Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6701 KiB  
Article
Uncovering the Beneficial Role of Limosilactobacillus fermentum E7 Exhibiting Antioxidant Activity in Ameliorating DSS-Induced Ulcerative Colitis in a Murine Model
by Hongyan Zhang, Hailing Wang, Yue Li, Yue Leng, Ke Lin and Dayong Ren
Foods 2025, 14(1), 137; https://doi.org/10.3390/foods14010137 - 6 Jan 2025
Cited by 1 | Viewed by 1403
Abstract
Background: Ulcerative colitis (UC) is a chronic intestinal disease of growing global concern. Bacteria associated with fermented food or probiotics regulate immune and inflammatory responses, playing a key role in intestinal immune homeostasis. Results: Five probiotics with relatively good antioxidant effects, namely Lactiplantibacillus [...] Read more.
Background: Ulcerative colitis (UC) is a chronic intestinal disease of growing global concern. Bacteria associated with fermented food or probiotics regulate immune and inflammatory responses, playing a key role in intestinal immune homeostasis. Results: Five probiotics with relatively good antioxidant effects, namely Lactiplantibacillus plantarum H6, Latilactobacillus sakei QC9, Limosilactobacillus fermentum E7, Bacillus subtills D1, and Bacillus licheniformis Q13, were screened out from 30 strains of probiotics through in vitro antioxidant assays. The five probiotics had varying degrees of alleviating effects on UC mice and improved various physiological indicators, such as oxidative stress parameters and histopathological sections. The effects of E7, D1, and Q13 were more pronounced. Furthermore, E7 effectively regulated UC mouse intestinal microbiota composition, increased short-chain fatty acid concentration, and promoted the expression of anti-inflammatory factors, such as interleukin 10 (IL-10), while suppressing that of pro-inflammatory factors, such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Meanwhile, D1 and Q13 only exhibited partial alleviating effects. Finally, E7 increased the expression of tight junction proteins in colon tissues. Conclusions: E7 showed superior efficacy to other probiotics in alleviating UC, offering novel therapeutic prospects for safer and effective management of UC. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 1001 KiB  
Article
Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications
by Anqi Chen, Qiqi Si, Qingyun Xu, Chenwei Pan, Tianzhi Qu and Jian Chen
Foods 2025, 14(1), 142; https://doi.org/10.3390/foods14010142 - 6 Jan 2025
Cited by 4 | Viewed by 1991
Abstract
This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, [...] Read more.
This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains. ACY34 and ACY84 demonstrated the highest fermentation efficiency, while ACY19 exhibited exceptional stress resilience, excelling under multiple stress conditions such as osmotic and ethanol stress. The findings highlight strain-specific performance, with some strains suited for high-yield fermentation and others excelling under challenging environmental conditions. These results provide critical insights for selecting and optimizing yeast strains tailored to specific industrial fermentation processes, contributing to improved productivity and product quality in food and beverage production. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

21 pages, 2345 KiB  
Article
Unlocking Consumer Preferences: Sensory Descriptors Driving Greek Yogurt Acceptance and Innovation
by Helena Maria Andre Bolini, Flavio Cardello, Alessandra Cazellatto de Medeiros and Howard Moskowitz
Foods 2025, 14(1), 130; https://doi.org/10.3390/foods14010130 - 5 Jan 2025
Cited by 3 | Viewed by 2682
Abstract
Greek yogurt, a traditional food with roots in Ancient Greece, Mesopotamia, and Central Asia, has become a dietary staple worldwide due to its creamy texture, distinct flavor, and rich nutritional profile. The contemporary emphasis on health and wellness has elevated Greek yogurt as [...] Read more.
Greek yogurt, a traditional food with roots in Ancient Greece, Mesopotamia, and Central Asia, has become a dietary staple worldwide due to its creamy texture, distinct flavor, and rich nutritional profile. The contemporary emphasis on health and wellness has elevated Greek yogurt as a functional food, recognized for its high protein content and bioavailable probiotics that support overall health. This study investigates the sensory attributes evaluated by a panel of 22 trained assessors and the consumer preferences driving the acceptance of Greek yogurt formulations. Samples with higher consumer acceptance were characterized by sensory attributes such as “high texture in the mouth, surface uniformity, creaminess, apparent homogeneity, mouth-filling, grip in the mouth, ease of pick-up with a spoon, milk cream flavor, sweetness, and dairy flavor” (Tukey’s test, p < 0.05). These attributes strongly correlated with consumer preferences, underscoring their importance in product optimization. The findings provide a framework for refining Greek yogurt formulations to address diverse market demands, achieving a balance between sensory excellence and practical formulation strategies. This research reinforces the significance of Greek yogurt as a culturally adaptable, health-promoting dietary component and a promising market segment for ongoing innovation. Full article
(This article belongs to the Special Issue Flavor, Palatability, and Consumer Acceptance of Foods)
Show Figures

Figure 1

80 pages, 1210 KiB  
Review
Global Insights into Cultured Meat: Uncovering Production Processes, Potential Hazards, Regulatory Frameworks, and Key Challenges—A Scoping Review
by Renata Puppin Zandonadi, Maíra Catharina Ramos, Flavia Tavares Silva Elias and Nathalia Sernizon Guimarães
Foods 2025, 14(1), 129; https://doi.org/10.3390/foods14010129 - 4 Jan 2025
Cited by 3 | Viewed by 5321
Abstract
This scoping review aims to understand the cell-based meat production process, including the regulations, potential hazards, and critical points of this production. This review includes studies on cultured meat production processes, health hazards, and regulatory guidelines, excluding those without hazard analysis, incomplete texts, [...] Read more.
This scoping review aims to understand the cell-based meat production process, including the regulations, potential hazards, and critical points of this production. This review includes studies on cultured meat production processes, health hazards, and regulatory guidelines, excluding those without hazard analysis, incomplete texts, or studies published before 2013. The search was performed in eight electronic databases (MEDLINE, Web of Science, Embase, Cochrane Library, Scopus, LILACS, and Google Scholar) using MeSH terms and adaptations for each database. The search for local studies on regulations and guideline documents was complemented by a manual search on the websites of governments and regulatory agencies from different regions (e.g., FDA, FAO, EFSA, USDA, Health Canada, EC, EU, ANVISA/Brazil, MAPA/Brazil, FSANZ, and SFA). This step involved reading full texts to confirm eligibility and extract key data, including author, year, country, study design, objectives, results, cultured meat protocols, health hazards, and hazard control measures, followed by data analysis. A comprehensive search of the databases yielded 1185 studies and 46 regulatory or guidance documents. After removing duplicate studies and applying eligibility criteria to titles, abstracts and full texts, 35 studies and 45 regulatory or guidance documents were included. The cultured meat production protocols are well-established, highlighting potential hazards and critical control points. Although guidance documents and regulations are limited, they are expanding globally. The development and commercialization of cultured meat require clear, and up-to-date regulations and supervision, which are being studied and formulated by regulatory agencies worldwide. Cultured meat production presents some potential hazards (chemical, biological, and physical) that require food safety considerations: (i) genetic stability of cells/cell lines; (ii) microbiological hazards related to cell lines; (iii) exposure to substances used in the production process; (iv) toxicity and allergenicity of the product or its component for the population; (v) post-harvest microbiological contamination; (vi) chemical contamination/residue levels; and (vii) nutritional aspects/risks. Currently, no standardized testing approach exists for cultured meat. However, effective hazard and safety assessment strategies, such as HACCP combined with best practices, should be implemented throughout the production process. Full article
(This article belongs to the Special Issue Advances in Cultured Meat Science and Technology)
Show Figures

Figure 1

18 pages, 8132 KiB  
Article
Bioinformatics and Deep Learning Approach to Discover Food-Derived Active Ingredients for Alzheimer’s Disease Therapy
by Junyu Zhou, Chen Li, Yong Kwan Kim and Sunmin Park
Foods 2025, 14(1), 127; https://doi.org/10.3390/foods14010127 - 4 Jan 2025
Cited by 4 | Viewed by 2087
Abstract
Alzheimer’s disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural [...] Read more.
Alzheimer’s disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases. Random forest regression models were utilized to predict the IC50 (pIC50) values of ligands interacting with AD-related target proteins, including acetylcholinesterase (AChE), amyloid precursor protein (APP), beta-secretase 1 (BACE1), microtubule-associated protein tau (MAPT), presenilin-1 (PSEN1), tumor necrosis factor (TNF), and valosin-containing protein (VCP). Their activities were then validated through a molecular docking analysis using Autodock Vina. Predictions by the deep neural analysis identified 166 NCs with potential effects on AD across seven proteins, demonstrating outstanding recall performance. The top five food sources of these predicted compounds were black walnut, safflower, ginger, fig, corn, and pepper. Statistical clustering methodologies segregated the NCs into six well-defined groups, each characterized by convergent structural and chemical signatures. The systematic examination of structure–activity relationships uncovered differential molecular patterns among clusters, illuminating the sophisticated correlation between molecular properties and biological activity. Notably, NCs with high activity, such as astragalin, dihydromyricetin, and coumarin, and medium activity, such as luteolin, showed promising effects in improving cell survival and reducing lipid peroxidation and TNF-α expression levels in PC12 cells treated with lipopolysaccharide. In conclusion, our findings demonstrate the efficacy of combining bioinformatics with deep neural networks to expedite the discovery of previously unidentified food-derived active ingredients (NCs) for AD intervention. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

18 pages, 3678 KiB  
Article
Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5
by Huimei Li, Tian’ge Pan, Shudong He, Hanju Sun, Xiaodong Cao and Yongkang Ye
Foods 2025, 14(1), 115; https://doi.org/10.3390/foods14010115 - 3 Jan 2025
Cited by 1 | Viewed by 1520
Abstract
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. [...] Read more.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction. The oleosin antibody was then directed and immobilized onto the surface of the electrode, which had been modified with streptavidin (SPA), through the fragment crystallizable (Fc) region of the antibody. Under optimized conditions, the immunosensor exhibited a linear response within a detection range of 50 to 800 ng/L, with detection limits of 0.616 ng/L for Ses i 4 and 0.307 ng/L for Ses i 5, respectively. The immunosensor demonstrated excellent selectivity and stability, making it suitable for the quantification of sesame oleosins. The comparative analysis of various detection methods for sesame allergens was conducted, revealing that the immunosensor achieved a wide detection range and low limit of detection (LOD). Compared to traditional enzyme-linked immunosorbent assay (ELISA), the immunosensor successfully quantified the allergenicity potential of Ses i 4 and Ses i 5 in roasted sesame seeds at temperatures of 120 °C, 150 °C, and 180 °C. This innovative method offers a new perspective for the rapid quantification of sesame oleosins in foods and real-time monitoring of allergic potential, providing significant advancements in the field of food allergy detection. Full article
(This article belongs to the Special Issue Food Allergen Detection, Identification and Risk Assessment)
Show Figures

Figure 1

21 pages, 3851 KiB  
Article
Kluyveromyces lactis and Saccharomyces cerevisiae for Fermentation of Four Different Coffee Varieties
by Danilo José Machado de Abreu, Denis Henrique Silva Nadaleti, Rafaela Pereira Andrade, Tamara Leite dos Santos, Dérica Gonçalves Tavares, Cesar Elias Botelho, Mário Lúcio Vilela de Resende and Whasley Ferreira Duarte
Foods 2025, 14(1), 111; https://doi.org/10.3390/foods14010111 - 3 Jan 2025
Cited by 1 | Viewed by 1902
Abstract
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented [...] Read more.
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee. Sensory analysis was performed by Q-graders certified in coffee. Starter yeasts affected bioactive and volatile compounds as well as sensory descriptors in the coffee varieties. S. cerevisiae CA11 allowed a higher content of trigonelline and chlorogenic acid in MGS Paraíso 2 (P2) and Catuai Amarelo IAC62 (CA62) varieties. K. lactis B10 fermentation resulted in higher chlorogenic acid only on the P2 cultivar and MGS Catucaí Pioneira (CP). In addition, 5-methyl-2-furfuryl alcohol and n-hexadecanoic acid were produced exclusively by yeast fermentation compared to spontaneous fermentation. The coffee cultivars P2 presented more complex sensory descriptors and the attributes of aroma, acidity, and balance when fermented with S. cerevisiae CA11. Sensory descriptors such as lemongrass, citrus, and lemon with honey were related to K. lactis B10. Starter cultures allowed the coffees to be classified as specialty coffees. The fermentation showed that the choice of starter yeast depends on the desired sensory descriptors in the final product. Full article
Show Figures

Graphical abstract

26 pages, 3172 KiB  
Review
Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review
by Xinyan Liu, Xuchun Zhu, Zhaowei Han and Hongzhi Liu
Foods 2025, 14(1), 105; https://doi.org/10.3390/foods14010105 - 2 Jan 2025
Cited by 5 | Viewed by 2694
Abstract
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and [...] Read more.
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage. Key issues such as fat separation, lipid oxidation, and rancidity can significantly compromise its texture, flavor, and aroma, while also reducing its shelf life. Understanding the underlying mechanisms that drive these processes is essential for developing effective preservation strategies. This understanding not only aids food scientists and industry professionals in improving product quality but also enables health-conscious consumers to make informed decisions regarding the selection and storage of peanut butter. Recent research has focused on elucidating the mechanisms responsible for the quality deterioration of peanut butter, with particular attention to the intermolecular interactions among its key components. Current regulatory techniques aimed at improving peanut butter quality encompass raw material selection, advancements in processing technologies, and the incorporation of food additives. Among these innovations, plant protein nanoparticles have garnered significant attention as a promising class of green emulsifiers. These nanoparticles have demonstrated potential for stabilizing peanut butter emulsions, thereby mitigating fat separation and oxidation while aligning with the growing demand for environmentally friendly food production. Despite these advances, challenges remain in optimizing the stability and emulsifying efficiency of plant protein nanoparticles to ensure the long-term quality and stability of peanut butter. Future research should focus on improving the structural properties and functional performance of these nanoparticles to enhance their practical application as emulsifiers. Such efforts could provide valuable theoretical and practical insights into the development of stable, high-quality peanut butter, ultimately advancing the field of food science and technology. Full article
Show Figures

Figure 1

18 pages, 10395 KiB  
Article
Fecal Microbiota Transplantation from Methionine-Restricted Diet Mouse Donors Improves Alzheimer’s Learning and Memory Abilities Through Short-Chain Fatty Acids
by Run Yu, Haimeng Zhang, Rui Chen, Yangzhuo Lin, Jingxuan Xu, Ziyang Fang, Yuehang Ru, Chenhan Fan and Guoqing Wu
Foods 2025, 14(1), 101; https://doi.org/10.3390/foods14010101 - 2 Jan 2025
Cited by 3 | Viewed by 1585
Abstract
Alzheimer’s disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between [...] Read more.
Alzheimer’s disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored. In this study, APP/PS1 double transgenic AD mice were used and an FMT experiment was conducted. 16S rRNA gene sequencing, targeted metabolomics, and microbial metabolite short-chain fatty acids (SCFAs) of feces samples were analyzed. The results showed that MR reversed the reduction in SCFAs induced by AD, and further activated the free fatty acid receptors, FFAR2 and FFAR3, as well as the transport protein MCT1, thereby signaling to the brain to mitigate inflammation and enhance the learning and memory capabilities. Furthermore, the FMT experiment from methionine-restricted diet mouse donors showed that mice receiving FMT ameliorated Alzheimer’s learning and memory ability through SCFAs. This study offers novel non-pharmaceutical intervention strategies for AD prevention. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 2806 KiB  
Article
Cold Plasma as a Novel Pretreatment to Improve the Drying Kinetics and Quality of Green Peas
by Jun-Wen Bai, Dan-Dan Li, Reziwanguli Abulaiti, Manqian Wang, Xiaozhi Wu, Zhenwei Feng, Yutong Zhu and Jianrong Cai
Foods 2025, 14(1), 84; https://doi.org/10.3390/foods14010084 - 1 Jan 2025
Cited by 4 | Viewed by 2079
Abstract
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold [...] Read more.
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas. The results showed that CP treatment significantly improves drying efficiency by modifying the pea epidermis microstructure, reducing drying time by up to 18.18%. The moisture effective diffusivity coefficients (Deff) for untreated and CP-pretreated green peas were calculated to range from 5.9629 to 9.9172 × 10−10 m2·s−1, with CP pretreatment increasing Deff by up to 66.31% compared to the untreated group. Optimal CP parameters (90 s, 750 Hz frequency, 70% duty cycle) were found to improve the rehydration ratio, preserve color, and increase total phenolic content (TPC) by 24.06%, while enhancing antioxidant activity by 29.64%. Microstructural changes, including pore formation and increased surface roughness, as observed through scanning electron microscopy (SEM), partially explain the enhanced moisture diffusion, improved rehydration, and alterations in nutrient content. These findings underscore the potential of CP technology as a non-thermal, eco-friendly pretreatment for drying agricultural products, with broad applications in food preservation and quality enhancement. Full article
Show Figures

Figure 1

34 pages, 4540 KiB  
Review
Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry
by Virgínia Farias Alves, Leonardo Ereno Tadielo, Ana Carolina Moreira da Silva Pires, Marita Gimenez Pereira, Luciano dos Santos Bersot and Elaine Cristina Pereira De Martinis
Foods 2024, 13(24), 3994; https://doi.org/10.3390/foods13243994 - 11 Dec 2024
Cited by 7 | Viewed by 2377
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to [...] Read more.
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches. Full article
Show Figures

Figure 1

19 pages, 1676 KiB  
Article
In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate
by Tania Merinas-Amo, Rocío Merinas-Amo, Ángeles Alonso-Moraga, Rafael Font and Mercedes Del Río Celestino
Foods 2024, 13(23), 3981; https://doi.org/10.3390/foods13233981 - 9 Dec 2024
Viewed by 2728
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been [...] Read more.
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables—3rd Edition)
Show Figures

Figure 1

16 pages, 1816 KiB  
Article
Antioxidant Peptides from Sacha Inchi Meal: An In Vitro, Ex Vivo, and In Silico Approach
by Erwin Torres-Sánchez, Iván Lorca-Alonso, Sandra González-de la Fuente, Blanca Hernández-Ledesma and Luis-Felipe Gutiérrez
Foods 2024, 13(23), 3924; https://doi.org/10.3390/foods13233924 - 5 Dec 2024
Cited by 2 | Viewed by 2080
Abstract
Plant-derived antioxidant peptides safeguard food against oxidation, helping to preserve its flavor and nutrients, and hold significant potential for use in functional food development. Sacha Inchi Oil Press-Cake (SIPC), a by-product of oil processing, was used to produce Sacha Inchi Protein Concentrate (SPC) [...] Read more.
Plant-derived antioxidant peptides safeguard food against oxidation, helping to preserve its flavor and nutrients, and hold significant potential for use in functional food development. Sacha Inchi Oil Press-Cake (SIPC), a by-product of oil processing, was used to produce Sacha Inchi Protein Concentrate (SPC) in vitro, hydrolyzed by a standardized static INFOGEST 2.0 protocol. This study aimed to integrate in vitro, ex vivo, and in silico methods to evaluate the release of antioxidant peptides from SPC during gastrointestinal digestion. In vitro and ex vivo methods were used to investigate the antioxidant potential of SPC digests. Bioinformatics tools (find-pep-seq, AnOxPP, AnOxPePred-1.0, PepCalc, MLCPP 2.0, Pasta 2.0, PlifePred, Rapid Peptide Generator, and SwissADME) were employed to characterize antioxidant peptides. The gastric and intestinal digests exhibited higher ABTS and ORAC values than those of SPC. Under basal conditions, gastric digest fractions GD1, GD2, and GD3 (<3, 3–10, and >10 kDa, respectively), separated by ultrafiltration, significantly reduced the ROS levels in the RAW264.7 macrophages while, under LPS stimulation, GD1 (16 µg/mL) and GD2 (500 and 1000 µg/mL) reversed the induced damage. From the de novo peptidome determined, 416 peptides were selected based on their resistance to digestion. Through in silico tools, 315 resistant peptides were identified as antioxidants. Despite low predicted bioavailability, the peptides SVMGPYYNSK, EWGGGGCGGGGGVSSLR, RHWLPR, LQDWYDK, and ALEETNYELEK showed potential for extracellular targets and drug delivery. In silico digestion yielded the sequences SVMGPY, EW, GGGGCGGGGGVSS, PQY, HGGGGGG, GGGG, HW, and SGGGY, which are promising free radical scavengers with increased bioavailability. However, these hypotheses require confirmation through chemical synthesis and further validation studies. Full article
(This article belongs to the Special Issue Research and Application of Bioactive Peptides in Food)
Show Figures

Figure 1

17 pages, 1605 KiB  
Article
Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake
by Adriana S. Franca, Emiliana P. Basílio, Laís M. Resende, Camila A. Fante and Leandro S. Oliveira
Foods 2024, 13(23), 3935; https://doi.org/10.3390/foods13233935 - 5 Dec 2024
Cited by 4 | Viewed by 2384
Abstract
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for [...] Read more.
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes. The evaluated sensory attributes were color, smell, taste, texture and overall impression, and they were evaluated according to a 9-point hedonic scale. Internal preference maps were obtained based on the results from acceptance and “intention to buy” tests. In general, the cakes with lower coffee silverskin content (2.6% and 3.6%) had a similar level of acceptance and the cake with 4.6% coffee silverskin content was the least accepted. The most important attributes were taste and overall impression, corresponding to “like slightly” and “like moderately” for the cakes that had better acceptance. Nonetheless, even with the lowest amount of added CS (2.6%), the produced cakes could be regarded as antioxidant fiber sources (with fiber content above 3 g/100 g), thus confirming the potential of CS as a functional food additive. Full article
Show Figures

Figure 1

26 pages, 1388 KiB  
Review
Research Progress on Methods for Improving the Stability of Non-Destructive Testing of Agricultural Product Quality
by Sai Xu, Hanting Wang, Xin Liang and Huazhong Lu
Foods 2024, 13(23), 3917; https://doi.org/10.3390/foods13233917 - 4 Dec 2024
Cited by 5 | Viewed by 2739
Abstract
Non-destructive testing (NDT) technology is pivotal in the quality assessment of agricultural products. In contrast to traditional manual testing, which is fraught with subjectivity, inefficiency, and the potential for sample damage, NDT technology has gained widespread application due to its advantages of objectivity, [...] Read more.
Non-destructive testing (NDT) technology is pivotal in the quality assessment of agricultural products. In contrast to traditional manual testing, which is fraught with subjectivity, inefficiency, and the potential for sample damage, NDT technology has gained widespread application due to its advantages of objectivity, speed, and accuracy, and it has injected significant momentum into the intelligent development of the food industry and agriculture. Over the years, technological advancements have led to the development of NDT systems predicated on machine vision, spectral analysis, and bionic sensors. However, during practical application, these systems can be compromised by external environmental factors, the test samples themselves, or by the degradation and noise interference inherent in the testing equipment, leading to instability in the detection process. This instability severely impacts the accuracy and efficiency of the testing. Consequently, refining the detection methods and enhancing system stability have emerged as key focal points for research endeavors. This manuscript presents an overview of various prevalent non-destructive testing methodologies, summarizes how sample properties, external environments, and instrumentation factors affect the stability of testing in practical applications, organizes and analyzes solutions to enhance the stability of non-destructive testing of agricultural product quality based on current research, and offers recommendations for future investigations into the non-destructive testing technology of agricultural products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

27 pages, 2262 KiB  
Review
Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits
by Renata M. Martinez, Cristina P. B. Melo, Ingrid C. Pinto, Soraia Mendes-Pierotti, Josiane A. Vignoli, Waldiceu A. Verri and Rubia Casagrande
Foods 2024, 13(23), 3909; https://doi.org/10.3390/foods13233909 - 3 Dec 2024
Cited by 11 | Viewed by 5539
Abstract
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible [...] Read more.
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible for the red, purple, and yellow plant tissues, predominantly in the order Caryophyllales. They are grouped into betacyanins, with reddish-violet hues, and betaxanthins, yellow to orange. Examples include beetroot stems for betacyanins and yellow pitaya pulp for betaxanthins. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In this review, we focused on the main and latest studies on the pharmacological effects and mechanisms of betalains, including antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, antidiabetic, hepatoprotective, neuroprotective, anticancer, and antimicrobial properties, in both in vitro and in vivo studies. Overall, betalain consumption is considered safe, with no major adverse effects or allergic reactions reported. We also approached topics such as the pharmacokinetics, bioavailability, stability, and enhanced stabilization of betalains. This article provides a comprehensive overview of bioactive potential of betalains, highlighting the biochemical mechanisms involved. The current knowledge broadens the clinical applicability of betalains, making them potential sources of nutraceutical compounds that can be used to develop functional foods. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

26 pages, 3094 KiB  
Review
The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health
by Mohamedelfatieh Ismael, Mingxin Huang and Qingping Zhong
Foods 2024, 13(23), 3887; https://doi.org/10.3390/foods13233887 - 2 Dec 2024
Cited by 8 | Viewed by 4737
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe [...] Read more.
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe alternative approach to conventional treatments to promote gut health is a scientific hotspot. Therefore, this review aimed to give insight into the promising applications of LAB-bacteriocins in preventing intestinal diseases, such as colonic cancer, Helicobacter pylori infections, multidrug-resistant infection-associated colitis, viral gastroenteritis, inflammatory bowel disease, and obesity disorders. Moreover, we highlighted the recent research on bacteriocins promoting gastrointestinal health. The review also provided insights into the proposed mechanisms, challenges and opportunities, trends and prospects. In addition, a SWOT analysis was conducted on the potential applications. Based on properties, biosafety, and health functions of LAB-bacteriocins, we conclude that the future applications of LAB-bacteriocins are promising in promoting gastrointestinal health. Further in vivo trials are needed to confirm these potential effects of LAB-bacteriocins interventions. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

35 pages, 1204 KiB  
Review
Microencapsulation of Essential Oils and Oleoresins: Applications in Food Products
by Beatriz Fernandes, M. Conceição Oliveira, Ana C. Marques, Rui Galhano dos Santos and Carmo Serrano
Foods 2024, 13(23), 3873; https://doi.org/10.3390/foods13233873 - 29 Nov 2024
Cited by 10 | Viewed by 4365
Abstract
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting [...] Read more.
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages. However, incorporating EOs and ORs into foods and beverages can be difficult due to their hydrophobic nature and poor stability when exposed to light, oxygen, moisture, and temperature. Microencapsulation techniques address these challenges by enhancing their stability during storage, protecting sensitive molecules from reacting in the food matrix, providing controlled release of the core ingredient, and improving dispersion in the medium. There is a lack of articles that research, develop, and optimize formulations of microencapsulated EOs and ORs to be incorporated into food products. Microencapsulated ORs are overlooked by the food industry, whilst presenting great potential as natural and more stable alternatives to synthetic flavors, colorants, and preservatives than the pure extract. This review explores the more common microencapsulation methods of EOs and ORs employed in the food industry, with spray drying being the most widely used at an industrial scale. New emerging techniques are explored, with a special focus on spray drying-based technologies. Categories of wall materials and encapsulated ingredients are presented, and their applications in the food and beverage industry are listed. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

30 pages, 1499 KiB  
Review
Evolution of Bionanocomposites: Innovations and Applications in Food Packaging
by Vimala S. K. Bharathi and Digvir S. Jayas
Foods 2024, 13(23), 3787; https://doi.org/10.3390/foods13233787 - 25 Nov 2024
Cited by 4 | Viewed by 2254
Abstract
Bionanocomposites are emerging as a pivotal innovation in sustainable food packaging, leveraging the strengths of biopolymers enhanced with nanoparticles for improved functionality. The increasing demand for sustainable packaging solutions, coupled with advancements in nanotechnology, has driven research in this field over the past [...] Read more.
Bionanocomposites are emerging as a pivotal innovation in sustainable food packaging, leveraging the strengths of biopolymers enhanced with nanoparticles for improved functionality. The increasing demand for sustainable packaging solutions, coupled with advancements in nanotechnology, has driven research in this field over the past decade. This review covers the full spectrum of developments in the field, from the classification and synthesis of bionanocomposites to their applications in food packaging and current research trends. A detailed trend analysis using Web of Science data highlighted the growth in bionanocomposite research, with over 17,000 articles published on this topic. Notably, more than 2000 of these articles focus specifically on packaging applications. This review also investigates the application trends for various food products, including fruits and vegetables, grains, meat, dairy products, bakery items, nuts, and oils. The review identifies a marked increase in publications related to bionanocomposite packaging since 2008. Notably, research on packaging applications has increasingly concentrated on fruits and vegetables, followed by meat, dairy products like cheese, and bakery products such as bread. A comprehensive analysis of research trends before 2010 and in 2024 underscores a shift from fundamental material science towards practical, real-world applications. This review provides valuable insights into the transformative potential of bionanocomposites for food packaging technologies and their role in advancing environmentally sustainable solutions. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

18 pages, 1446 KiB  
Review
Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste
by José Ángel Salas-Millán and Encarna Aguayo
Foods 2024, 13(22), 3680; https://doi.org/10.3390/foods13223680 - 19 Nov 2024
Cited by 8 | Viewed by 5226
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most [...] Read more.
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system. Full article
Show Figures

Figure 1

15 pages, 2223 KiB  
Review
Polysaccharide-Based Composite Films: Promising Biodegradable Food Packaging Materials
by Shengzi Li, Yu Ren, Yujie Hou, Qiping Zhan, Peng Jin, Yonghua Zheng and Zhengguo Wu
Foods 2024, 13(22), 3674; https://doi.org/10.3390/foods13223674 - 18 Nov 2024
Cited by 11 | Viewed by 4186
Abstract
With growing concerns about environmental protection and sustainable development, the development of new biodegradable food packaging materials has become a significant focus for the future of food packaging. Polysaccharides, such as cellulose, chitosan, and starch, are considered ideal biodegradable packaging materials due to [...] Read more.
With growing concerns about environmental protection and sustainable development, the development of new biodegradable food packaging materials has become a significant focus for the future of food packaging. Polysaccharides, such as cellulose, chitosan, and starch, are considered ideal biodegradable packaging materials due to their wide availability, good biocompatibility, and biodegradability. These materials have garnered extensive attention from researchers in food packaging, leading to considerable advancements in the application of polysaccharide-based food packaging films, coatings, aerogels, and other forms. Therefore, this review focuses on the application of polysaccharide-based packaging films in food storage and preservation and discusses their preparation methods, application progress, challenges, and future development directions. Through an in-depth analysis of the existing literature, this review aims to provide sustainable and environmentally friendly solutions for the food packaging industry. Full article
(This article belongs to the Special Issue The Preparation and Application of Bio-Based Food Packaging Materials)
Show Figures

Figure 1

18 pages, 2801 KiB  
Article
From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer’s Spent Grain (BSG)
by Maximiliano M. Villegas, Johana N. Silva, Florencia R. Tito, Claudia V. Tonón, Fernando F. Muñoz, Alfonso Pepe and María G. Guevara
Foods 2024, 13(22), 3658; https://doi.org/10.3390/foods13223658 - 17 Nov 2024
Viewed by 1778
Abstract
This study explores the extraction and characterization of proteolytic enzymes from brewer’s spent grain (BSG) and their potential as sustainable coagulants in the dairy industry. BSG samples from various beer types (Blonde Ale, IPA, Kölsch, Honey, and Porter) were obtained from two artisanal [...] Read more.
This study explores the extraction and characterization of proteolytic enzymes from brewer’s spent grain (BSG) and their potential as sustainable coagulants in the dairy industry. BSG samples from various beer types (Blonde Ale, IPA, Kölsch, Honey, and Porter) were obtained from two artisanal breweries in Mar del Plata, Argentina. Optimization of caseinolytic activity (CA) and protein extraction was conducted using a Plackett–Burman design, followed by a Box–Behnken design. Optimal protein concentration was achieved at intermediate pH and high temperature, while CA peaked at pH 8.0. The specific caseinolytic activity (SCA) varied among the extracts, with BSG3 showing the highest activity (99.6 U mg−1) and BSG1 the lowest (60.4 U mg−1). Protease inhibitor assays suggested the presence of aspartic, serine, metallo, and cysteine proteases. BSG3 and BSG4 showed the highest hydrolysis rates for α-casein (70% and 78%). For κ-casein, BSG1, BSG2, and BSG3 demonstrated moderate activity (56.5%, 49%, and 55.8), while BSG4 and BSG5 exhibited the lowest activity. Additionally, the milk-clotting activity (MCA) of BSG extracts was comparable to plant-based coagulants like Cynara cardunculus and Ficus carica. These findings highlight the potential of BSG-derived proteases as alternative coagulants for cheese production, offering a sustainable link between the brewing and dairy industries. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 593 KiB  
Article
Dietary Risk Assessment of Cadmium Exposure Through Commonly Consumed Foodstuffs in Mexico
by Alejandra Cantoral, Sonia Collado-López, Larissa Betanzos-Robledo, Héctor Lamadrid-Figueroa, Betzabeth A. García-Martínez, Camilo Ríos, Araceli Díaz-Ruiz, Rosa María Mariscal-Moreno and Martha María Téllez-Rojo
Foods 2024, 13(22), 3649; https://doi.org/10.3390/foods13223649 - 16 Nov 2024
Cited by 4 | Viewed by 5867
Abstract
Cadmium (Cd) is a toxic heavy metal widely distributed in foodstuffs. In Mexico, few studies have evaluated Cd content in foods. This study aimed to determine Cd concentrations in foodstuffs that are highly consumed and bought in Mexico City to identify foods exceeding [...] Read more.
Cadmium (Cd) is a toxic heavy metal widely distributed in foodstuffs. In Mexico, few studies have evaluated Cd content in foods. This study aimed to determine Cd concentrations in foodstuffs that are highly consumed and bought in Mexico City to identify foods exceeding the Maximum Level (ML) and to assess the health risks of theoretical Cd intake from a diet following the Mexican Dietary Guidelines. A total of 143 foodstuffs were analyzed by atomic absorption spectrophotometry. Theoretical Cd intake was estimated in portions per week and compared with the Cd Tolerable Weekly Intake (TWI = 2.5 μg/kg per body weight). A total of 68.5% of the foodstuffs had detectable Cd concentrations. Higher concentrations were found in oyster mushrooms (0.575 mg/kg), romaine lettuce (0.335 mg/kg), and cocoa powder (0.289 mg/kg). Food groups with higher mean concentrations were vegetables (0.084 mg/kg) and snacks, sweets, and desserts (0.049 mg/kg). Ancho chili and romaine lettuce exceed the ML. The theoretical Cd intake estimation was 1.80, 2.05, and 3.82 μg/kg per body weight for adults, adolescents, and school-age children, respectively. This theoretical Cd intake represents a health risk only for school children exceeding the TWI by 53.2%. Our study confirms the presence and risk of Cd in Mexican foodstuffs and highlights the importance of monitoring programs. Full article
Show Figures

Figure 1

21 pages, 512 KiB  
Review
Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception
by Sandra S. Q. Rodrigues, Ana Leite, Lia Vasconcelos and Alfredo Teixeira
Foods 2024, 13(22), 3642; https://doi.org/10.3390/foods13223642 - 15 Nov 2024
Cited by 2 | Viewed by 2594
Abstract
The intrinsic quality of meat is directly related to muscle and fat tissues. Factors such as the rate and extent of anaerobic glycolysis affect muscle pH, influencing the meat’s color, water holding, and texture. Postmortem anomalies can result in deviations from this intrinsic [...] Read more.
The intrinsic quality of meat is directly related to muscle and fat tissues. Factors such as the rate and extent of anaerobic glycolysis affect muscle pH, influencing the meat’s color, water holding, and texture. Postmortem anomalies can result in deviations from this intrinsic quality. The animals’ diet plays a crucial role in meat quality. Specific nutrients, such as proteins, vitamins, and minerals, affect meat’s texture, flavor, and juiciness. Feeds rich in omega-3 fatty acids can improve the sensorial quality of meat. Meat processing and methods such as aging, marinating, and cooking affect the texture, flavor, and juiciness, which can be evaluated by specific equipment or trained or untrained consumers. This comprehensive review investigates the relationship between animal feeding practices and meat processing techniques and their combined impact on meat quality and sensory perception. By synthesizing recent research, we explore how various feeding protocols (including diet composition and feed additives) and processing methods shape meat products’ nutritional value, texture, flavor profile, and overall consumer appeal. Understanding this nexus is crucial for optimizing meat quality while ensuring sustainability and safety in the food supply chain. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 2980 KiB  
Review
Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food
by Min Li, Nanjie Jiang, Guangqi Guo, Shuaijun Lu, Ziliang Li, Yujie Mu, Xiaoyang Xia, Zhenxia Xu, Yong Hu and Xia Xiang
Foods 2024, 13(22), 3615; https://doi.org/10.3390/foods13223615 - 13 Nov 2024
Cited by 2 | Viewed by 4909
Abstract
Perilla (Perilla frutescens L.) is an annual herbaceous plant whose seed oil is rich in unsaturated fatty acids such as alpha-linolenic acid (ALA). This oil exhibits various health benefits, including antioxidant, anti-inflammatory, lipid-lowering, hypoglycemic, neuroprotective and immunomodulatory activities. In addition, incorporating perilla [...] Read more.
Perilla (Perilla frutescens L.) is an annual herbaceous plant whose seed oil is rich in unsaturated fatty acids such as alpha-linolenic acid (ALA). This oil exhibits various health benefits, including antioxidant, anti-inflammatory, lipid-lowering, hypoglycemic, neuroprotective and immunomodulatory activities. In addition, incorporating perilla oil into a diet can effectively increase the abundance of beneficial bacteria in the gut microbiota. However, perilla oil is prone to oxidation, which reduces its nutritional value and lowers its bioavailability. To address these issues, encapsulation technologies such as emulsions, oleogels, liposomes and microcapsules have been employed, showing promising results. Nonetheless, further research is needed to fully elucidate the underlying mechanisms of perilla seed oil’s health effects, validate its benefits through large-scale human clinical trials and optimize encapsulation techniques. Future investigations should also explore the synergistic effects of combining perilla seed oil with other functional components and its role in modulating gut microbiota to achieve comprehensive health benefits. Full article
(This article belongs to the Special Issue Health Effects of Edible Oils and Their Functional Components)
Show Figures

Figure 1

23 pages, 3704 KiB  
Review
Deep-Eutectic-Solvent-Decorated Metal–Organic Framework for Food and Environmental Sample Preparation
by Wanlin Deng, Chen Fan, Ruixue Zhang and Ming Jin
Foods 2024, 13(22), 3614; https://doi.org/10.3390/foods13223614 - 13 Nov 2024
Cited by 5 | Viewed by 2236
Abstract
Deep eutectic solvent (DES) is distinguished by its unique solvent properties, chemical stability, and eco-friendly nature, which are pivotal in a spectrum of chemical processes. It enhances the sample preparation process by increasing efficiency and minimizing the environmental impact. Metal–organic frameworks (MOFs), which [...] Read more.
Deep eutectic solvent (DES) is distinguished by its unique solvent properties, chemical stability, and eco-friendly nature, which are pivotal in a spectrum of chemical processes. It enhances the sample preparation process by increasing efficiency and minimizing the environmental impact. Metal–organic frameworks (MOFs), which are porous structures formed through coordination bonds between metal ions and organic ligands, are defined by their adjustable pore dimensions, extensive surface areas, and customizable architectures. The integration of DES within MOF to create DES@MOF capitalizes on the beneficial attributes of both materials, augmenting MOFs’ stability and versatility while providing a multifunctional carrier for DES. This composite material is both highly stable and readily tunable, establishing it as a leading contender for applications in sample preparation for food and environmental samples. This comprehensive review explores the application of DES-decorated MOF in food and environmental sample preparation and highlights the expansive potential of DES@MOF in diverse fields. We provide a detailed analysis of the characteristics of DES@MOF and its individual components, methods for decorating MOFs with DES, the advantages of these composite materials in sample pretreatment, and their specific applications in food safety and environmental monitoring. DESs are employed to modify MOFs, offering a multitude of benefits that can substantially improve the overall performance and applicability of MOFs. The review also discusses current challenges and future directions in this field, offering valuable insights for further research and development. The synergistic effects of DES and MOFs offer new opportunities for applications in food safety and other areas, leading to the development of more efficient, sensitive, and environmentally friendly analytical methods. This collaboration paves the way for sustainable technologies and innovative solutions to complex challenges. Full article
Show Figures

Figure 1

22 pages, 1932 KiB  
Review
Calcium Transport and Enrichment in Microorganisms: A Review
by Hai Zhou, Yan-Yu Hu, Zhen-Xing Tang, Zhong-Bao Jiang, Jie Huang, Tian Zhang, Hui-Yang Shen, Xin-Pei Ye, Xuan-Ya Huang, Xiang Wang, Ting Zhou, Xue-Lian Bai, Qin Zhu and Lu-E Shi
Foods 2024, 13(22), 3612; https://doi.org/10.3390/foods13223612 - 12 Nov 2024
Cited by 2 | Viewed by 2485
Abstract
Calcium is a vital trace element for the human body, and its deficiency can result in a range of pathological conditions, including rickets and osteoporosis. Despite the numerous types of calcium supplements currently available on the market, these products are afflicted with a [...] Read more.
Calcium is a vital trace element for the human body, and its deficiency can result in a range of pathological conditions, including rickets and osteoporosis. Despite the numerous types of calcium supplements currently available on the market, these products are afflicted with a number of inherent deficiencies, such as low calcium content, poor aqueous solubility, and low human absorption rate. Many microorganisms, particularly beneficial microorganisms, including edible fungi, lactic acid bacteria, and yeast, are capable of absorbing and enriching calcium, a phenomenon that has been widely documented. This opens the door to the potential utilization of microorganisms as novel calcium enrichment carriers. However, the investigation of calcium-rich foods from microorganisms still faces many obstacles, including a poor understanding of calcium metabolic pathways in microorganisms, a relatively low calcium enrichment rate, and the slow growth of strains. Therefore, in order to promote the development of calcium-rich products from microorganisms, this paper provides an overview of the impacts of calcium addition on strain growth, calcium enrichment rate, antioxidant system, and secondary metabolite production. Additionally, it highlights calcium transport and enrichment mechanisms in microorganism cells and offers a detailed account of the progress made on calcium-binding proteins, calcium transport pathways, and calcium storage and release. This paper offers insights for further research on the relevant calcium enrichment in microorganism cells. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

26 pages, 2692 KiB  
Article
Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products
by Claudia Bas-Bellver, Cristina Barrera and Lucía Seguí
Foods 2024, 13(22), 3585; https://doi.org/10.3390/foods13223585 - 10 Nov 2024
Cited by 2 | Viewed by 1667
Abstract
Fruit and vegetable industrialisation is a major contributor to food waste; thus, its integral transformation into functional powders has gained attention. Pretreatments can be incorporated into valorisation processes to generate structural or biochemical changes that improve powders’ characteristics. This study deepens into the [...] Read more.
Fruit and vegetable industrialisation is a major contributor to food waste; thus, its integral transformation into functional powders has gained attention. Pretreatments can be incorporated into valorisation processes to generate structural or biochemical changes that improve powders’ characteristics. This study deepens into the impact of biological (fermentation, FERM) and thermophysical (autoclaving, AUTO; microwaves, MW; ultrasound, US; and pasteurisation, PAST) pretreatments, combined with dehydration (hot air-drying, HAD; or freeze-drying, FD) on the characteristics of powdered products obtained from broccoli stems. The impact of pretreatments on physicochemical (moisture, water activity, total soluble solids) and antioxidant properties (phenols, flavonoids, antioxidant capacity by ABTS and DPPH) on residue and powdered products was studied, together with their impact on plant tissue structure (Cryo-SEM) and the powders’ phenolic profile (HPLC). Probiotic viability was also determined on the fermented samples. The pretreatments applied, particularly the ultrasound, improved the antioxidant properties of the broccoli stems compared to the unpretreated samples, in line with microscopic observations. Dehydration did also improve the antioxidant attributes of the broccoli wastes, especially drying at 60 °C. However, pretreatments combined with dehydration did not generally lead to an improvement in the antioxidant properties of the powders. Probiotic properties were preserved in the freeze-dried products (>107 CFU/g). In conclusion, pretreatments may be applied to enhance the antioxidant attributes of broccoli wastes, but not necessarily that of dried powdered products. Full article
Show Figures

Graphical abstract

20 pages, 1706 KiB  
Review
Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review
by Carlos Gabriel Arp and Gabriella Pasini
Foods 2024, 13(22), 3587; https://doi.org/10.3390/foods13223587 - 10 Nov 2024
Cited by 4 | Viewed by 2736
Abstract
Edible insects provide an alternative source of high-quality proteins, essential lipids, minerals, and vitamins. However, they lack the acceptability and consumption rates of more common staple foods. In contrast, pasta and noodles are globally appreciated foods that are consumed across various cultures. These [...] Read more.
Edible insects provide an alternative source of high-quality proteins, essential lipids, minerals, and vitamins. However, they lack the acceptability and consumption rates of more common staple foods. In contrast, pasta and noodles are globally appreciated foods that are consumed across various cultures. These products contribute greatly to the population’s energy intake but generally lack essential nutrients. Recently, edible insects have gained in popularity due to their numerous benefits, both environmental and nutritional. Current research indicates that incorporating edible insect ingredients into pasta and noodle formulations enhances their nutritional quality by increasing protein and fiber content and reducing carbohydrates. However, adding new ingredients to enrich common foods often carries technological and sensory challenges, such as changes in processing parameters, texture, flavor, and appearance. Technology assessment, scientific research, information campaigns, and public policies can help overcome these issues. This review aims to summarize the benefits of entomophagy (the consumption of insects as food) for sustainability, nutrition, and health; highlight the potential of pasta and noodles as carriers of nutritious and bioactive ingredients, including insects; and critically address the advancements in insect-enriched pasta and noodle technology, identifying current challenges, knowledge gaps, and opportunities. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 344 KiB  
Review
Quality Properties of Bakery Products and Pasta Containing Spent Coffee Grounds (SCGs): A Review
by Mitra Ahanchi, Elizabeth Christie Sugianto, Amy Chau and Ali Khoddami
Foods 2024, 13(22), 3576; https://doi.org/10.3390/foods13223576 - 8 Nov 2024
Cited by 3 | Viewed by 3212
Abstract
Coffee is one of the most consumed and popular beverages worldwide, and it produces a significant quantity of waste. Spent coffee grounds (SCGs) are one of the major waste products that can be used as an ingredient for creating novel foods. Therefore, the [...] Read more.
Coffee is one of the most consumed and popular beverages worldwide, and it produces a significant quantity of waste. Spent coffee grounds (SCGs) are one of the major waste products that can be used as an ingredient for creating novel foods. Therefore, the effect of incorporating varying percentages of spent coffee grounds (SCGs) on the quality properties of bakery products and pasta is reviewed. Chemically, SCGs alter protein, fat, fiber, ash, and bioactive compound levels in bakery and pasta products, improving nutritional value and promoting health benefits. The impact of SCGs on the physical characteristics of baked goods depends on factors like SCG concentration and processing methods, which influence product texture and structure. Sensory properties are vital for consumer acceptance. SCGs can add unique flavors and colors to baked goods, but more attention is needed to optimize the SCGs’ incorporation concentration for a better consumer appeal. In conclusion, integrating SCGs into bakery products and pasta offers nutritional enhancement, sustainability, and sensory improvement opportunities. Optimizing product quality allows manufacturers to leverage SCGs’ potential in the food industry. Full article
15 pages, 2549 KiB  
Article
Impact of Heat and Pressure Processing Treatments on the Digestibility of Peanut, Hazelnut, Pistachio and Cashew Allergens
by Claudia Arribas, Africa Sanchiz, Mercedes M. Pedrosa, Selene Perez-Garcia, Rosario Linacero and Carmen Cuadrado
Foods 2024, 13(22), 3549; https://doi.org/10.3390/foods13223549 - 7 Nov 2024
Cited by 2 | Viewed by 1729
Abstract
Food processing can alter protein biochemical properties, impacting immunoreactivity and allergenicity. A key feature of food allergens is their resistance to enzymatic digestion, particularly by pepsin and trypsin. This study compares the digestomes of raw and heat- and/or pressure-treated peanuts, hazelnuts, pistachios and [...] Read more.
Food processing can alter protein biochemical properties, impacting immunoreactivity and allergenicity. A key feature of food allergens is their resistance to enzymatic digestion, particularly by pepsin and trypsin. This study compares the digestomes of raw and heat- and/or pressure-treated peanuts, hazelnuts, pistachios and cashews using the INFOGEST harmonized digestion protocol and analyzing their IgE-binding capacity through in vitro methods. Protein patterns from controls and digestomes were resolved by SDS-PAGE and tested with sera from allergic patients, confirmed by competitive ELISA for hazelnuts and peanuts. The results indicate that processing methods differently affect the gastrointestinal (GI) digestion of these allergens. Simulated GI digestion caused a significant destruction of protein structures, reducing but not eliminating IgE reactivity for all four nuts. Boiling for 60 min did not change the SDS-PAGE profiles, but it did stimulate enzymatic activity, decreasing IgE binding capacity. In contrast, applying heat and pressure led to a nearly complete inhibition of allergenic potential during simulated digestion. These findings suggest that employing intense food processing techniques and investigating the gastrointestinal effects of highly allergenic nuts could be crucial steps toward developing new hypoallergenic formulations. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 760 KiB  
Article
Children’s Diets and Planetary Health: A Study in Wroclaw, Poland, and Sydney, Australia
by Agnieszka Orkusz and Diana Bogueva
Foods 2024, 13(22), 3536; https://doi.org/10.3390/foods13223536 - 6 Nov 2024
Viewed by 2769
Abstract
Meals served to children should not only satisfy hunger and taste preferences but also be nutritionally adequate. Nutrition in early childhood is critical, as children spend a significant portion of their day in kindergarten or preschool, making these settings key contributors to their [...] Read more.
Meals served to children should not only satisfy hunger and taste preferences but also be nutritionally adequate. Nutrition in early childhood is critical, as children spend a significant portion of their day in kindergarten or preschool, making these settings key contributors to their overall dietary intake. With the rising prevalence of nutrition-related health conditions among children, early interventions are essential for developing and establishing lifelong healthy eating habits. This study assessed the nutritional value and quality of children’s diets in two distinct settings: kindergartens in Wroclaw, Poland, and preschools in Sydney, Australia, evaluating their alignment with the planetary health diet. The research analysed 10-day menu cycles from five kindergartens in Wroclaw and the contents of lunchboxes from five preschools in Sydney’s Upper North Shore area. A total of 100 menus were reviewed in Poland, while 100 children’s lunchboxes were assessed in Australia. Different analytical methods were employed: the Diet 6D software program for the Polish menus and the Food Consumption Score for the Australian lunchboxes. Both methods revealed dietary imbalances, such as excessive intake of protein, vitamin A, salt, and sugar, alongside deficiencies in calcium, vitamin C, and vitamin D. The study concluded that children’s diets should adhere to nutritional guidelines, meeting both Polish and Australian standards, and align with the principles of the planetary health diet. To achieve this, nutritional education is essential for kindergarten staff in Poland, while targeted educational interventions are needed for parents and children in both Poland and Australia, promoting health and environmental sustainability through better nutrition. Full article
(This article belongs to the Special Issue Food Habits, Nutritional Knowledge, and Nutrition Education)
Show Figures

Figure 1

15 pages, 2062 KiB  
Article
Chemical Profile of Kumquat (Citrus japonica var. margarita) Essential Oil, In Vitro Digestion, and Biological Activity
by Ivana Vrca, Željana Fredotović, Blaž Jug, Marija Nazlić, Valerija Dunkić, Dina Jug, Josip Radić, Sonja Smole Možina and Ivana Restović
Foods 2024, 13(22), 3545; https://doi.org/10.3390/foods13223545 - 6 Nov 2024
Cited by 2 | Viewed by 2060
Abstract
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate [...] Read more.
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate the chemical profile of kumquat essential oils (KEOs) isolated by microwave-assisted distillation (MAD) and Clevenger hydrodistillation using GC-MS analysis. To test the bioaccessibility of their bioactive components, in vitro digestion with commercially available enzymes was performed. The final step of this research was to test their cytotoxic activity against a cervical cancer cell line (HeLa), a human colon cancer cell line (HCT116), a human osteosarcoma cell line (U2OS), and a healthy cell line (RPE1). Two methods were used to test the antioxidant activity: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity). The antibacterial activity was tested in relation to the growth and adhesion of Escherichia coli and Staphylococcus aureus on a polystyrene surface. The GC-MS analysis showed that the major compound in both kumquat essential oils was limonene, which was stable before and after in vitro digestion (>90%). The results showed that the cytotoxic activity of the KEOs in all three cancer cell lines tested was IC50 1–2 mg/mL, and in the healthy cell line (RPE1), the IC50 value was above 4 mg/mL. The antibacterial activity of the KEOs obtained after MAD and Clevenger hydrodistillation was 4 mg/mL against E. coli and 1 mg/mL against S. aureus. The KEOs after MAD and Clevenger hydrodistillation reduced the adhesion of E. coli by more than 1 log, while there was no statistically significant effect on the adhesion of S. aureus to the polystyrene surface. Both KEOs exhibited comparable levels of antioxidant activity using both methods tested, with IC50 values of 855.25 ± 26.02 μg/mL (after MAD) and 929.41 ± 101.57 μg/mL (after Clevenger hydrodistillation) for DPPH activity and 4839.09 ± 91.99 μmol TE/g of EO (after MAD) and 4928.78 ± 275.67 μmol TE/g of EO (after Clevenger hydrodistillation) for ORAC. The results obtained show possible future applications in various fields (e.g., in the food, pharmaceutical, cosmetic, and agricultural industries). Full article
Show Figures

Figure 1

19 pages, 2048 KiB  
Review
Industrial Production of Functional Foods for Human Health and Sustainability
by Xinrui Yuan, Moyu Zhong, Xinxin Huang, Zahid Hussain, Maozhi Ren and Xiulan Xie
Foods 2024, 13(22), 3546; https://doi.org/10.3390/foods13223546 - 6 Nov 2024
Cited by 5 | Viewed by 7341
Abstract
Functional foods significantly affect social stability, human health, and food security. Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods. Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional foods serve a as key [...] Read more.
Functional foods significantly affect social stability, human health, and food security. Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods. Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional foods serve a as key extension of functional agriculture and offer assurance of food availability for future space exploration efforts. This review summarises the main bioactive ingredients in functional foods and their functions, describes the strategies used for the nutritional fortification and industrial production of functional foods, and provides insights into the challenges and future developments in the applications of plants and microorganisms in functional foods. Our review aims to provide a theoretical basis for the development of functional foods, ensure the successful production of new products, and support the U.N. Sustainable Development Goals, including no poverty, zero hunger, and good health and well-being. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 1941 KiB  
Article
Screening of the Nutritional Properties, Bioactive Components, and Antioxidant Properties in Legumes
by Mihaela Multescu, Alina Culetu and Iulia Elena Susman
Foods 2024, 13(22), 3528; https://doi.org/10.3390/foods13223528 - 5 Nov 2024
Cited by 2 | Viewed by 5364
Abstract
This study provides an assessment of nutrients (protein, amino acid profiles, fiber, starch), phenolic content TPC, flavonoid content TFC, and antioxidant capacity through different in vitro methods in 12 legume species (red, green, yellow, brown, and black lentils; mung, pinto, black, and kidney [...] Read more.
This study provides an assessment of nutrients (protein, amino acid profiles, fiber, starch), phenolic content TPC, flavonoid content TFC, and antioxidant capacity through different in vitro methods in 12 legume species (red, green, yellow, brown, and black lentils; mung, pinto, black, and kidney beans; chickpea, soy, and lupin) and hemp. Legumes with a protein content above 30% were black lentil, lupin, and soy. Chickpea, soy, black bean, kidney bean, and mung bean did not have any limiting amino acids. All samples had moderate overall protein quality, except green and brown lentils. Black bean was less digestible (68.1%), while soy, hemp, and red lentil had higher protein digestibility (79.3–84.7%). Pinto bean had the highest TPC (425.19 mg GAE/100 g), comparable with hemp, but the lowest TFC (0.24 mg QE/100 g). Yellow and red lentils showed the lowest TPC (69–85.89 mg GAE/100 g). Mung bean presented the highest concentration of flavonoids (45.47 mg QE/100 g), followed by black lentil (28.57 mg QE/100 g). There were distinct variations in the antioxidant capacity across different legume samples and assays. Pinto bean, hemp, and green lentil had the highest relative antioxidant capacity index, while yellow lentil, red lentil, and chickpea presented the lowest. Dark-colored legume samples showed a higher TPC and a lower antioxidant capacity (CUPRAC and PCL assays), while yellow legumes had less antioxidant capacity (DPPH assay). A high correlation coefficient was observed between TPC and DPPH (r = 0.8133), TPC and FRAP (r = 0.8528), TPC and CUPRAC (r = 0.9425), and TPC and ACL (r = 0.8261) methods. The results highlight large variations in the legume properties and support the exploitation of the nutritional properties of legumes as raw materials for the development of products designed to fulfil modern consumer demands. Full article
Show Figures

Figure 1

28 pages, 1792 KiB  
Review
Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors
by Gabriela López-Almada, María Esther Mejía-León and Norma Julieta Salazar-López
Foods 2024, 13(22), 3529; https://doi.org/10.3390/foods13223529 - 5 Nov 2024
Cited by 8 | Viewed by 4847
Abstract
Obesity is a pandemic currently affecting the world’s population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even [...] Read more.
Obesity is a pandemic currently affecting the world’s population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health. Full article
Show Figures

Graphical abstract

33 pages, 1277 KiB  
Review
Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products
by Jhazmin Quizhpe, Pablo Ayuso, María de los Ángeles Rosell, Rocío Peñalver and Gema Nieto
Foods 2024, 13(21), 3513; https://doi.org/10.3390/foods13213513 - 2 Nov 2024
Cited by 4 | Viewed by 4129
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, [...] Read more.
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques. Full article
Show Figures

Graphical abstract

20 pages, 2236 KiB  
Review
Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies
by Pierina Visciano
Foods 2024, 13(21), 3511; https://doi.org/10.3390/foods13213511 - 2 Nov 2024
Cited by 3 | Viewed by 3905
Abstract
The intentional or accidental presence of environmental contaminants, such as persistent organic pollutants, metals, and microplastics, can harm the aquatic ecosystem and their living organisms, as well as consumers of seafood. This study provides an overview of marine pollution caused by various chemicals [...] Read more.
The intentional or accidental presence of environmental contaminants, such as persistent organic pollutants, metals, and microplastics, can harm the aquatic ecosystem and their living organisms, as well as consumers of seafood. This study provides an overview of marine pollution caused by various chemicals and their toxicity to both the environment and humans. In addition to regulatory limits established for some contaminants, monitoring and management policies should mandate activities such as bioremediation and the use of carbon-based composite photocatalysts to reduce or eliminate these compounds. Full article
(This article belongs to the Special Issue Aquatic Products Safety: Determination Methods of Contaminant)
Show Figures

Figure 1

17 pages, 4193 KiB  
Article
Soybean β-Conglycinin and Cowpea β-Vignin Peptides Inhibit Breast and Prostate Cancer Cell Growth: An In Silico and In Vitro Approach
by Biane Oliveira Philadelpho, Victória Guimarães Santiago, Johnnie Elton Machado dos Santos, Mariana Barros de Cerqueira e Silva, Rone Aparecido De Grandis, Eduardo Maffud Cilli, Fernando Rogério Pavan, Marcelo Santos Castilho, Alessio Scarafoni, Carolina Oliveira de Souza and Ederlan de Souza Ferreira
Foods 2024, 13(21), 3508; https://doi.org/10.3390/foods13213508 - 1 Nov 2024
Viewed by 1990
Abstract
B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate [...] Read more.
B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate potential BH3-mimetic peptides from two vicilin-derived legume proteins from soybean and cowpea bean. The proteins were isolated and sequentially hydrolyzed with pepsin/pancreatin. Peptides < 3 kDa from vicilin-derived proteins from soybean and cowpea beans experimentally inhibited the growth of cultivated breast and prostate cancer cells. In silico analysis allowed the identification of six potential candidates, all predicted to be able to interact with the BH3 domain. The VIPAAY peptide from the soybean β-conglycinin β subunit showed the highest potential to interact with Bcl-2, comparable to Venetoclax, a well-known anticancer drug. Further experiments are needed to confirm this study’s findings. Full article
(This article belongs to the Special Issue Structural Characterization of Food Proteins and Peptides)
Show Figures

Figure 1

132 pages, 3867 KiB  
Review
The Role of Near-Infrared Spectroscopy in Food Quality Assurance: A Review of the Past Two Decades
by Marietta Fodor, Anna Matkovits, Eszter Luca Benes and Zsuzsa Jókai
Foods 2024, 13(21), 3501; https://doi.org/10.3390/foods13213501 - 31 Oct 2024
Cited by 16 | Viewed by 8760
Abstract
During food quality control, NIR technology enables the rapid and non-destructive determination of the typical quality characteristics of food categories, their origin, and the detection of potential counterfeits. Over the past 20 years, the NIR results for a variety of food groups—including meat [...] Read more.
During food quality control, NIR technology enables the rapid and non-destructive determination of the typical quality characteristics of food categories, their origin, and the detection of potential counterfeits. Over the past 20 years, the NIR results for a variety of food groups—including meat and meat products, milk and milk products, baked goods, pasta, honey, vegetables, fruits, and luxury items like coffee, tea, and chocolate—have been compiled. This review aims to give a broad overview of the NIRS processes that have been used thus far to assist researchers employing non-destructive techniques in comparing their findings with earlier data and determining new research directions. Full article
Show Figures

Graphical abstract

27 pages, 13091 KiB  
Review
Ready-to-Cook Foods: Technological Developments and Future Trends—A Systematic Review
by Tianqi Cui, Goh Rui Gine, Yuqin Lei, Zhiling Shi, Beichen Jiang, Yifan Yan and Hongchao Zhang
Foods 2024, 13(21), 3454; https://doi.org/10.3390/foods13213454 - 29 Oct 2024
Cited by 5 | Viewed by 5759
Abstract
Ready-to-cook (RTC) foods can significantly improve the cooking experience of busy or unskillful consumers, based on production involving technical combinations of food processing and packaging. Initialized by a market survey of 172 products in Beijing, this systematic review analyzes RTC foods’ development status [...] Read more.
Ready-to-cook (RTC) foods can significantly improve the cooking experience of busy or unskillful consumers, based on production involving technical combinations of food processing and packaging. Initialized by a market survey of 172 products in Beijing, this systematic review analyzes RTC foods’ development status according to ingredients, packaging, and storage conditions to further clarify the scope of RTC foods. The working principles and efficacy of various food processing techniques, such as washing, cutting, marinating, and frying, and packaging design or innovations such as modified atmosphere packaging (MAP) were both summarized in detail, with attention to their ability to extend shelf life, reduce safety risks, and maximize production efficiency in RTC food production. The cutting-edge technologies that may potentially apply in the RTC food processing or packaging sector were compared with current approaches to visualize the direction of future developments. In conclusion, we have observed the specific pattern of RTC food varieties and packaging formats in the Beijing market and revealed the advancements in RTC food technologies that will continue playing a critical role in shaping this growing market, while challenges in scalability, cost-efficiency, and sustainability remain key areas for future research. The data and perspectives presented will articulate the conceptions and existing challenges of RTC food, foster consumer perception and recognition of similar products, and deliver useful guidance for stakeholders interested in such products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

28 pages, 2775 KiB  
Review
Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health
by Xinmiao Ren, Shenyuan Cai, Yiling Zhong, Luying Tang, Mengshi Xiao, Shuang Li, Changliang Zhu, Dongyu Li, Haijin Mou and Xiaodan Fu
Foods 2024, 13(21), 3460; https://doi.org/10.3390/foods13213460 - 29 Oct 2024
Cited by 5 | Viewed by 2761
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have [...] Read more.
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

18 pages, 3296 KiB  
Article
Improving the Gelation Properties of Pea Protein Isolates Using Psyllium Husk Powder: Insight into the Underlying Mechanism
by Qiongling Chen, Jiewen Guan, Zhengli Wang, Yu Wang, Xiaowen Wang and Zhenjia Chen
Foods 2024, 13(21), 3413; https://doi.org/10.3390/foods13213413 - 26 Oct 2024
Cited by 4 | Viewed by 2680
Abstract
The industrial application of pea protein is limited due to its poor gelation properties. This study aimed to evaluate the effects of psyllium husk powder (PHP) on improving the rheological, textural, and structural properties of heat-induced pea protein isolate (PPI) gel. Scanning electron [...] Read more.
The industrial application of pea protein is limited due to its poor gelation properties. This study aimed to evaluate the effects of psyllium husk powder (PHP) on improving the rheological, textural, and structural properties of heat-induced pea protein isolate (PPI) gel. Scanning electron microscopy (SEM), intermolecular forces analysis, the quantification of the surface hydrophobicity and free amino groups, and Fourier transform infrared spectroscopy (FTIR) were conducted to reveal the inner structures of PPI-PHP composite gels, conformational changes, and molecular interactions during gelation, thereby clarifying the underlying mechanism. The results showed that moderate levels of PHP (0.5–2.0%) improved the textural properties, water holding capacity (WHC), whiteness, and viscoelasticity of PPI gel in a dose-dependent manner, with the WHC (92.60 ± 1.01%) and hardness (1.19 ± 0.02 N) peaking at 2.0%. PHP significantly increased surface hydrophobicity and enhanced hydrophobic interactions, hydrogen bonding, and electrostatic interactions in PPI-PHP composite gels. Moreover, the electrostatic repulsion between anionic PHP and negatively charged PPI in a neutral environment prevented the rapid and random aggregation of proteins, thereby promoting the formation of a well-organized gel network with more β-sheet structures. However, the self-aggregation of excessive PHP (3.0%) weakened molecular interactions and disrupted the continuity of protein networks, slightly reducing the gel strength. Overall, PHP emerged as an effective natural gel enhancer for the production of pea protein gel products. This study provides technical support for the development of innovative plant protein-based foods with strong gel properties and enriched dietary fiber content. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

22 pages, 1917 KiB  
Review
Applications of Big Data and Blockchain Technology in Food Testing and Their Exploration on Educational Reform
by Haohan Ding, Zhenqi Xie, Chao Wang, Wei Yu, Xiaohui Cui and Zhenyu Wang
Foods 2024, 13(21), 3391; https://doi.org/10.3390/foods13213391 - 25 Oct 2024
Cited by 1 | Viewed by 2425
Abstract
This study reviews the applications of big data (BD) and blockchain technology in modern food testing and explores their impact on educational reform. The first part highlights the critical role of BD in ensuring food safety across the supply chain, discussing various data [...] Read more.
This study reviews the applications of big data (BD) and blockchain technology in modern food testing and explores their impact on educational reform. The first part highlights the critical role of BD in ensuring food safety across the supply chain, discussing various data collection methods, such as national and international food safety databases, while addressing the challenges related to data storage and real-time information retrieval. Additionally, blockchain technology has been explored for its ability to enhance transparency, traceability, and security in the food-testing process by creating immutable records of testing data, ensuring data integrity, and reducing the risk of tampering or fraud. The second part focuses on the influence of BD and blockchain on educational reform, particularly within food science curricula. BD enables data-driven curriculum design, supporting personalized learning and more effective educational outcomes, while blockchain ensures transparency in course management and credentials. This study advocates integrating these technologies into curriculum reform to enhance both the efficiency and quality of education. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 5819 KiB  
Article
Optimisation of Retsina Wine Quality: Effects of Resin Concentration, Yeast Strain, and Oak Chip Type
by Pantelis I. Natskoulis, Dimitrios-Evangelos Miliordos, Apostolos N. Koutsouris, Petros A. Tarantilis, Christos S. Pappas, Stamatina Kallithraka, Yorgos Kotseridis and Maria Metafa
Foods 2024, 13(21), 3376; https://doi.org/10.3390/foods13213376 - 24 Oct 2024
Viewed by 1635
Abstract
Retsina, Greece’s most renowned traditional wine, has been produced for millennia, with archaeological and historical evidence supporting its legacy. It is legally defined as wine made exclusively in Greece using grape must infused with Aleppo pine resin (Pinus halepensis). This study [...] Read more.
Retsina, Greece’s most renowned traditional wine, has been produced for millennia, with archaeological and historical evidence supporting its legacy. It is legally defined as wine made exclusively in Greece using grape must infused with Aleppo pine resin (Pinus halepensis). This study examines the effects of varying resin concentrations (0.5 g/L and 1 g/L), two commercial yeast strains, and medium-toast oak (Nadalié Cooperage, Ludon-Médoc, France) American and French, on Retsina’s chemical and sensory properties to optimise its production. Wine samples from the Savatiano grape variety were analysed for classical wine parameters, oxidation stability, volatile compounds, organic acids, phenolic profiles, and sensory attributes. Principal Component Analysis (PCA) revealed that yeast strain selection significantly influences chemical composition, with Zymaflore X5 associated with higher organic acid levels. Oak addition altered phenolic profiles, with American oak increasing ellagic acid, while non-oaked wines showed higher syringic and p-coumaric acids. Resin addition elevated alpha-pinene, a key marker of resin aroma, but reduced esters linked to fruity and floral notes. These findings highlight the complex interactions between resin, yeast, and oak, offering insights for enhancing Retsina’s quality while preserving its traditional character. Full article
(This article belongs to the Special Issue Innovative Achievements on Food Processing “From Farm to Fork”)
Show Figures

Figure 1

20 pages, 602 KiB  
Article
Wheat Flour Pasta Combining Bacillus coagulans and Arthrospira platensis as a Novel Probiotic Food with Antioxidants
by Aldo Iván García-Moncayo, Emilio Ochoa-Reyes, Hilda Karina Sáenz-Hidalgo, Pedro González-Pérez, Laila N. Muñoz-Castellanos, David Roberto Sepúlveda-Ahumada, José Juan Buenrostro-Figueroa and Mónica Alvarado-González
Foods 2024, 13(21), 3381; https://doi.org/10.3390/foods13213381 - 24 Oct 2024
Viewed by 1878
Abstract
Arthrospira platensis (Ap) and Bacillus coagulans (Bc) have been successfully used to develop functional foods, but a combination of both regarding functional implications in nutritional value and antioxidant capacity has not been explored. This work aimed to develop an artisanal wheat flour pasta [...] Read more.
Arthrospira platensis (Ap) and Bacillus coagulans (Bc) have been successfully used to develop functional foods, but a combination of both regarding functional implications in nutritional value and antioxidant capacity has not been explored. This work aimed to develop an artisanal wheat flour pasta with egg using 5% A. platensis and 1% B. coagulans GBI 6068 (labeled as Bc+Ap). Uncooked pasta was characterized regarding nutritional value; furthermore, total phenolic content, antioxidant capacity by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP), pigment content, colorimetry assay, textural profile analysis, buffering capacity, and probiotic viability were carried out on uncooked and cooked pasta to assess the changes induced by cooking. The Bc+Ap pasta showed enhanced nutritional value with a significant increase in protein content (30.61%). After cooking, the pasta showed increased phenolic content (14.22% mg GAE/g) and antioxidant capacity (55.59% µmol Trolox equivalents/g and 10.88% µmol Fe+2/g) for ABTS and FRAP, respectively, as well as pigment content (6.72 and 1.17 mg/100 g) for chlorophyll a+b and total carotenoids, respectively, but relative impacts on colorimetric parameters in contrast to control (wheat flour pasta). Furthermore, Bc+Ap showed improved firmness (59%, measured in g), buffer capacity (87.80% μmol H+(g × ΔpH)−1), and good probiotic viability (7.2 ± 0.17 log CFU/g) after the cooking process. Full article
Show Figures

Graphical abstract

19 pages, 6789 KiB  
Article
Understanding the Molecular Interactions Between Pandan Pigment and Food Components for Enhanced Thermal Stability
by Junxia Chen, Chunhe Gu, Mengrui Wang, Ziqing Chang, Junping Zhou, Mingzhe Yue, Fei Liu and Zhen Feng
Foods 2024, 13(21), 3361; https://doi.org/10.3390/foods13213361 - 23 Oct 2024
Cited by 1 | Viewed by 2207
Abstract
Pandan pigment (Pandanus amaryllifolius) is widely used as a natural food coloring and flavoring agent. However, its application in food is limited because of its susceptibility to thermal degradation during food processing, which affects both pigment stability and color. Despite its [...] Read more.
Pandan pigment (Pandanus amaryllifolius) is widely used as a natural food coloring and flavoring agent. However, its application in food is limited because of its susceptibility to thermal degradation during food processing, which affects both pigment stability and color. Despite its growing use, there is limited research on how common food ingredients can mitigate this degradation. This study addresses this gap by exploring the effects of sucrose, lactose, rice starch, whey protein, and soy protein isolate on the thermal and color stability of pandan pigment under various heating conditions (65 °C, 95 °C, 115 °C, and 121 °C for 15 min). Spectroscopic techniques (UV–visible, infrared, and fluorescence) and laser confocal microscopy were used to elucidate the molecular interactions. The results revealed that rice starch provided the strongest protection, followed by whey protein, soy protein isolate, lactose, and sucrose, although the protective effects decreased at higher temperatures. These findings offer new insights into the use of sugars and proteins to increase the thermal stability of natural pigments in food applications. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

22 pages, 1272 KiB  
Review
Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits
by Laryssa Peres Fabbri, Andrea Cavallero, Francesca Vidotto and Morena Gabriele
Foods 2024, 13(21), 3369; https://doi.org/10.3390/foods13213369 - 23 Oct 2024
Cited by 12 | Viewed by 4856
Abstract
Microbial fermentation is a well-known strategy for enhancing the nutraceutical attributes of foods. Among the fermentation outcomes, bioactive peptides (BAPs), short chains of amino acids resulting from proteolytic activity, are emerging as promising components thanks to their bioactivities. Indeed, BAPs offer numerous health [...] Read more.
Microbial fermentation is a well-known strategy for enhancing the nutraceutical attributes of foods. Among the fermentation outcomes, bioactive peptides (BAPs), short chains of amino acids resulting from proteolytic activity, are emerging as promising components thanks to their bioactivities. Indeed, BAPs offer numerous health benefits, including antimicrobial, antioxidant, antihypertensive, and anti-inflammatory properties. This review focuses on the production of bioactive peptides during the fermentation process, emphasizing how different microbial strains and fermentation conditions influence the quantity and quality of these peptides. Furthermore, it examines the health benefits of BAPs from fermented foods, highlighting their potential in disease prevention and overall health promotion. Additionally, this review addresses the challenges and future directions in this field. This comprehensive overview underscores the promise of fermented foods as sustainable and potent sources of bioactive peptides, with significant implications for developing functional foods and nutraceuticals. Full article
Show Figures

Graphical abstract

17 pages, 1893 KiB  
Article
Healthiness of Meat-Based Products in Comparison to Their Plant-Based Alternatives in the UK Market: A Packaging Evaluation
by Ruxandra Ciobotaru, Ayten Aylin Tas and Tabrez Ahmed Khan
Foods 2024, 13(21), 3346; https://doi.org/10.3390/foods13213346 - 22 Oct 2024
Cited by 3 | Viewed by 3879
Abstract
This study evaluated the healthiness of meat products (n = 62) and their plant-based (PB) counterparts (n = 62) available in the UK market. Back-of-pack (BoP) and front-of-pack (FoP) nutrition label information, nutrition and health claims, and nutrient profiling model scores were compared. [...] Read more.
This study evaluated the healthiness of meat products (n = 62) and their plant-based (PB) counterparts (n = 62) available in the UK market. Back-of-pack (BoP) and front-of-pack (FoP) nutrition label information, nutrition and health claims, and nutrient profiling model scores were compared. BoP labels revealed that meat products had higher protein, fat, and saturated fat content (p = 0.029), whilst PB alternatives were higher in dietary fibre and carbohydrates (p < 0.001). Red colour coding (FoP) for fat and saturated fat (‘high’) was more prominent in meat products (23 and 35%, respectively), and the red meat category had the most products with high fat and saturated fat content. Only 15% of meat products made nutrition claims compared to 40% of PB alternatives, and none included health claims. Most red meat PB alternatives made a nutrition claim, all related to the protein content (34%). The nutrient profiling model indicated that 74% of the PB alternatives were ‘healthy’ compared to 60% of the meat products. No association was found between the product type (meat/PB) and healthiness, except for the red meat products, which showed a significant negative association (p = 0.005), suggesting that these products corresponded to less healthy options. Therefore, PB alternatives can be considered as healthier substitutes for meat products. Full article
(This article belongs to the Special Issue Food Choice, Nutrition, and Public Health)
Show Figures

Figure 1

26 pages, 2107 KiB  
Review
Biotechnology in Food Packaging Using Bacterial Cellulose
by Maryana Rogéria dos Santos, Italo José Batista Durval, Alexandre D’Lamare Maia de Medeiros, Cláudio José Galdino da Silva Júnior, Attilio Converti, Andréa Fernanda de Santana Costa and Leonie Asfora Sarubbo
Foods 2024, 13(20), 3327; https://doi.org/10.3390/foods13203327 - 20 Oct 2024
Cited by 6 | Viewed by 5587
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental [...] Read more.
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact. Full article
Show Figures

Figure 1

Back to TopTop