Dominant Modes of Agricultural Production Helped Structure Initial COVID-19 Spread in the U.S. Midwest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Choice of Time Periods for Study
2.3. (Global) Linear Regression Models
2.4. (Global) Spatial Econometric Models
2.5. (Local) Geographically Weighted Regression Models
3. Results
3.1. Global Generalizations Found by Econometric Models (OLS, Spatial Lag, and Spatial Error Models)
3.2. Regions of Stable Epidemiological Process and Their Borderlands
4. Discussion
4.1. U.S. Midwest COVID-19 and Modes of Agricultural Production
4.2. Social Relations and Processes in U.S. Midwest COVID-19
5. Conclusions and Beyond: Contextual Method and Collective Solutions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lytras, S.; Hughes, J.; Martin, D.; Swanepoel, P.; de Klerk, A.; Lourens, R.; Kosakovsky Pond, S.L.; Xia, W.; Jiang, X.; Robertson, D.L. Exploring the Natural Origins of SARS-CoV-2 in the Light of Recombination. Genome. Biol. Evol. 2022, 14, evac018. [Google Scholar] [CrossRef] [PubMed]
- Pekar, J.E.; Magee, A.; Parker, E.; Moshiri, N.; Izhikevich, K.; Havens, J.L.; Gangavarapu, K.; Serrano, L.M.M.; Crits-Christoph, A.; Matteson, N.L.; et al. The Molecular Epidemiology of Multiple Zoonotic Origins of SARS-CoV-2. Science 2022, 377, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.J.; Hill, M.A.; Angelidi, A.M.; Dalamaga, M.; Sowers, J.R.; Mantzoros, C.S. COVID-19 and Disparities in Nutrition and Obesity. N. Engl. J. Med. 2020, 383, e69. [Google Scholar] [CrossRef] [PubMed]
- Fielding-Miller, R.K.; Sundaram, M.E.; Brouwer, K. Social determinants of COVID-19 mortality at the county level. PLoS ONE 2020, 15, e0240151. [Google Scholar] [CrossRef]
- Lusk, J.L.; Chandra, R. Farmer and farm worker illnesses and deaths from COVID-19 and impacts on agricultural output. PLoS ONE 2021, 16, e0250621. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Boulos, C.; Almond, D. Livestock plants and COVID-19 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 31706–31715. [Google Scholar] [CrossRef]
- van der Ploeg, J.D. From biomedical to politico-economic crisis: The food system in times of COVID-19. J. Peasant Stud. 2020, 47, 944–972. [Google Scholar] [CrossRef]
- Griffith, D.; Li, B. Spatial-temporal modeling of initial COVID-19 diffusion: The cases of the Chinese Mainland and Conterminous United States. Geo.-Spat. Inf. Sci. 2021, 24, 340–362. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Struthers, J.; Lian, M. Spatiotemporal Characteristics of the COVID-19 Epidemic in the United States. Clin. Infect. Dis. 2020, 72, 643–651. [Google Scholar] [CrossRef]
- Albrecht, D.E. COVID-19 in Rural America: Impacts of Politics and Disadvantage*. Rural. Sociol. 2022, 87, 94–118. [Google Scholar] [CrossRef]
- Sun, F.; Matthews, S.A.; Yang, T.-C.; Hu, M.-H. A spatial analysis of the COVID-19 period prevalence in US counties through June 28, 2020: Where geography matters? Ann. Epidemiol. 2020, 52, 54–59.e51. [Google Scholar] [CrossRef] [PubMed]
- Ridenhour, B.J.; Sarathchandra, D.; Seamon, E.; Brown, H.; Leung, F.-Y.; Johnson-Leon, M.; Megheib, M.; Miller, C.R.; Johnson-Leung, J. Effects of trust, risk perception, and health behavior on COVID-19 disease burden: Evidence from a multi-state US survey. PLoS ONE 2022, 17, e0268302. [Google Scholar] [CrossRef] [PubMed]
- Souch, J.M.; Cossman, J.S. A commentary on rural-urban disparities in COVID-19 testing rates per 100,000 and risk factors. J. Rural. Health 2021, 37, 188. [Google Scholar] [CrossRef]
- Cuadros, D.F.; Branscum, A.J.; Mukandavire, Z.; Miller, F.D.; MacKinnon, N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann. Epidemiol. 2021, 59, 16–20. [Google Scholar] [CrossRef]
- Murphy, P.J. Unlocking the Means of COVID-19 Spread From Prisons to Outside Populations. Am. J. Public Health 2021, 111, 1392–1394. [Google Scholar] [CrossRef] [PubMed]
- Amin, S. Modes of Production, History and unequal development. Sci. Soc. 1985, 49, 194–207. [Google Scholar]
- Amin, S. Modes of Production and Social Formations. Ufahamu J. Afr. Stud. 1974, 4, 57–85. [Google Scholar] [CrossRef]
- Bergmann, L.; Chaves, L.F.; Betz, C.R.; Stein, S.; Wiedenfeld, B.; Wolf, A.; Wallace, R.G. Mapping Agricultural Lands: From Conventional to Regenerative. Land 2022, 11, 437. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Cusworth, G.; Dodsworth, J. Using the ‘good farmer’concept to explore agricultural attitudes to the provision of public goods. A case study of participants in an English agri-environment scheme. Agric. Hum. Values 2021, 38, 929–941. [Google Scholar] [CrossRef]
- Paul, R.; Arif, A.; Pokhrel, K.; Ghosh, S. The association of social determinants of health with COVID-19 mortality in rural and urban counties. J. Rural. Health 2021, 37, 278–286. [Google Scholar] [CrossRef] [PubMed]
- New York Times. Coronavirus (COVID-19) Data in the United States for 2020. Available online: https://github.com/FoldingSpace/COVID-19-data/raw/master/us-counties-2020.csv (accessed on 31 May 2021).
- U.S. Census Bureau. 2016–2020 American Community Survey 5-Year Public Use Microdata Samples. Available online: https://www.census.gov/newsroom/press-kits/2021/acs-5-year.html (accessed on 1 November 2021).
- Kulldorff, M. A spatial scan statistic. Commun. Stat. Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- Kulldorff, M.; Information Management Services Inc. SaTScanTM v8.0: Software for the Spatial and Space-Time Scan Statistics. Available online: http://www.satscan.org/ (accessed on 5 May 2021).
- Faraway, J.J. Linear Models with R; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Anselin, L.; Florax, R.; Rey, S.J. Advances in Spatial Econometrics: Methodology, Tools and Applications; Springer: Berlin, Germany, 2013. [Google Scholar]
- Krisztin, T.; Piribauer, P.; Wögerer, M. The spatial econometrics of the coronavirus pandemic. Lett. Spat. Resour. 2020, 13, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Prior, L.; Manley, D.; Sabel, C.E. Biosocial health geography: New ‘exposomic’geographies of health and place. Prog. Hum. Geogr. 2019, 43, 531–552. [Google Scholar] [CrossRef]
- Getis, A. Spatial weights matrices. Geogr. Anal. 2009, 41, 404–410. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Brunsdon, C.; Harris, P. The Minkowski approach for choosing the distance metric in geographically weighted regression. Int. J. Geogr. Inf. Sci. 2016, 30, 351–368. [Google Scholar] [CrossRef]
- Lin, X.; Ruess, P.J.; Marston, L.; Konar, M. Food flows between counties in the United States. Environ. Res. Lett. 2019, 14, 084011. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Table 1. Residence County to Workplace County Commuting Flows for the United States and Puerto Rico Sorted by Residence Geography: 5-Year ACS, 2011–2015. Available online: https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html (accessed on 1 November 2021).
- Zhang, H.; Wang, X. Combined asymmetric spatial weights matrix with application to housing prices. J. Appl. Stat. 2017, 44, 2337–2353. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kestens, Y.; Wasfi, R.; Naud, A.; Chaix, B. “Contextualizing context”: Reconciling environmental exposures, social networks, and location preferences in health research. Curr. Environ. Health Rep. 2017, 4, 51–60. [Google Scholar] [CrossRef]
- Forati, A.M.; Ghose, R.; Mantsch, J.R. Examining opioid overdose deaths across communities defined by racial composition: A multiscale geographically weighted regression approach. J. Urban Health 2021, 98, 551–562. [Google Scholar] [CrossRef]
- He, Y.; Seminara, P.J.; Huang, X.; Yang, D.; Fang, F.; Song, C. Geospatial Modeling of Health, Socioeconomic, Demographic, and Environmental Factors with COVID-19 Incidence Rate in Arkansas, US. ISPRS Int. J. Geoinf. 2023, 12, 45. [Google Scholar] [CrossRef]
- Owen, G.; Harris, R.; Jones, K. Under examination: Multilevel models, geography and health research. Prog. Hum. Geogr. 2016, 40, 394–412. [Google Scholar] [CrossRef]
- Lu, B.; Harris, P.; Charlton, M.; Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo. Spat. Inf. Sci. 2014, 17, 85–101. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Lü, Y.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route Map for Successful Applications of Geographically Weighted Regression. Geogr.l Anal. 2023, 55, 155–178. [Google Scholar] [CrossRef]
- Bergmann, L.; O’Sullivan, D. Colorweaver. 2023; manuscript in preparation. [Google Scholar]
- Hartshorne, R. Perspective on the Nature of Geography; Rand McNally: Chicago, CA, USA, 1959; p. 201. [Google Scholar]
- Wallace, R.G.; Liebman, A.; Chaves, L.F.; Wallace, R. COVID-19 and Circuits of Capital. Month Rev. 2020, 72, 1–15. [Google Scholar] [CrossRef]
- VanderWaal, K.; Paploski, I.A.D.; Makau, D.N.; Corzo, C.A. Contrasting animal movement and spatial connectivity networks in shaping transmission pathways of a genetically diverse virus. Prev. Vet. Med. 2020, 178, 104977. [Google Scholar] [CrossRef]
- Hu, D.; Cheng, T.-Y.; Morris, P.; Zimmerman, J.; Wang, C. Active regional surveillance for early detection of exotic/emerging pathogens of swine: A comparison of statistical methods for farm selection. Prev. Vet. Med. 2021, 187, 105233. [Google Scholar] [CrossRef]
- Chaves, L.F.; Friberg, M.D.; Hurtado, L.A.; Marín Rodríguez, R.; O’Sullivan, D.; Bergmann, L.R. Trade, uneven development and people in motion: Used territories and the initial spread of COVID-19 in Mesoamerica and the Caribbean. Soc. Econ. Plan Sci. 2022, 76, 101161. [Google Scholar] [CrossRef]
- Amin, S. A Note on the Concept of Delinking. Review 1987, 10, 435–444. [Google Scholar]
- Santos, M. The Return of the Territory. In Milton Santos: A Pioneer in Critical Geography from the Global South; Melgaço, L., Prouse, C., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 25–31. [Google Scholar]
- Santos, M. Por Uma Outra Globalização: Do Pensamento Único à Consciência Universal; Record: Rio de Janeiro, Brazil, 2000. [Google Scholar]
- Mastronardi, L.; Cavallo, A.; Romagnoli, L. How did Italian diversified farms tackle COVID-19 pandemic first wave challenges? Soc. Econ. Plan Sci. 2022, 82, 101096. [Google Scholar] [CrossRef]
- Mann, S.A.; Dickinson, J.M. Obstacles to the development of a capitalist agriculture. J. Peas. Stud. 1978, 5, 466–481. [Google Scholar] [CrossRef]
- Robinson, J.M.; Mzali, L.; Knudsen, D.; Farmer, J.; Spiewak, R.; Suttles, S.; Burris, M.; Shattuck, A.; Valliant, J.; Babb, A. Food after the COVID-19 pandemic and the case for change posed by alternative food: A case study of the American Midwest. Glob. Sust. 2021, 4, e6. [Google Scholar] [CrossRef]
- Wallace, R.G. Dead Epidemiologists: On the Origins of COVID-19; Monthly Review Press: New York, NY, USA, 2020. [Google Scholar]
- Lenton, T.M.; Boulton, C.A.; Scheffer, M. Resilience of countries to COVID-19 correlated with trust. Sci. Rep. 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Clapp, J.; Moseley, W.G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peas. Stud. 2020, 47, 1393–1417. [Google Scholar] [CrossRef]
- Carrillo, I.R.; Ipsen, A. Worksites as Sacrifice Zones: Structural Precarity and COVID-19 in U.S. Meatpacking. Sociol Persp. 2021, 64, 726–746. [Google Scholar] [CrossRef]
- Wallace, R.G. Big Farms Make Big Flu: Dispatches on Influenza, Agribusiness, and the Nature of Science; Monthly Review Press: New York, NY, USA, 2016. [Google Scholar]
- Harvey, D. The Limits to Capital; Verso Books: London, UK, 2018. [Google Scholar]
- Banaji, J. Theory as History: Essays on Modes of Production and Exploitation; Brill: Leiden, The Netherlands, 2010. [Google Scholar]
- Chaves, L.F. The Dynamics of Latifundia Formation. PLoS ONE 2013, 8, e82863. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, J.; Hu, L.; Jiang, Y.; Duan, C.; Li, Z.; Wang, X.; Zhang, H. Risk factors associated with mortality of COVID-19 in 3125 counties of the United States. Inf. Dis. Povert. 2021, 10, 1–8. [Google Scholar] [CrossRef]
- Akinwumiju, A.S.; Oluwafemi, O.; Mohammed, Y.D.; Mobolaji, J.W. Geospatial evaluation of COVID-19 mortality: Influence of socio-economic status and underlying health conditions in contiguous USA. Appl. Geogr. 2022, 141, 102671. [Google Scholar] [CrossRef]
- Cheng, K.J.G.; Sun, Y.; Monnat, S.M. COVID-19 Death Rates Are Higher in Rural Counties With Larger Shares of Blacks and Hispanics. J. Rural. Health 2020, 36, 602–608. [Google Scholar] [CrossRef]
- Lundberg, D.J.; Cho, A.; Raquib, R.; Nsoesie, E.O.; Wrigley-Field, E.; Stokes, A.C. Geographic and Temporal Patterns in COVID-19 Mortality by Race and Ethnicity in the United States from March 2020 to February 2022. medRxiv 2022. [Google Scholar]
- McClure, E.S.; Vasudevan, P.; Bailey, Z.; Patel, S.; Robinson, W.R. Racial capitalism within public health—How occupational settings drive COVID-19 disparities. Am. J. Epid. 2020, 189, 1244–1253. [Google Scholar] [CrossRef]
- Rosenberg, M. Health geography II: ‘Dividing’health geography. Prog. Hum. Geogr. 2016, 40, 546–554. [Google Scholar] [CrossRef]
- Thilmany, D.; Canales, E.; Low, S.A.; Boys, K. Local food supply chain dynamics and resilience during COVID-19. App. Econ. Persp. Pol. 2021, 43, 86–104. [Google Scholar] [CrossRef]
- Pitt, D. USDA Unveils Plan to Help Build Small Meat Processing Plants. Available online: https://apnews.com/article/joe-biden-business-health-coronavirus-pandemic-meat-processing-ca27a1c8c38a1b83c7dbea7620d7b24f (accessed on 9 November 2022).
- Frison, E.A.; IPES-Food. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems; IPES: Louvain-la-Neuve, Belgium, 2016; p. 96. [Google Scholar]
- Manson, S.; Schroeder, J.; Van Riper, D.; Kugler, T.; Ruggles, S. IPUMS National Historical Geographic Information System: Version 16.0 2020 Centers of Population; IPUMS: Minneapolis, MN, USA, 2021. [Google Scholar]
- Kulldorff, M.; Huang, L.; Pickle, L.; Duczmal, L. An elliptic spatial scan statistic. Stat. Med. 2006, 25, 3929–3943. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Herman, M. Tidycensus: Load US Census Boundary and Attribute Data as ‘Tidyverse’ and ‘sf’-Ready Data Frames. Available online: https://walker-data.com/tidycensus/ (accessed on 1 November 2022).
- U.S. Census Bureau. Small Area Health Insurance Estimates (SAHIE). Available online: https://www.census.gov/content/census/en/data/datasets/time-series/demo/sahie/estimates-acs.html (accessed on 1 November 2022).
- Dwyer-Lindgren, L.; Bertozzi-Villa, A.; Stubbs, R.W.; Morozoff, C.; Mackenbach, J.P.; van Lenthe, F.J.; Mokdad, A.H.; Murray, C.J.L. Inequalities in Life Expectancy Among US Counties, 1980 to 2014: Temporal Trends and Key Drivers. JAMA Int. Med. 2017, 177, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation. United States Life Expectancy and Age-Specific Mortality Risk by County 1980–2014. Available online: https://ghdx.healthdata.org/record/ihme-data/united-states-life-expectancy-and-age-specific-mortality-risk-county-1980-2014 (accessed on 1 November 2022).
- U.S. Bureau of Economic Analysis. Personal Income (State and Local), CAEMP25N (Total Full-Time and Part-Time Employment by NAICS Industry), 2001–2020. Available online: https://apps.bea.gov/regional/downloadzip.cfm (accessed on 1 November 2022).
- United States Department of Agriculture. Food Safety and Inspection Services. Meat, Poultry and Egg Product Inspection Directory. Available online: https://www.fsis.usda.gov/inspection/establishments/meat-poultry-and-egg-product-inspection-directory. (accessed on 11 October 2020).
- Roth, J. County Distance Database. Available online: https://data.nber.org/data/county-distance-database.html (accessed on 15 February 2022).
- Ellis, E.C.; Gauthier, N.; Klein Goldewijk, K.; Bliege Bird, R.; Boivin, N.; Díaz, S.; Fuller, D.Q.; Gill, J.L.; Kaplan, J.O.; Kingston, N.; et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Nat. Acad. Sci. USA 2021, 118, e2023483118. [Google Scholar] [CrossRef] [PubMed]
Global Linear (OLS) | Global Spatial Lag | Global Spatial Error | Local GWR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Period -> | 1 | 2 | Both | 1 | 2 | Both | 1 | 2 | Both | 1 | 2 | Both |
days_of_COVID_period_1 | + | + − | ||||||||||
uninsured_pct | + | − | − | + | − | − | − | |||||
income_inequality | + | + | + | + | ||||||||
population_Black_pct | + − | + − | + − | |||||||||
population_Hispanic_pct | + | + | + | + | + | + | + | + | + | + − | + − | |
population_Asian_pct | − | − | + | − | − | + | − | |||||
population_Native_pct | + | + | + | + | + | + | + | + | + | |||
life_expectancy _at_birth_2014 | + | + | + | − | − | + − | + − | |||||
employment_2019 _percent_primary _agricultural_and _extractive_sectors | − | + | − | − | − | − | − | − | + − | |||
employment_2019 _percent_secondary _goods_sectors | + | + | + | + | + | + | + − | + − | ||||
slaughterhouses | + | + | + | + | + | |||||||
conventional_food_system | + | + | + | + | + | + | + | + | + − | |||
regenerative_food_system | − | − | − | − | − | − | − | − | + − | + − | + − | |
W: 0.95 1/Dist2 + 0.05 commute | + | + | + | + | ||||||||
W: 0.95 1/Dist2 + 0.05 foodflows | + | + | ||||||||||
AIC above period min | 473 | 476 | 646 | 159 | 26 | 92 | 0 | 0 | 0 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, L.; Chaves, L.F.; O’Sullivan, D.; Wallace, R.G. Dominant Modes of Agricultural Production Helped Structure Initial COVID-19 Spread in the U.S. Midwest. ISPRS Int. J. Geo-Inf. 2023, 12, 195. https://doi.org/10.3390/ijgi12050195
Bergmann L, Chaves LF, O’Sullivan D, Wallace RG. Dominant Modes of Agricultural Production Helped Structure Initial COVID-19 Spread in the U.S. Midwest. ISPRS International Journal of Geo-Information. 2023; 12(5):195. https://doi.org/10.3390/ijgi12050195
Chicago/Turabian StyleBergmann, Luke, Luis Fernando Chaves, David O’Sullivan, and Robert G. Wallace. 2023. "Dominant Modes of Agricultural Production Helped Structure Initial COVID-19 Spread in the U.S. Midwest" ISPRS International Journal of Geo-Information 12, no. 5: 195. https://doi.org/10.3390/ijgi12050195