A Spatial Analysis of the Association Between Urban Heat and Coronary Heart Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cardiovascular Data
2.3. Underlying Conditions and Socioeconomic Data
2.4. Land Surface Temperature Data
2.5. Tree Canopy Data
2.6. Composite Heat Vulnerability Index for Heart Disease
2.7. Estimating Associations Between Urban Heat and Heart Disease
3. Results
3.1. Geographic Distribution of Coronary Heart Disease and Land Surface Temperature
3.2. Spatial Association Between Coronary Heart Disease and Land Surface Temperature
3.3. Determining the Relationship Between Heart Disease and the Heat Vulnerability Index
3.4. Comparison of Ordinary Least Squares and Spatial Error Regression Models
4. Discussion and Conclusions
4.1. Study Findings and General Considerations
4.2. Methodological and Data Considerations
4.3. Result Interpretations and Contributions
4.4. Broader Context and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
Appendix A.5
References
- U.S. Centers for Disease Control and Prevention. Heart Disease Fast Facts. Available online: https://www.cdc.gov/heart-disease/data-research/facts-stats/index.html (accessed on 7 July 2025).
- U.S. Centers for Disease Control and Prevention. About Heart Disease. Available online: https://www.cdc.gov/heart-disease/about/index.html (accessed on 7 July 2025).
- National Institues of Health: National Heart, Lung, and Blood Institute. What Is Coronary Heart Disease? Available online: https://www.nhlbi.nih.gov/health/coronary-heart-disease (accessed on 7 July 2025).
- National Institues of Health: National Heart, Lung, and Blood Institute. Coronary Heart Disease Symptoms. Available online: https://www.nhlbi.nih.gov/health/coronary-heart-disease/symptoms (accessed on 7 July 2025).
- Huang, C.; Liu, K.; Ma, T.; Xue, H.; Wang, P.; Li, L. Analysis of the impact mechanisms and driving factors of urban spatial morphology on urban heat islands. Sci. Rep. 2025, 15, 18589. [Google Scholar] [CrossRef]
- Arifwidodo, S.D.; Chandrasiri, O. Urban heat stress and human health in Bangkok, Thailand. Environ. Res. 2020, 185, 109398. [Google Scholar] [CrossRef]
- Cleland, S.E.; Steinhardt, W.; Neas, L.M.; Jason West, J.; Rappold, A.G. Urban heat island impacts on heat-related cardiovascular morbidity: A time series analysis of older adults in US metropolitan areas. Environ. Int. 2023, 178, 108005. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Varghese, B.M.; Hansen, A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; Bi, P. Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis. Lancet Planet. Health 2022, 6, e484–e495. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, A.; Longo, G.; Coa, A.A.; Fiore, M.; Gori, D. Impacts of Urban Green on Cardiovascular and Cerebrovascular Diseases—A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 5966. [Google Scholar] [CrossRef]
- Deng, S.; Liang, J.; Peng, Y.; Liu, W.; Su, J.; Zhu, S. Spatial analysis of the impact of urban built environment on cardiovascular diseases: A case study in Xixiangtang, China. BMC Public Health 2024, 24, 2368. [Google Scholar] [CrossRef]
- Friel, S.; Hancock, T.; Kjellstrom, T.; Mcgranahan, G.; Monge, P.; Roy, J. Urban Health Inequities and the Added Pressure of Climate Change: An Action-Oriented Research Agenda. J. Urban Health 2011, 88, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Short, J.R.; Farmer, A. Cities and Climate Change. Earth 2021, 2, 1038–1045. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Tong, S.; Prior, J.; Mcgregor, G.; Shi, X.; Kinney, P. Urban heat: An increasing threat to global health. BMJ 2021, 375, n2467. [Google Scholar] [CrossRef]
- Blaustein, J.R.; Quisel, M.J.; Hamburg, N.M.; Wittkopp, S. Environmental Impacts on Cardiovascular Health and Biology: An Overview. Circ. Res. 2024, 134, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Sørensen, M.; Lelieveld, J.; Duerr, G.D.; Nieuwenhuijsen, M.; Daiber, A. Environmental risk factors and cardiovascular diseases: A comprehensive expert review. Cardiovasc. Res. 2022, 118, 2880–2902. [Google Scholar] [CrossRef]
- Münzel, T.; Daiber, A.; Engelmann, N.; Röösli, M.; Kuntic, M.; Banks, J.L. Noise causes cardiovascular disease: It’s time to act. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 24–33. [Google Scholar] [CrossRef]
- Lee, B.-J.; Kim, B.; Lee, K. Air Pollution Exposure and Cardiovascular Disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Daiber, A. The dark side of nocturnal light pollution. Outdoor light at night increases risk of coronary heart disease. Eur. Heart J. 2021, 42, 831–834. [Google Scholar] [CrossRef]
- Jin, J.; Meng, X.; Wang, D.; Han, B.; Wu, T.; Xie, J.; Zhang, Q.; Xie, D.; Zhang, Z. Association between ambient temperature and cardiovascular diseases related hospital admissions in Lanzhou, China. Heliyon 2023, 9, e12997. [Google Scholar] [CrossRef]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.N.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012038. [Google Scholar] [CrossRef]
- Stone, B.; Lanza, K.; Mallen, E.; Vargo, J.; Russell, A. Urban Heat Management in Louisville, Kentucky: A Framework for Climate Adaptation Planning. J. Plan. Educ. Res. 2023, 43, 346–358. [Google Scholar] [CrossRef]
- Maginnis, M.H. The Spatial Geograpy of Deprivation: A Case Study of the West End Neighborhoods of Louisville, Kentucky. Master’s Thesis, University of Louisville, Louisville, KY, USA, 2001. [Google Scholar]
- Zhang, C.H.; Sears, C.G.; Guinn, B.; Zierold, K.M. Exploring Environmental Injustice in Exposure to Airborne Lead Released from Industrial Facilities in Kentucky, United States. Geogr. Rev. 2024, 114, 446–463. [Google Scholar] [CrossRef]
- Desai, Y.; Khraishah, H.; Alahmad, B. Heat and the Heart. Yale J. Biol. Med. 2023, 96, 197–203. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef]
- United States Census Bureau. QuickFacts Jefferson County, Kentucky. Available online: https://www.census.gov/quickfacts/fact/table/jeffersoncountykentucky/PST045221 (accessed on 7 July 2025).
- Centers for Disease Control and Prevention. Health Outcomes. Available online: https://www.cdc.gov/places/measure-definitions/health-outcomes.html (accessed on 5 September 2025).
- Bureau, U.S.C. American Community Survey and Puerto Rico Community Survey Design and Methodology; United States Census Bureau: Suitland, MD, USA, 2024. [Google Scholar]
- ARSET. Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices. Available online: https://appliedsciences.nasa.gov/get-involved/training/english/arset-satellite-remote-sensing-measuring-urban-heat-islands-and (accessed on 7 May 2024).
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Change 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Chapagain, P.S.; Banskota, T.R.; Shrestha, S.; Khanal, N.R.; Yili, Z.; Yan, J.; Linshan, L.; Paudel, B.; Rai, S.C.; Islam, M.N.; et al. Studies on adaptive capacity to climate change: A synthesis of changing concepts, dimensions, and indicators. Humanit. Soc. Sci. Commun. 2025, 12, 331. [Google Scholar] [CrossRef]
- Sung, C.-H.; Liaw, S.-C. Using Spatial Pattern Analysis to Explore the Relationship between Vulnerability and Resilience to Natural Hazards. Int. J. Environ. Res. Public Health 2021, 18, 5634. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, M.; Hasan, Z.; Rahman, M.M.; Gauderman, W.J.; Lorenzo, M.; Lurmann, F.W.; Eckel, S.P.; Palinkas, L.; Johnston, J.; Hurlburt, M.; et al. Does socioeconomic and environmental burden affect vulnerability to extreme air pollution and heat? A case-crossover study of mortality in California. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 294–302. [Google Scholar] [CrossRef]
- Viegas, S. Exposure Science in a Climate Change Scenario. Port. J. Public Health 2022, 40, 1–2. [Google Scholar] [CrossRef]
- Byers, E.; Gidden, M.; Leclère, D.; Balkovic, J.; Burek, P.; Ebi, K.; Greve, P.; Grey, D.; Havlik, P.; Hillers, A.; et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 2018, 13, 055012. [Google Scholar] [CrossRef]
- Choi, H.M.; Bell, M.L. Heat-mortality relationship in North Carolina: Comparison using different exposure methods. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 637–645. [Google Scholar] [CrossRef]
- Abdul-Nabi, S.S.; Al Karaki, V.; Khalil, A.; El Zahran, T. Climate change and its environmental and health effects from 2015 to 2022: A scoping review. Heliyon 2025, 11, e42315. [Google Scholar] [CrossRef] [PubMed]
- Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; Cameron, L.; Poirier-Bergeron, L.; Poulin-Rheault, R.A.; Fallon, C.; Tricco, A.C.; Witteman, H.O. Health effects of climate change: An overview of systematic reviews. BMJ Open 2021, 11, e046333. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Lee, S.-I. Developing a bivariate spatial association measure: An integration of Pearson’s r and Moran’s I. J. Geogr. Syst. 2001, 3, 369–385. [Google Scholar] [CrossRef]
- Lee, S.-I. A Generalized Randomization Approach to Local Measures of Spatial Association. Geogr. Anal. 2009, 41, 221–248. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Abrignani, M.G.; Lombardo, A.; Braschi, A.; Renda, N.; Abrignani, V. Climatic influences on cardiovascular diseases. World J. Cardiol. 2022, 14, 152–169. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Wang, S.; Lu, Y.; Zhang, W.; Wang, J. Spatial and temporal characteristics of temperature effects on cardiovascular disease in Southern China using the Empirical Mode Decomposition method. Sci. Rep. 2018, 8, 14775. [Google Scholar] [CrossRef] [PubMed]
- Keith, R.J.; Hart, J.L.; Bhatnagar, A. Greenspaces And Cardiovascular Health. Circ. Res. 2024, 134, 1179–1196. [Google Scholar] [CrossRef]
- Khan, S.U.; Nguyen, R.T.; Javed, Z.; Singh, M.; Valero-Elizondo, J.; Cainzos-Achirica, M.; Nasir, K. Socioeconomic status, cardiovascular risk profile, and premature coronary heart disease. Am. J. Prev. Cardiol. 2022, 11, 100368. [Google Scholar] [CrossRef] [PubMed]
- Correia, L.C.L.; Cerqueira, M.; Carvalhal, M.; Ferreira, F.; Garcia, G.; Silva, A.B.D.; Sá, N.; Lopes, F.; Barcelos, A.C.; Noya-Rabelo, M. A Multivariate Model for Prediction of Obstructive Coronary Disease in Patients with Acute Chest Pain: Development and Validation. Arq. Bras. Cardiol. 2017, 108, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Tutar, M.; Kocak, H.G.; Kocak, M. Geographical variations and predictors of coronary artery disease mortality in Turkiye: An environmental and behavioral analysis. BMC Cardiovasc. Disord. 2024, 24, 554. [Google Scholar] [CrossRef] [PubMed]
- Meenar, M.; Rahman, M.S.; Russack, J.; Bauer, S.; Kapri, K. “The Urban Poor and Vulnerable Are Hit Hardest by the Heat”: A Heat Equity Lens to Understand Community Perceptions of Climate Change, Urban Heat Islands, and Green Infrastructure. Land 2023, 12, 2174. [Google Scholar] [CrossRef]
CV Values | Poverty | Population Aged 65+ | ||
---|---|---|---|---|
Count | Percentage | Count | Percentage | |
<12% | 3 | 1.4% | 35 | 11.7% |
12–40% | 152 | 71.3% | 174 | 81.7% |
>40% | 58 | 27.2% | 4 | 1.87% |
Index Category | Index Variables | Cited Studies |
---|---|---|
Adaptive Capacity | Proportion of Population Aged 65+ Proportion of Population Below the Federal Poverty Line | Studies on adaptive capacity to climate change: a synthesis of changing concepts, dimensions, and indicators [34] Using Spatial Pattern Analysis to Explore the Relationship between Vulnerability and Resilience to Natural Hazards [35] Does socioeconomic and environmental burden affect vulnerability to extreme air pollution and heat? A case-crossover study of mortality in California [36] |
Exposure | Land Surface Temperature Average Lack of Tree Canopy | Exposure Science in a Climate Change Scenario [37] Global exposure and vulnerability to multi-sector development and climate change hotspots [38] Heat-mortality relationship in North Carolina: Comparison using different exposure methods [39] |
Sensitivity | Proportion of Population with Obesity Proportion of Screened Population with High Cholesterol | Climate Change and its environmental and health effects from 2015 to 2022: A scoping review [40] Health effects of climate change: an overview of systematic reviews [41] |
Range of Z Scores of Original Variables | HVI Component Scores |
---|---|
Less than −2 | 1 |
Between −2 and −1 | 2 |
Between −1 and 0 | 3 |
Between 0 and 1 | 4 |
Between 1 and 2 | 5 |
Greater than 2 | 6 |
Variables | Minimum | Maximum | Range | Mean | Standard Deviation |
---|---|---|---|---|---|
Dependent Variable: Coronary Heart Disease (%) | 1.8 | 15.9 | 14.1 | 7.576 | 1.734 |
Independent Variables: | |||||
Mean Land Surface Temperature (°C) | 28.048 | 41.731 | 13.683 | 35.403 | 2.732 |
Lack of Tree Canopy (%) | 31.962 | 99.525 | 67.563 | 79.496 | 10.110 |
Obesity (%) | 27.7 | 58.8 | 31.1 | 37.856 | 6.954 |
High Cholesterol (%) | 16.8 | 44.6 | 27.8 | 36.724 | 3.199 |
Poverty (%) | 0.4 | 77.6 | 77.2 | 16.606 | 15.458 |
Age 65+ (%) | 0 | 35 | 35 | 15.758 | 6.418 |
Heat Vulnerability Index | 8 | 17 | 9 | 10.749 | 1.514 |
OLS Model | Spatial Error Model | |||
---|---|---|---|---|
Variables | Coefficient | Std. Error | Coefficient | Std. Error |
Intercept | −11.093 | 0.937 | −11.615 | 0.971 |
Mean Land Surface Temperature | 0.009 | 0.024 | 0.004 | 0.025 |
Lack of Tree Canopy | 0.006 | 0.006 | 0.01 | 0.007 |
Obesity | 0.113 * | 0.011 | 0.117 * | 0.012 |
High Cholesterol | 0.344 * | 0.019 | 0.352 * | 0.019 |
Poverty | 0.022 * | 0.005 | 0.021 * | 0.005 |
Age 65+ | 0.034 * | 0.009 | 0.036 * | 0.009 |
Spatial Error | N/A | N/A | 0.323 * | 0.098 |
Moran’s I across residuals | 0.120 * | (p < 0.001 *) | −0.006 | (p = 0.49) |
Adjusted R-Squared | 0.886 | 0.896 | ||
Akaike Information Criterion (AICc) | 376.011 | 367.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, K.; Dewitt, B.; Biddle, D.J.; Zhang, C.H. A Spatial Analysis of the Association Between Urban Heat and Coronary Heart Disease. ISPRS Int. J. Geo-Inf. 2025, 14, 344. https://doi.org/10.3390/ijgi14090344
Lucas K, Dewitt B, Biddle DJ, Zhang CH. A Spatial Analysis of the Association Between Urban Heat and Coronary Heart Disease. ISPRS International Journal of Geo-Information. 2025; 14(9):344. https://doi.org/10.3390/ijgi14090344
Chicago/Turabian StyleLucas, Kyle, Ben Dewitt, Donald J. Biddle, and Charlie H. Zhang. 2025. "A Spatial Analysis of the Association Between Urban Heat and Coronary Heart Disease" ISPRS International Journal of Geo-Information 14, no. 9: 344. https://doi.org/10.3390/ijgi14090344
APA StyleLucas, K., Dewitt, B., Biddle, D. J., & Zhang, C. H. (2025). A Spatial Analysis of the Association Between Urban Heat and Coronary Heart Disease. ISPRS International Journal of Geo-Information, 14(9), 344. https://doi.org/10.3390/ijgi14090344