.65 | [55] | ||
(Lu2/3Sc1/3)2O3 | 4.76 | 2.8 | 793 | 7.15 | 1951 | 4–5 | 10.3683 | [121] |
(Lu2/3Sc1/3)2O3 | 4.76 | 4.2 | 1622 | 2.38 | 2090 | [121] | ||
Lu1.6Sc0.4O3 | 1.5 | 3.1 | 796 | 1.11 | 2090 | 1.54 | [54] | |
Lu0.8Sc0.2O3 | 2 | - | - | 2.5 | [122] | |||
(Lu2/3Sc1/3)2O3 | 2.8 | - | 7.0 | 1950 | - | - | [56] | |
LuYO3 | 3 | 3.8 | 796 | 6.0 | 1937 | 1.65 | - | [51] |
LuYO3 | 3 | 3.0 | 2055 | - | 1.65 | - | [147] | |
LuScO3 crystal | 1 | 2.6 | 793 | 8.0 | 1956 | - | 10.105 | [143] |
(Sc1/4Y3/4)2O3 | 5 | 3.9 | 2098 | 28.2 | 10.401 | [53] |
Sample | Doping at.% | Pout (W) | λL (nm) | η (%) | Pth (W) | Ref. |
---|---|---|---|---|---|---|
LuScO3 | 2 | 0.211 | 1982 | 8.2 | 0.840 | [55] |
(Lu2/3Sc1/3)2O3 | 4.76 | 1 | 2100 | 24 | 0.860 | [121] |
Lu1.6Sc0.4O3 | 1 | 9.8 | 2090 | 40 | 2.8 | [54] |
Lu1.6Sc0.4O3 | 1.5 | 11 | 2090 | 39 | 5.0 | [54] |
Lu0.8Sc0.2O3 | 2 | 1.88 | 2090 | 24.6 | 3.2 | [122] |
(Lu2/3Sc1/3)2O3 | 2.8 | 0.490 | 2088 | 26.8 | - | [56] |
LuYO3 | 3 | 1.55 | 2050 | 19.9 | 1.1 | [51] |
LuYO3 | 3 | 1.20 | 2067 | 25.1 | 0.530 | [147] |
LuYO3 | 3 | 0.440 | 2074 | - | 0.140 | [59] |
YO3 | 3 | 0.603 | 2060 | 33.2 | 0.250 | [52] |
LuYO3 | 3 | 0.600 | 2076 | 11.5 | 0.250 | [52] |
(Sc1/4Y3/4)O3 | 5 | 1.24 | 2077 | 9.45 | 3.49 | [53] |
LuScO3 crystal | 1 | 0.250 | 1982 | 55 | 0.038 | [143] |
LuScO3 crystal | 1 | 0.705 | 2100 | 55 | 0.038 | [143] |
Sample | λL (nm) | Pout (mW) | τL (fs) | f (MHz) | Ref. |
---|---|---|---|---|---|
LuScO3 | 1975 | 32 | 590 ps | 34.72 | [55] |
Lu2/3Sc1/3O3 | 2057 | 30 | 63 | 78.9 | [54] |
Lu2/3Sc1/3O3 | 2081 | 220 | 58 | 84.8 | [56] |
LuYO3 | 2048 | 51 | 54 | 78 | [52] |
LuYO3 | 2045 | 63 | 57 | 72.6 | [59] |
LuYO3 | 2061 | 121 | 410 | 139.3 | [147] |
LuYO3 | 2047 | 540 | 120.3 ns | 26.31 | [51] |
LuScO3c | 2093 | 113 | 170 | 115.2 | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirri, A.; Maksimov, R.N.; Li, J.; Vannini, M.; Toci, G. Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials 2022, 15, 2084. https://doi.org/10.3390/ma15062084
Pirri A, Maksimov RN, Li J, Vannini M, Toci G. Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials. 2022; 15(6):2084. https://doi.org/10.3390/ma15062084
Chicago/Turabian StylePirri, Angela, Roman N. Maksimov, Jiang Li, Matteo Vannini, and Guido Toci. 2022. "Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications" Materials 15, no. 6: 2084. https://doi.org/10.3390/ma15062084
APA StylePirri, A., Maksimov, R. N., Li, J., Vannini, M., & Toci, G. (2022). Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials, 15(6), 2084. https://doi.org/10.3390/ma15062084