Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Description
2.3. Remote Sensing Data Acquisition
2.4. Data Processing
2.4.1. Photogrammetric Processing
2.4.2. Vegetation Classification
2.5. Data Analysis
3. Results
3.1. Analysis of the UAV-Based Data Products
3.2. Multi-Temporal Vegetation Monitoring
3.2.1. General Characterization of the Study Area
3.2.2. Treatment Plots
3.3. Grazing Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonini, M.; Parente, J.; Pereira, M.G. Global Assessment of Rural–Urban Interface in Portugal Related to Land Cover Changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artés Vivancos, T.; Oom, D.; et al. Forest Fires in Europe, Middle East and North Africa 2019; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-23209-4. [Google Scholar]
- Nikolaj Nielsen Europe’s Wildfire Destruction Set to Hit New Record. Available online: https://euobserver.com/green-economy/155777 (accessed on 18 October 2022).
- Barbero, M.; Bonin, G.; Loisel, R.; Quézel, P. Changes and Disturbances of Forest Ecosystems Caused by Human Activities in the Western Part of the Mediterranean Basin. Vegetatio 1990, 87, 151–173. [Google Scholar] [CrossRef]
- Alló, M.; Loureiro, M.L. Assessing Preferences for Wildfire Prevention Policies in Spain. For. Policy Econ. 2020, 115, 102145. [Google Scholar] [CrossRef]
- Tangney, R.; Miller, R.G.; Fontaine, J.B.; Veber, W.P.; Ruthrof, K.X.; Miller, B.P. Vegetation Structure and Fuel Dynamics in Fire-Prone, Mediterranean-Type Banksia Woodlands. For. Ecol. Manag 2022, 505, 119891. [Google Scholar] [CrossRef]
- Fernández-Alonso, J.M.; Vega, J.A.; Jiménez, E.; Ruiz-González, A.D.; Álvarez-González, J.G. Spatially Modeling Wildland Fire Severity in Pine Forests of Galicia, Spain. Eur. J. For. Res. 2017, 136, 105–121. [Google Scholar] [CrossRef]
- Keane, R.E. Describing Wildland Surface Fuel Loading for Fire Management: A Review of Approaches, Methods and Systems. Int. J. Wildland Fire 2012, 22, 51–62. [Google Scholar] [CrossRef]
- Russell, A.; Fontana, N.; Hoecker, T.; Kamanu, A.; Majumder, R.; Stephens, J.; Young, A.M.; Cravens, A.E.; Giardina, C.; Hiers, K.; et al. A Fire-Use Decision Model to Improve the United States’ Wildfire Management and Support Climate Change Adaptation. Cell Rep. Sustain. 2024, 1, 100125. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic Principles of Forest Fuel Reduction Treatments. For. Ecol. Manag 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Castro, M.; Ameray, A.; Castro, J.P. A New Approach to Quantify Grazing Pressure under Mediterranean Pastoral Systems Using GIS and Remote Sensing. Int. J. Remote Sens. 2020, 41, 5371–5387. [Google Scholar] [CrossRef]
- Ameray, A.; Castro, J.P.; Castro, M. Potential Greenhouse Gas Emissions Mitigation through Increased Grazing Pressure: A Case Study in North Portugal. Carbon Manag 2022, 13, 142–153. [Google Scholar] [CrossRef]
- Múgica, L.; Canals, R.M.; San Emeterio, L.; Peralta, J. Decoupling of Traditional Burnings and Grazing Regimes Alters Plant Diversity and Dominant Species Competition in High-Mountain Grasslands. Sci. Total Environ. 2021, 790, 147917. [Google Scholar] [CrossRef] [PubMed]
- Múgica, L.; Canals, R.M.; San Emeterio, L.; Mosquera-Losada, M.R.; Torres, F.; Plaixats, J.; Castro, M.; Robles, A.B.; Sáez, J.L.; Aguerre, C.; et al. Leire Sustainable Management Model for the Preservation of Valuable Open Mountain Areas: The Open2preserve Project. In Proceedings of the 29th General Meeting of the European Grassland Federationc, Caen, France, 26–30 June 2022. [Google Scholar]
- Velamazán, M.; Perea, R.; Bugalho, M.N. Ungulates and Ecosystem Services in Mediterranean Woody Systems: A Semi-Quantitative Review. J. Nat. Conserv. 2020, 55, 125837. [Google Scholar] [CrossRef]
- Mancilla-Leytón, J.M.; Pino Mejías, R.; Martín Vicente, A. Do Goats Preserve the Forest? Evaluating the Effects of Grazing Goats on Combustible Mediterranean Scrub. Appl. Veg. Sci. 2013, 16, 63–73. [Google Scholar] [CrossRef]
- Mancilla-Leytón, J.M.; Hernando, C.; Cambrollé, J.; Muñoz-Vallés, S.; Pino-Mejías, R.; Vicente, Á.M. Can Shrub Flammability Be Affected by Goat Grazing? Flammability Parameters of Mediterranean Shrub Species under Grazing. Sustainability 2021, 13, 1555. [Google Scholar] [CrossRef]
- Insausti, K.; Beldarrain, L.R.; Lavín, M.P.; Aldai, N.; Mantecón, Á.R.; Sáez, J.L.; Canals, R.M. Horse Meat Production in Northern Spain: Ecosystem Services and Sustainability in High Nature Value Farmland. Anim. Front. 2021, 11, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Fulkerson, W.J.; McKean, K.; Nandra, K.S.; Barchia, I.M.; Fulkerson, W.J.; McKean, K.; Nandra, K.S.; Barchia, I.M. Benefits of Accurately Allocating Feed on a Daily Basis to Dairy Cows Grazing Pasture. Aust. J. Exp. Agric. 2005, 45, 331–336. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Rudd, J.; Roberson, G.; Classen, J. Application of Satellite, Unmanned Aircraft System, and Ground-Based Sensor Data for Precision Agriculture: A Review. In Proceedings of the 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, Spokane, WA, USA, 16–19 July 2017. [Google Scholar]
- Saponaro, M.; Tarantino, E. LULC Classification Performance of Supervised and Unsupervised Algorithms on UAV-Orthomosaics. In Proceedings of the Computational Science and Its Applications—ICCSA 2022 Workshops, Malaga, Spain, 4–7 July 2022; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 311–326. [Google Scholar]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [PubMed]
- de Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sens. 2021, 13, 2139. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of Semi-Arid Ecosystems to Interannual Variability of the Global Carbon Cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Mao, P.; Qin, L.; Hao, M.; Zhao, W.; Luo, J.; Qiu, X.; Xu, L.; Xiong, Y.; Ran, Y.; Yan, C.; et al. An Improved Approach to Estimate Above-Ground Volume and Biomass of Desert Shrub Communities Based on UAV RGB Images. Ecol. Indic. 2021, 125, 107494. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Wang, Y.; Zheng, Z.; Zheng, S.; Zhao, D.; Bai, Y. UAV-Based Individual Shrub Aboveground Biomass Estimation Calibrated against Terrestrial LiDAR in a Shrub-Encroached Grassland. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102358. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Al-Ali, Z.M.; Abdullah, M.T.; Srinivasan, S.; Assi, A.T.; Al Atiqi, S. Investigating the Applicability of UAVs in Characterizing Desert Shrub Biomass and Developing Biological Indicators for the Selection of Suitable Revegetation Sites. J. Environ. Manag 2021, 288, 112416. [Google Scholar] [CrossRef] [PubMed]
- Villoslada Peciña, M.; Bergamo, T.F.; Ward, R.D.; Joyce, C.B.; Sepp, K. A Novel UAV-Based Approach for Biomass Prediction and Grassland Structure Assessment in Coastal Meadows. Ecol. Indic. 2021, 122, 107227. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Théau, J.; Lauzier-Hudon, É.; Aubé, L.; Devillers, N. Estimation of Forage Biomass and Vegetation Cover in Grasslands Using UAV Imagery. PLoS ONE 2021, 16, e0245784. [Google Scholar] [CrossRef] [PubMed]
- Da Pereira, F.R.S.; de Lima, J.P.; Freitas, R.G.; Dos Reis, A.A.; Do Amaral, L.R.; Figueiredo, G.K.D.A.; Lamparelli, R.A.C.; Magalhães, P.S.G. Nitrogen Variability Assessment of Pasture Fields under an Integrated Crop-Livestock System Using UAV, PlanetScope, and Sentinel-2 Data. Comput. Electron. Agric. 2022, 193, 106645. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.L.; Schellberg, J.; Bareth, G. Estimating Biomass in Temperate Grassland with High Resolution Canopy Surface Models from UAV-Based RGB Images and Vegetation Indices. JARS 2019, 13, 034525. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from Uav-Based Images for Forage Monitoring in Grassland. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41B1, 991–998. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Wang, B.; Meng, B.; Qin, Y.; Sun, Y.; Lv, Y.; Zhang, J.; Yi, S. A Non-Destructive Method for Rapid Acquisition of Grassland Aboveground Biomass for Satellite Ground Verification Using UAV RGB Images. Glob. Ecol. Conserv. 2022, 33, e01999. [Google Scholar] [CrossRef]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of Spatial and Temporal Variability of Pasture Growth and Digestibility in Grazing Rotations Coupling Unmanned Aerial Vehicle (UAV) with Crop Simulation Models. PLoS ONE 2019, 14, e0212773. [Google Scholar] [CrossRef] [PubMed]
- Polley, H.W.; Kolodziejczyk, C.A.; Jones, K.A.; Derner, J.D.; Augustine, D.J.; Smith, D.R. UAV−Enabled Quantification of Grazing-Induced Changes in Uniformity of Green Cover on Semiarid and Mesic Grasslands. Rangel. Ecol. Manag 2022, 80, 68–77. [Google Scholar] [CrossRef]
- Alvarez-Hess, P.S.; Thomson, A.L.; Karunaratne, S.B.; Douglas, M.L.; Wright, M.M.; Heard, J.W.; Jacobs, J.L.; Morse-McNabb, E.M.; Wales, W.J.; Auldist, M.J. Using Multispectral Data from an Unmanned Aerial System to Estimate Pasture Depletion during Grazing. Anim. Feed. Sci. Technol. 2021, 275, 114880. [Google Scholar] [CrossRef]
- Batistoti, J.; Marcato Junior, J.; Ítavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.; Salgado Filho, G.; Akiyama, T.; et al. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry. Remote Sens. 2019, 11, 2447. [Google Scholar] [CrossRef]
- Surový, P.; Ribeiro, N.A.; Panagiotidis, D. Estimation of Positions and Heights from UAV-Sensed Imagery in Tree Plantations in Agrosilvopastoral Systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; Marques da Silva, J.R.; Agüera-Vega, F.; Martínez-Carricondo, P.; Serrano, J.; Moral, F.J. Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sens. 2019, 11, 993. [Google Scholar] [CrossRef]
- Mayr, M.J.; Malß, S.; Ofner, E.; Samimi, C. Disturbance Feedbacks on the Height of Woody Vegetation in a Savannah: A Multi-Plot Assessment Using an Unmanned Aerial Vehicle (UAV). Int. J. Remote Sens. 2018, 39, 4761–4785. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground Total and Green Biomass of Dryland Shrub Derived from Terrestrial Laser Scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. High-Resolution Mapping of Aboveground Shrub Biomass in Arctic Tundra Using Airborne Lidar and Imagery. Remote Sens. Environ. 2016, 184, 361–373. [Google Scholar] [CrossRef]
- Passalacqua, N.G.; Aiello, S.; Bernardo, L.; Gargano, D. Monitoring Biomass in Two Heterogeneous Mountain Pasture Communities by Image Based 3D Point Cloud Derived Predictors. Ecol. Indic. 2021, 121, 107126. [Google Scholar] [CrossRef]
- Maesano, M.; Santopuoli, G.; Moresi, F.V.; Matteucci, G.; Lasserre, B.; Scarascia Mugnozza, G. Above Ground Biomass Estimation from UAV High Resolution RGB Images and LiDAR Data in a Pine Forest in Southern Italy. Iforest—Biogeosci. For. 2022, 15, 451. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- McClelland, M.P.; van Aardt, J.; Hale, D. Manned Aircraft versus Small Unmanned Aerial System—Forestry Remote Sensing Comparison Utilizing Lidar and Structure-from-Motion for Forest Carbon Modeling and Disturbance Detection. JARS 2019, 14, 022202. [Google Scholar] [CrossRef]
- Canfield, R.H. Application of the Line Interception Method in Sampling Range Vegetation. J. For. 1941, 39, 388–394. [Google Scholar] [CrossRef]
- Breckenridge, R.P.; Dakins, M.E. Evluation of Bare Ground on Rangelands Using Unmanned Aerial Vehicles: A Case Study. GISci. Remote Sens. 2011, 48, 74–85. [Google Scholar] [CrossRef]
- Figueiredo, T. De Uma Panorâmica Sobre os Recursos Pedológicos do Nordeste Transmontano; Instituto Politécnico de Bragança, Escola Superior Agrária: Coimbra, Portugal, 2013; ISBN 978-972-745-138-8. [Google Scholar]
- FAO; FAO/UNESCO. Soil Map of the World. Revised Legend, with Corrections and Updates; World Soil Resources Report; FAO: Rome, Italy, 1988; Volume 60, ISBN 90-6672-057-3. [Google Scholar]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Castro, M.; Castro, J.P.; Castro, J. Understory Clearing in Open Grazed Mediterranean Oak Forests: Assessing the Impact on Vegetation. Sustainability 2022, 14, 10979. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in The Great Plains with ERTS. In Proceedings of the Goddard Space Flight Center 3rd ERTS-1 Symp., Washington, DC, USA, 10–14 December 1974; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Hengl, T. Finding the Right Pixel Size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Adáo, T.; Hruška, J.; Peres, E.; Morais, R.; Sousa, A.; Sousa, J.J. UAS-Based Imagery and Photogrammetric Processing for Tree Height and Crown Diameter Extraction. In Proceedings of the International Conference on Geoinformatics and Data Analysis, Prague, Czech Republic, 20–22 April 2018; ACM: New York, NY, USA, 2018; pp. 87–91. [Google Scholar]
- Matese, A.; Di Gennaro, S.F.; Berton, A. Assessment of a Canopy Height Model (CHM) in a Vineyard Using UAV-Based Multispectral Imaging. Int. J. Remote Sens. 2016, 38, 2150–2160. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Sousa, J.J.; Peres, E.; Martins, L.M.; Sousa, A. Automatic Chestnut Trees Monitoring by Aerial Photographs Obtained by Unmanned Aerial Vehicle; UTAD: Vila Real, Portugal, 2017; pp. 32–33. [Google Scholar]
- Pádua, L.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, J.J. Post-Fire Forestry Recovery Monitoring Using High-Resolution Multispectral Imagery From Unmanned Aerial Vehicles. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 3–6 September 2019; Copernicus GmbH: Göttingen, Germany, 2019; Volume XLII-3-W8, pp. 301–305. [Google Scholar]
- Pádua, L.; Guimarães, N.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J.J. Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 225. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- McIntosh, M.M.; Cibils, A.F.; Estell, R.E.; Gong, Q.; Cao, H.; Gonzalez, A.L.; Nyamuryekung’e, S.; Spiegal, S.A. Can Cattle Geolocation Data Yield Behavior-Based Criteria to Inform Precision Grazing Systems on Rangeland? Livest. Sci. 2022, 255, 104801. [Google Scholar] [CrossRef]
- Abdulai, G.; Sama, M.; Jackson, J. A Preliminary Study of the Physiological and Behavioral Response of Beef Cattle to Unmanned Aerial Vehicles (UAVs). Appl. Anim. Behav. Sci. 2021, 241, 105355. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the Dynamics of Livestock Distribution by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale. Rangel. Ecol. Manag 2020, 73, 642–648. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle Detection and Counting in UAV Images Based on Convolutional Neural Networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef]
- Adar, S.; Sternberg, M.; Paz-Kagan, T.; Henkin, Z.; Dovrat, G.; Zaady, E.; Argaman, E. Estimation of Aboveground Biomass Production Using an Unmanned Aerial Vehicle (UAV) and VENμS Satellite Imagery in Mediterranean and Semiarid Rangelands. Remote Sens. Appl. Soc. Environ. 2022, 26, 100753. [Google Scholar] [CrossRef]
- Polley, H.W.; Kolodziejczyk, C.A.; Jones, K.A.; Smith, D.R. Grazing Treatment Influences Recovery of Mesic Grassland from Seasonal Drought: An Assessment Using Unmanned Aerial Vehicle−Enabled Remote Sensing. Rangel. Ecol. Manag 2022, 82, 12–19. [Google Scholar] [CrossRef]
- Pádua, L.; Guimarães, N.; Adão, T.; Marques, P.; Peres, E.; Sousa, A.; Sousa, J.J. Classification of an Agrosilvopastoral System Using RGB Imagery from an Unmanned Aerial Vehicle. In Proceedings of the Progress in Artificial Intelligence, Vila Real, Portugal, 3–6 September 2019; Moura Oliveira, P., Novais, P., Reis, L.P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 248–257. [Google Scholar]
- Lu, B.; He, Y. Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Trenčanová, B.; Proença, V.; Bernardino, A. Development of Semantic Maps of Vegetation Cover from UAV Images to Support Planning and Management in Fine-Grained Fire-Prone Landscapes. Remote Sens. 2022, 14, 1262. [Google Scholar] [CrossRef]
Sensor | Flight Height (m) | Flight Pattern | Image Overlap (Longitudinal/Lateral) | Approx. Spatial Resolution (m) |
---|---|---|---|---|
RGB | 60 | Double grid | 80%/70% | 0.04 |
Multispectral | 90 | Single grid | 0.11 |
Class ID | Class | Classification Criteria | ||
---|---|---|---|---|
CHM Value(s) (m) | NDVI Value | |||
1 | Soil/Others | ≤0.05 | or | <0.35 |
2 | Herbaceous | ≤0.30 | and | ≥0.35 |
3 | Shrubs | >0.30 and ≤1.50 | and | ≥0.35 |
4 | Trees | >1.50 | and | ≥0.35 |
Date | Max. | Mean | Min. | SD |
---|---|---|---|---|
25 February 2019 | 0.95 | 0.50 | −0.24 | 0.14 |
3 July 2019 | 0.92 | 0.55 | −0.32 | 0.25 |
6 July 2020 | 0.91 | 0.53 | −0.15 | 0.22 |
1 July 2021 | 0.93 | 0.60 | −0.19 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pádua, L.; Castro, J.P.; Castro, J.; Sousa, J.J.; Castro, M. Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data. Drones 2024, 8, 364. https://doi.org/10.3390/drones8080364
Pádua L, Castro JP, Castro J, Sousa JJ, Castro M. Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data. Drones. 2024; 8(8):364. https://doi.org/10.3390/drones8080364
Chicago/Turabian StylePádua, Luís, João P. Castro, José Castro, Joaquim J. Sousa, and Marina Castro. 2024. "Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data" Drones 8, no. 8: 364. https://doi.org/10.3390/drones8080364
APA StylePádua, L., Castro, J. P., Castro, J., Sousa, J. J., & Castro, M. (2024). Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data. Drones, 8(8), 364. https://doi.org/10.3390/drones8080364