Editor's Choice Articles

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessEditor’s ChoiceArticle
Towards Detecting Building Facades with Graffiti Artwork Based on Street View Images
ISPRS Int. J. Geo-Inf. 2020, 9(2), 98; https://doi.org/10.3390/ijgi9020098 - 04 Feb 2020
Abstract
As a recognized type of art, graffiti is a cultural asset and an important aspect of a city’s aesthetics. As such, graffiti is associated with social and commercial vibrancy and is known to attract tourists. However, positional uncertainty and incompleteness are current issues [...] Read more.
As a recognized type of art, graffiti is a cultural asset and an important aspect of a city’s aesthetics. As such, graffiti is associated with social and commercial vibrancy and is known to attract tourists. However, positional uncertainty and incompleteness are current issues of open geo-datasets containing graffiti data. In this paper, we present an approach towards detecting building facades with graffiti artwork based on the automatic interpretation of images from Google Street View (GSV). It starts with the identification of geo-tagged photos of graffiti artwork posted on the photo sharing media Flickr. GSV images are then extracted from the surroundings of these photos and interpreted by a customized, i.e., transfer learned, convolutional neural network. The compass heading of the GSV images classified as containing graffiti artwork and the possible positions of their acquisition are considered for scoring building facades according to their potential of containing the artwork observable in the GSV images. More than 36,000 GSV images and 5000 facades from buildings represented in OpenStreetMap were processed and evaluated. Precision and recall rates were computed for different facade score thresholds. False-positive errors are caused mostly by advertisements and scribblings on the building facades as well as by movable objects containing graffiti artwork and obstructing the facades. However, considering higher scores as threshold for detecting facades containing graffiti leads to the perfect precision rate. Our approach can be applied for identifying previously unmapped graffiti artwork and for assisting map contributors interested in the topic. Furthermore, researchers interested on the spatial correlations between graffiti artwork and socio-economic factors can profit from our open-access code and results. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Application of AHP to Road Selection
ISPRS Int. J. Geo-Inf. 2020, 9(2), 86; https://doi.org/10.3390/ijgi9020086 - 01 Feb 2020
Abstract
The analytic hierarchy process (AHP), a decision-making method, allows the relative prioritization and assessment of alternatives under multiple criteria contexts. This method is also well suited for road selection. The method for road selection based on AHP involves four steps: (i) Points of [...] Read more.
The analytic hierarchy process (AHP), a decision-making method, allows the relative prioritization and assessment of alternatives under multiple criteria contexts. This method is also well suited for road selection. The method for road selection based on AHP involves four steps: (i) Points of Interest (POIs), the point-like representations of the facilities and habitations in maps, are used to describe and build the contextual characteristic indicator of roads; (ii) form an AHP model of roads with topological, geometrical, and contextual characteristic indicators to calculate their importance; (iii) select roads based on their importance and the adaptive thresholds of their constituent density partitions; and (iv) maintain the global connectivity of the selected network. The generalized result at a scale of 1:200,000 by AHP-based methods better preserved the structure of the original road network compared with other methods. Our method also gives preference to roads with relatively significant contextual characteristics without interfering with the structure of the road network. Furthermore, the result of our method largely agrees with that of the manual method. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Evaluation of Augmented Reality-Based Building Diagnostics Using Third Person Perspective
ISPRS Int. J. Geo-Inf. 2020, 9(1), 53; https://doi.org/10.3390/ijgi9010053 - 16 Jan 2020
Abstract
Comprehensive user evaluations of outdoor augmented reality (AR) applications in the architecture, engineering, construction and facilities management (AEC/FM) industry are rarely reported in the literature. This paper presents an AR prototype system for infrared thermographic façade inspection and its evaluation. The system employs [...] Read more.
Comprehensive user evaluations of outdoor augmented reality (AR) applications in the architecture, engineering, construction and facilities management (AEC/FM) industry are rarely reported in the literature. This paper presents an AR prototype system for infrared thermographic façade inspection and its evaluation. The system employs markerless tracking based on image registration using natural features and a third person perspective (TPP) augmented view displayed on a hand-held smart device. We focus on evaluating the system in user experiments with the task of designating positions of heat spots on an actual façade as if acquired through thermographic inspection. User and system performance were both assessed with respect to target designation errors. The main findings of this study show that positioning accuracy using this system is adequate for objects of the size of one decimeter. After ruling out the system inherent errors, which mainly stem from our application-specific image registration procedure, we find that errors due to a human’s limited visual-motoric and cognitive performance, which have a more general implication for using TPP AR for target designation, are only a few centimeters. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
A Spatial Analytics Framework to Investigate Electric Power-Failure Events and Their Causes
ISPRS Int. J. Geo-Inf. 2020, 9(1), 54; https://doi.org/10.3390/ijgi9010054 - 16 Jan 2020
Abstract
The U.S. electric-power infrastructure urgently needs renovation. Recent major power outages in California, New York, Texas, and Florida have highlighted U.S. electric-power unreliability. The media have discussed the U.S. aging power infrastructure and the Public Utilities Commission has demanded a comprehensive review of [...] Read more.
The U.S. electric-power infrastructure urgently needs renovation. Recent major power outages in California, New York, Texas, and Florida have highlighted U.S. electric-power unreliability. The media have discussed the U.S. aging power infrastructure and the Public Utilities Commission has demanded a comprehensive review of the causes of recent power outages. This paper explores geographic information systems (GIS) and a spatially enhanced predictive power-outage model to address: How may spatial analytics enhance our understanding of power outages? To answer this research question, we developed a spatial analysis framework that utilities can use to investigate power-failure events and their causes. Analysis revealed areas of statistically significant power outages due to multiple causes. This study’s GIS model can help to advance smart-grid reliability by, for example, elucidating power-failure root causes, defining a data-responsive blackout solution, or implementing a continuous monitoring and management solution. We unveil a novel use of spatial analytics to enhance power-outage understanding. Future work may involve connecting to virtually any type of streaming-data feed and transforming GIS applications into frontline decision applications, showing power-outage incidents as they occur. GIS can be a major resource for electronic-inspection systems to lower the duration of customer outages, improve crew response time, as well as reduce labor and overtime costs. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
An Efficient Staged Evacuation Planning Algorithm Applied to Multi-Exit Buildings
ISPRS Int. J. Geo-Inf. 2020, 9(1), 46; https://doi.org/10.3390/ijgi9010046 - 15 Jan 2020
Abstract
When the occupant density of buildings is large enough, evacuees are prone to congestion during emergency evacuation, which leads to the extension of the overall escape time. Especially for multi-exit buildings, it’s a challenging problem to afford an effective evacuation plan. In this [...] Read more.
When the occupant density of buildings is large enough, evacuees are prone to congestion during emergency evacuation, which leads to the extension of the overall escape time. Especially for multi-exit buildings, it’s a challenging problem to afford an effective evacuation plan. In this paper, a novel evacuation planning algorithm applied to multi-exit buildings is proposed, which is based on an indoor route network model. Firstly, evacuees are grouped by their location proximity, then all groups are approximately equally classified into several evacuation zones, each of which has only one safe exit. After that, all evacuation groups in the same zone are sorted by their shortest path length, then the time window of each evacuation group occupying the safe exit is calculated in turn. In the case of congestion at the safe exit, the departure time of each evacuation group is delayed in its arrival order. The objectives of the proposed algorithm include minimizing the total evacuation time of all evacuees, the travel time of each evacuee, avoiding traffic congestion, balancing traffic loads among different exits, and achieving high computational efficiency. Case studies are conducted to examine the performance of our algorithm. The influences of group number, group size, evacuation speed on the total evacuation time are discussed on a single-exit network, and that of partitioning methods and evacuation density on the performance and applicability in different congestion levels are also discussed on a multi-exit network. Results demonstrate that our algorithm has a higher efficiency and performs better for evacuations with a large occupant density. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
The Role of Spatial Context Information in the Generalization of Geographic Information: Using Reducts to Indicate Relevant Attributes
ISPRS Int. J. Geo-Inf. 2020, 9(1), 37; https://doi.org/10.3390/ijgi9010037 - 10 Jan 2020
Abstract
Generalization of geographic information enables cognition and understanding not only of objects and phenomena located in space but also the relations and processes between them. The automation of this process requires formalization of cartographic knowledge, including information on the spatial context of objects. [...] Read more.
Generalization of geographic information enables cognition and understanding not only of objects and phenomena located in space but also the relations and processes between them. The automation of this process requires formalization of cartographic knowledge, including information on the spatial context of objects. However, the question remains which information is crucial to the decisions regarding the generalization (in this paper: selection) of objects. The article presents and compares the usability of three methods based on rough set theories (rough set theory, dominance-based rough set theory, fuzzy rough set theory) that facilitate the designation of the attributes relevant to a decision. The methods are using different types (levels of measurements) of attributes. The author determines reducts and their cores (common elements) that show the relevance of attributes stemming from the spatial context. The fuzzy rough set theory method proved the least useful, whereas the rough set theory and dominance-based rough set theory methods seem to be recommendable (depending on the governing level of measurement). Full article
Show Figures

Figure 1

Review

Jump to: Research

Open AccessEditor’s ChoiceReview
Open Geospatial Software and Data: A Review of the Current State and A Perspective into the Future
ISPRS Int. J. Geo-Inf. 2020, 9(2), 90; https://doi.org/10.3390/ijgi9020090 - 01 Feb 2020
Abstract
All over the world, organizations are increasingly considering the adoption of open source software and open data. In the geospatial domain, this is no different, and the last few decades have seen significant advances in this regard. We review the current state of [...] Read more.
All over the world, organizations are increasingly considering the adoption of open source software and open data. In the geospatial domain, this is no different, and the last few decades have seen significant advances in this regard. We review the current state of open source geospatial software, focusing on the Open Source Geospatial Foundation (OSGeo) software ecosystem and its communities, as well as three kinds of open geospatial data (collaboratively contributed, authoritative and scientific). The current state confirms that openness has changed the way in which geospatial data are collected, processed, analyzed, and visualized. A perspective on future developments, informed by responses from professionals in key organizations in the global geospatial community, suggests that open source geospatial software and open geospatial data are likely to have an even more profound impact in the future. Full article
(This article belongs to the Special Issue State-of-the-Art in Spatial Information Science)
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
Spaces in Spatial Science and Urban Applications—State of the Art Review
ISPRS Int. J. Geo-Inf. 2020, 9(1), 58; https://doi.org/10.3390/ijgi9010058 - 20 Jan 2020
Abstract
In spatial science and urban applications, “space" is presented by multiple disciplines as a notion referencing our living environment. Space is used as a general term to help understand particular characteristics of the environment. However, the definition and perception of space varies and [...] Read more.
In spatial science and urban applications, “space" is presented by multiple disciplines as a notion referencing our living environment. Space is used as a general term to help understand particular characteristics of the environment. However, the definition and perception of space varies and these variations have to be harmonised. For example, space may have diverse definitions and classification, the same environment may be abstracted/modelled by contradicting notions of space, which can lead to inconsistencies and misunderstandings. In this paper, we seek to investigate and document the state-of-the-art in the research of “space” regarding its definition, classification, modelling and utilization (2D/3D) in spatial sciences and urban applications. We focus on positioning, navigation, building micro-climate and thermal comfort, landscape, urban planning and design, urban heat island, interior design and planning, transportation and intelligent space. We review 147 research papers, technical reports and on-line resources. We compare the presented space concepts with respect to five criteria—classification, boundary, modelling components, use of standards and granularity. The review inventory is intended for both scientists and professionals in the spatial industry, such as companies, national mapping agencies and governments, and aim to provide a reference to better understand and employ the “space” while working across disciplines. Full article
(This article belongs to the Special Issue State-of-the-Art in Spatial Information Science)
Show Figures

Figure 1

Back to TopTop