-
Biomechanical Proof of a Speed-Adaptive AFO for Foot Drop -
Step Kinematics Between Children with Different Acceleration Patterns -
Plyometric Training in Prepubertal Soccer Players: Is It Really Effective for Soccer Performance? -
Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit Athletes
Journal Description
Biomechanics
Biomechanics
is an international, peer-reviewed, open access journal on biomechanics research published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 23 days after submission; acceptance to publication is undertaken in 7.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Impact Factor:
1.4 (2024);
5-Year Impact Factor:
1.6 (2024)
Latest Articles
Neuromechanical Effects of Eccentric–Reactive Training on Explosiveness, Asymmetry, and Stretch-Shortening in Elite Table Tennis Players
Biomechanics 2025, 5(4), 84; https://doi.org/10.3390/biomechanics5040084 - 16 Oct 2025
Abstract
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to
[...] Read more.
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to either an experimental group (EG, n = 7) or a control group (CG, n = 7). EG performed flywheel squats and lateral depth jumps three times per week, while CG maintained regular training. Pre- and post-intervention testing included countermovement jumps, reactive strength index (RSI_DJ), force asymmetry, time-to-stabilization, SSC efficiency, and energy transfer ratio (ETR), measured via force plates, EMG, and inertial sensors. Methods: Multi-dimensional statistical analysis revealed coordinated improvements in explosive power and movement efficiency following eccentric training that were not visible when examining individual measures separately. Athletes in the training group showed enhanced neuromechanical control and developed more efficient movement patterns compared to controls. The analysis successfully identified distinct performance profiles and demonstrated that the training program improved explosive characteristics in elite table tennis players. Results: Univariate ANOVAs showed no significant Group × Time effects for RSI_DJ, ETR, or SSC_Eff, although RSI_DJ displayed a moderate effect size in EG (d = 0.47, 95% CI [0.12, 0.82], p = 0.043). In contrast, MANOVA confirmed a significant multivariate Group × Time interaction (p = 0.013), demonstrating integrated neuromechanical adaptations. Regression analysis indicated lower baseline CMJ and RSI_DJ predicted greater RSI improvements. Conclusions: In conclusion, eccentric–reactive training promoted multidimensional neuromechanical adaptations in elite racket sport athletes, supporting the use of integrated monitoring and targeted eccentric loading to enhance lateral explosiveness and efficiency.
Full article
(This article belongs to the Section Neuromechanics)
►
Show Figures
Open AccessArticle
The Effect of Warm-Up on Muscle Strength and Body Temperature in Athletes with Disabilities
by
Pablo Santana Prata, Felipe J. Aidar, Taísa Pereira Santos, Ângelo de Almeida Paz, Sarah Lisia da Silva Paixão, Rozani Cristina Alves, Osvaldo Costa Moreira and Pantelis T. Nikolaidis
Biomechanics 2025, 5(4), 83; https://doi.org/10.3390/biomechanics5040083 - 11 Oct 2025
Abstract
Introduction: Paralympic powerlifting (PP) is a sport in which the bench press is the sole exercise. Warm-up routines are considered essential for optimal performance. Objectives: This study aims to analyze different types of warm-up protocols—traditional warm-up (TW), post-activation performance enhancement (PAPE), and without
[...] Read more.
Introduction: Paralympic powerlifting (PP) is a sport in which the bench press is the sole exercise. Warm-up routines are considered essential for optimal performance. Objectives: This study aims to analyze different types of warm-up protocols—traditional warm-up (TW), post-activation performance enhancement (PAPE), and without warm-up (WW)—and their effects on dynamic strength indicators, core temperature, and skin temperature in athletes with disabilities. Methods: Fourteen nationally ranked PP athletes participated in the study. Their performance was evaluated following different warm-up protocols. Dynamic variables analyzed included Maximum Velocity (VMax), Mean Propulsive Velocity (MPV), and Power output. Additionally, tympanic and skin temperatures were measured. Results: No significant differences were observed in dynamic strength indicators across the different warm-up protocols. Thermographic analysis revealed differences only in the triceps muscle between PAPE and TW (p < 0.001), TW and WW (p = 0.004), and PAPE and WW (p = 0.015). Differences were also observed between TW and WW (p = 0.026). Ten minutes post-warm-up, differences were noted between PAPE and WW (p < 0.001) and between TW and WW (p = 0.001). In the WW condition, significant differences were found between pre-warm-up and 10 min post-warm-up (p = 0.031), as well as between post-warm-up and 10 min later (p = 0.003). Conclusions: The study evaluated the potential impact of warm-ups on dynamic indicators of strength, core temperature, and skin temperature. No differences were found between the warm-up methods for strength indicators. Regarding skin temperature, only the triceps showed differences between the PAPE and Traditional methods. Regarding core temperature, after warm-up and 10 min later, the methods without warm-up showed higher temperatures than the PAPE and Traditional methods. Therefore, in practical applications, warm-up methods do not appear to interfere with strength indicators, with lower skin temperatures for the triceps in the PAPE methods.
Full article
(This article belongs to the Section Sports Biomechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Walking Path Length on Gait Parameters During the 2-Minute Walk Test in Healthy Young Adults
by
Cecilia Lo Zoppo, Valeria Belluscio and Giuseppe Vannozzi
Biomechanics 2025, 5(4), 82; https://doi.org/10.3390/biomechanics5040082 - 10 Oct 2025
Abstract
Background/Objectives: The 2-minute walk test (2MWT) is a time-based gait assessment commonly employed for populations with limited walking ability for greater tolerability compared to the longer 6-minute test. The recommended distance to perform the tests is a 30 m straight path, a space
[...] Read more.
Background/Objectives: The 2-minute walk test (2MWT) is a time-based gait assessment commonly employed for populations with limited walking ability for greater tolerability compared to the longer 6-minute test. The recommended distance to perform the tests is a 30 m straight path, a space requirement that is not always available in non-laboratory contexts. Shorter paths are therefore often adopted, but associated changes in gait patterns are not clear. The aim of the study is therefore to investigate how different walking path lengths affect gait patterns during the 2MWT. Methods: Twenty healthy young adults performed three walking trials on a straight hallway of 5 m, 15 m, and 30 m lengths. Spatiotemporal gait parameters were measured using three inertial measurement units on both distal tibiae and at pelvis level. Results: The 5 m path showed the greatest deviations, specifically in walking distance, walking speed, stride duration, stance time, swing time, single support time, and cadence, if compared to longer distances (p < 0.05). The 15 m path showed differences only in walking distance and walking speed (p < 0.05), if compared to the 30 m path. Conclusions: Shorter path lengths, particularly the 5 m, significantly impact gait patterns and should be considered when interpreting 2MWT results in clinical settings. The 30 m path is recommended as the gold standard, with 15 m as a viable alternative for assessing temporal parameters. Nevertheless, the extent to which each feature would be over/underestimated when walking in limited spaces is also addressed.
Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals: Second Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effects of Muscle Fatigue on Lower Extremity Biomechanics During the Three-Step Layup Jump and Drop Landing in Male Recreational Basketball Players
by
Li Jin and Brandon Yang
Biomechanics 2025, 5(4), 81; https://doi.org/10.3390/biomechanics5040081 - 10 Oct 2025
Abstract
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue
[...] Read more.
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue on ankle, knee, and hip-joint biomechanics during layup and landing. We hypothesized that fatigue would increase peak vertical ground reaction force (GRF), peak knee extension angle, and peak joint moments. Methods: Fourteen healthy male participants performed 3-step layups and drop landings using their dominant leg on force plates. The fatigue protocol consisted of squat jumps, step-ups, and repeated countermovement jumps (CMJs), with fatigue defined as three consecutive CMJs below 80% of the participant’s pre-established maximum jump height. After a fatigue protocol, they repeated the tasks. Kinematic data were collected using an eight-camera Vicon system (100 Hz), and GRF data were recorded with two AMTI force plates (1000 Hz). Thirty-six reflective markers were placed on lower-limb anatomical landmarks, and data were processed using Visual 3D. Paired t-tests ( = 0.05) were conducted using SPSS (V26.0) to compare pre- and post-fatigue outcomes. Results: Significant increases were found in peak GRF during landing (pre: 3.41 0.81 BW [Body Weight], post: 3.95 1.05 BW, p = 0.036), and peak negative hip joint work during landing (pre: 0.34 0.18 J/kg, post: 0.66 0.43 J/kg, p = 0.025). Conclusions: These findings indicate that fatigue may alter landing mechanics, reflected in increased ground reaction forces and negative hip joint work. These preliminary findings should be interpreted cautiously, and future studies with larger samples and additional neuromuscular measures under sport-specific conditions are needed to improve ecological validity.
Full article
(This article belongs to the Special Issue Lower Limb and Surface Interaction: Implications for Performance and Injury)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effects of Using Geared Wheels on Energy Expenditure During Manual Wheelchair Propulsion in Adults with Spinal Cord Injury
by
Omid Jahanian, Barbara Silver-Thorn, Vaishnavi Muqeet, Elizabeth T. Hsiao-Wecksler and Brooke A. Slavens
Biomechanics 2025, 5(4), 80; https://doi.org/10.3390/biomechanics5040080 - 9 Oct 2025
Abstract
Objectives: To quantify the effects of geared wheelchair wheels on energy expenditure during manual wheelchair propulsion in individuals with spinal cord injury (SCI). Methods: Eleven adult manual wheelchair users with SCI propelled their personal manual wheelchairs, which were equipped with a pair of
[...] Read more.
Objectives: To quantify the effects of geared wheelchair wheels on energy expenditure during manual wheelchair propulsion in individuals with spinal cord injury (SCI). Methods: Eleven adult manual wheelchair users with SCI propelled their personal manual wheelchairs, which were equipped with a pair of geared wheels, on a passive wheelchair ergometer in low-gear and standard-gear conditions for six minutes. The energy cost of transport, distance traveled, rate of oxygen consumption (SCI MET), rate of perceived exertion, heart rate, and stroke cycle frequency were measured and compared across the gear conditions. Results: The distance traveled and SCI MET were significantly lower (p = 0.003) and cost of transport was significantly higher under the low-gear condition compared with the standard-gear condition. Gear condition exerted a moderate effect on the level of exertion; however, the decrease in the rate of perceived exertion under the low-gear condition was not statistically significant. Gear condition did not significantly affect heart rate and stroke cycle frequency. Conclusions: Geared manual wheelchair propulsion was significantly more energy-demanding, but less intense (easier) under the low-gear condition than the standard-gear condition. Using geared wheels may be beneficial for manual wheelchair users to independently accomplish strenuous propulsion tasks during typical activities of daily living, such as propulsion on carpeted floor. However, the small sample size and inclusion of only male participants limit the generalizability of these findings, and future studies with larger and more diverse cohorts are warranted.
Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study
by
Đorđe Brašanac, Marko Kapeleti, Igor Zlatović, Miloš Ubović and Vladimir Mrdaković
Biomechanics 2025, 5(4), 79; https://doi.org/10.3390/biomechanics5040079 - 5 Oct 2025
Abstract
Background: Previous research has identified center of mass vertical oscillation and leg stiffness as the most common variables differentiating Natural and Groucho running techniques. The aim was to assess the inter-session reliability and inter-technique sensitivity of synchronized inertial measurement units and contact grids
[...] Read more.
Background: Previous research has identified center of mass vertical oscillation and leg stiffness as the most common variables differentiating Natural and Groucho running techniques. The aim was to assess the inter-session reliability and inter-technique sensitivity of synchronized inertial measurement units and contact grids in quantifying kinematic and kinetic differences between Natural and Groucho running techniques. Methods: Eleven physically active and healthy males ran at a speed 50% higher than transition speed. Two sessions for Natural and two for Groucho running were performed, each lasting 1 min. Results: Most variables exhibited a similar inter-session reliability across running techniques, except contact time and center of mass vertical displacement, ranging from moderate to good (ICC = 0.538–0.897). A statistically significant difference between running techniques was found for all variables (p < 0.05), except for contact time and center of mass vertical oscillation (p > 0.05), likely due to inconsistency in reliability depending on the running technique, which may have covered the underlying differences. Conclusions: We can conclude that the combination of synchronized inertial measurement units and contact grids showed potentially acceptable reliability and sufficient sensitivity to recognize and differentiate between Natural and Groucho running techniques. The results may contribute to a broader understanding of the differences between these two running techniques and encourage the increased use of these devices within therapeutic, recreational, and sports running contexts.
Full article
(This article belongs to the Special Issue Inertial Sensor Assessment of Human Movement)
►▼
Show Figures

Figure 1
Open AccessArticle
External Load in Elite Youth Soccer Players According to Age Category and Playing Position in Official International Matches
by
Jorge Pérez-Contreras, Rodrigo Villaseca-Vicuña, Esteban Aedo-Muñoz, Felipe Inostroza-Ríos, Ciro José Brito, Alejandro Bustamante-Garrido, Guillermo Cortés-Roco, Juan Francisco Loro-Ferrer and Pablo Merino-Muñoz
Biomechanics 2025, 5(4), 78; https://doi.org/10.3390/biomechanics5040078 - 5 Oct 2025
Abstract
Background/Objectives: To compare the external load (EL) of elite youth soccer players during official international matches between age categories and playing positions. Methods: The sample consisted of 42 elite youth soccer players categorized by age categories, U-15, U-17 and U-20 and playing
[...] Read more.
Background/Objectives: To compare the external load (EL) of elite youth soccer players during official international matches between age categories and playing positions. Methods: The sample consisted of 42 elite youth soccer players categorized by age categories, U-15, U-17 and U-20 and playing positions: central defender (CD); fullback (FB); midfielder (MF); wide attacker (WA) and striker (ST). The Vector X7 (Catapult Sports) device was used for collecting the following EL variables: total distance traveled (TD), player load (PL) and distance traveled per velocity band 0 to 7 km/h (D7); 7 to 13 km/h (D13); 13 to 19 km/h (D19); 19 to 23 km/h (D23) and >23 km/h (HSR). Linear mixed-effect models were applied to analyze the differences. Results: Large differences were found between positions (p < 0.01) in TD (η2p = 0.48), PL (η2p = 0.30), D19 (η2p = 0.44), D23 (η2p = 0.68) and HSR (η2p = 0.53). Large differences were found according to category between U-15 and U-17 in TD (p = 0.006 and η2p = 0.25) and D13 (p = 0.003 and η2p = 0.27). Large interaction effects were found in DT (p = 0.014 and η2p = 0.44) and D23 (p = 0.002 and η2p = 0.51). Conclusions: This study concludes that there are differences in EL in official matches in elite youth players between age categories and playing position. These differences can be applied in practice to design individualized training by playing position and to monitor EL during microcycles.
Full article
(This article belongs to the Section Sports Biomechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Morphology and Knee Joint Kinetics in National Football League Draft Prep Players: Implications for Osteoarthritis Development
by
Monique Mokha, Jack Stensland, Andrew Schafer and Sean McBride
Biomechanics 2025, 5(4), 77; https://doi.org/10.3390/biomechanics5040077 - 4 Oct 2025
Abstract
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee
[...] Read more.
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee joint reaction forces (JRFcomp), peak knee adductor moments (KAM), and vertical ground reaction forces (vGRF) in NFL draft-eligible players during a high-speed run. Methods: A total of 125 participants ran a single trial at 5.5–6.5 m/s for 5 s on an instrumented treadmill. Bilateral vGRF and knee joint kinetics were calculated using inverse dynamics. Body composition was assessed using bioelectrical impedance. Results: LBM demonstrated significant moderate associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.60, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.20, p = 0.026; right, r(123) = −0.30, p < 0.001) and JRFcomp (left, r(123) = −0.39, p = 0.020; right, r(123) = −0.38, p = 0.015), respectively. TBM showed significant moderate negative associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.61, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.21, p = 0.021; right, r(123) = −0.28, p = 0.002) and JRFcomp (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.37, p < 0.001), respectively. BF% showed significant low-to-negligible negative associations with JRFcomp (left, r(123) = −0.21, p < 0.001; right, r(123) = −0.22, p < 0.001) and vGRF (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.41, p < 0.001), respectively, and no significant associations with KAM, p > 0.05. The heavier group exhibited significantly lower normalized JRFcomp, and vGRF, p < 0.05. Conclusions: Heavier, but not fatter, players attenuate knee loads. Dampening may be a short-term protective strategy for joints of heavier players.
Full article
(This article belongs to the Section Gait and Posture Biomechanics)
►▼
Show Figures

Figure 1
Open AccessReview
Advances in Computational Modeling of Scaffolds for Bone Tissue Engineering: A Narrative Review of the Current Approaches and Challenges
by
Ourania Ntousi, Maria Roumpi, Panagiotis K. Siogkas, Demosthenes Polyzos, Ioannis Kakkos, George K. Matsopoulos and Dimitrios I. Fotiadis
Biomechanics 2025, 5(4), 76; https://doi.org/10.3390/biomechanics5040076 - 2 Oct 2025
Abstract
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold
[...] Read more.
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold which, in time, will degrade, leaving just the regenerated tissue. The fabrication of tissue scaffolds requires adapting the properties of the scaffolds to mimic, to a large extent, the specific characteristics of each type of bone tissue. However, there are some significant limitations due to the constrained scaffolds’ architecture and structural features that inhibit the optimization of bone scaffolds. Methods: To overcome these shortcomings, new computational approaches for scaffold design have been adopted through currently adopted computational methods such as finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI). Results: This paper presents a narrative review of the state of the art in the field of parametric numerical modeling and computational fluid dynamics geometry-based models used in bone tissue engineering. Computational methods for scaffold design improve the process of constructing scaffolds and contribute to tissue engineering. Conclusions: This paper highlights the benefits of computational methods on employing scaffolds with different architectures and inherent characteristics that can potentially contribute to a favorable environment for hosting cells and predict their behavior and response. By recognizing these benefits, researchers can enhance and optimize scaffold properties for future advancements in tissue engineering research that will lead to more accurate and robust outcomes.
Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Integrating Wearable Resistance into Regular Volleyball Training on Countermovement Jump Performance and Kinematics During the In-Season Period
by
Milosz Mielniczek, Patrick Lunde and Roland van den Tillaar
Biomechanics 2025, 5(4), 75; https://doi.org/10.3390/biomechanics5040075 - 1 Oct 2025
Abstract
Background/Objectives: This study aimed to examine the effects of an eight-week wearable resistance (WR) training program on jump performance and jump kinematics in experienced senior female volleyball players. It was hypothesised that using WR would increase training load, thereby enhancing vertical jump
[...] Read more.
Background/Objectives: This study aimed to examine the effects of an eight-week wearable resistance (WR) training program on jump performance and jump kinematics in experienced senior female volleyball players. It was hypothesised that using WR would increase training load, thereby enhancing vertical jump performance and influencing kinematic movement patterns. Methods: Sixteen competitive female volleyball players (mean age: 23.5 ± 3.24 years; mean weight: 66.8 ± 6.9 kg; mean height: 174.7 ± 5.8 cm) participated in the study. Participants were randomly assigned to either a control group (n = 8) or an intervention group (n = 8) that trained with calf-mounted WR. The intervention group performed supervised resistance training sessions twice per week for eight weeks, totalling 16 sessions. Jump performance was assessed using an Infrared Optical Contact Grid (MuscleLab, Ergotest Innovation AS, Norway), and jump kinematics were measured with the Xsens Link motion capture system (Movella, The Netherlands). Results: The WR group demonstrated a statistically significant improvement in vertical jump height (p = 0.031), with no significant changes in kinematic variables. The control group, however, showed a significant increase in T8–pelvis flexion during the countermovement jump (CMJ) following the intervention period. Conclusions: Eight weeks of WR training can improve CMJ performance in-season among experienced female volleyball players without affecting movement kinematics. Future research should investigate optimal loading strategies and long-term adaptations. These findings suggest that integrating small wearable loads into regular volleyball practice can help athletes maintain and improve explosive performance without disrupting normal training routines.
Full article
(This article belongs to the Section Sports Biomechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Biomechanical Profile of Portuguese High-Level Female Handball Players
by
Manoel Rios, Ricardo J. Fernandes, Ricardo Cardoso, Pedro Fonseca, João Paulo Vilas-Boas and José António Silva
Biomechanics 2025, 5(4), 74; https://doi.org/10.3390/biomechanics5040074 - 1 Oct 2025
Abstract
Background/Objectives: This study aimed to investigate the anthropometric characteristics, motor performance, and isokinetic strength profiles of elite Portuguese female handball players, as well as to examine the relationships among these variables. Methods: Sixteen national-team female handball players with an average age of 20.25
[...] Read more.
Background/Objectives: This study aimed to investigate the anthropometric characteristics, motor performance, and isokinetic strength profiles of elite Portuguese female handball players, as well as to examine the relationships among these variables. Methods: Sixteen national-team female handball players with an average age of 20.25 ± 0.45 years, height of 171.13 ± 8.13 cm and body mass of 72.24 ± 10.96 kg volunteered. Evaluations were conducted in two sessions within one week (24–48 h apart). The first comprised anthropometric and motor performance tests, while the second focused on isokinetic strength assessments of the upper and lower limbs. Pearson correlations assessed variable associations (p < 0.05). Results: Direct correlations were found between height and arm span (r = 0.910) and between internal rotation total work and internal rotation average power (r = 0.960). The 9 m jump throw was associated with the 7 m standing throw (r = 0.670). External rotation peak torque correlated with squat jump performance (r = 0.540) and the 7 m standing throw (r = 0.760) and 9 m jump throw (r = 0.568). Internal rotation peak torque associated with squat jump performance (r = 0.674) and the 7 m standing throw (r = 0.550). Knee extension peak torque correlated with squat jump performance (r = 0.650), while knee extension total work was strongly associated with external rotation total work (r = 0.870). Knee flexion total work was associated with knee flexion peak torque (r = 0.910). Conclusions: The integrated analysis of anthropometric, motor and isokinetic variables revealed distinct strength–performance associations in female handball players, highlighting the role of upper- and lower-limb muscle function in jumping and throwing.
Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Jogging with a Hydration Pack on Ground Reaction Forces
by
Jason Wicke, Jordan L. Cola and Hannah Panzarella
Biomechanics 2025, 5(4), 73; https://doi.org/10.3390/biomechanics5040073 - 26 Sep 2025
Abstract
Background/Objectives: Long-distance running often requires athletes to carry their own hydration. Both the velocity of the runner and the load will affect the ground reaction forces (GRFs). Furthermore, carrying a liquid mass may have different outcomes on GRF compared to carrying a solid
[...] Read more.
Background/Objectives: Long-distance running often requires athletes to carry their own hydration. Both the velocity of the runner and the load will affect the ground reaction forces (GRFs). Furthermore, carrying a liquid mass may have different outcomes on GRF compared to carrying a solid mass. This effect may in turn potentially result in a greater risk of injury. The goal of this study was to examine the GRF while jogging with different quantities of water in a hydration pack. It was expected that GRF measures would change with increased hydration pack weight. Methods: Twenty college-aged participants were asked to run over a force plate with an empty hydration pack and packs (0.71 kg) filled with 0.5 litres (1.21 kg), 1.5 litres (1.71 kg), and 2.5 litres (3.21 kg) of water. Results: No significant differences (p > 0.05) in the vertical, lateral, or forward–back measures were found between the different loads. These outcomes may be a result of the dampening effect the movement of the water may have on gait. Conclusions: It is believed that the benefit of having hydration readily available via a hydration pack will outweigh any potential for injury due to the added weight being carried.
Full article
(This article belongs to the Section Sports Biomechanics)
►▼
Show Figures

Figure 1
Open AccessBrief Report
Lower Extremity Muscle Activity During Walking with Blood Flow Restriction and Body Weight Support
by
Cyanea Davies, Alina P. Swafford, Tedd Girouard, Keoni Kins and John A. Mercer
Biomechanics 2025, 5(4), 72; https://doi.org/10.3390/biomechanics5040072 - 25 Sep 2025
Abstract
Body weight support (BWS) reduces joint loading but also lowers muscle activation during walking, while blood flow restriction (BFR) increases muscle activation and metabolic stress during low-intensity exercise. Although both interventions are used in rehabilitation settings, their combined effects on neuromuscular responses during
[...] Read more.
Body weight support (BWS) reduces joint loading but also lowers muscle activation during walking, while blood flow restriction (BFR) increases muscle activation and metabolic stress during low-intensity exercise. Although both interventions are used in rehabilitation settings, their combined effects on neuromuscular responses during locomotion have not been studied. The purpose of this study was to determine whether muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), gastrocnemius (GA), and stride frequency (SF) were influenced by an interaction between BWS and BFR. Methods: Seven healthy participants (three men and four women; 23.7 ± 3.0 years; 171.3 ± 6.9 cm; 64.4 ± 4.94 kg) completed four walking conditions at 0% and 50% BWS with and without 80% occlusion pressure of BFR at a self-selected speed. Electromyography (EMG) was recorded for 30s during each condition. Results: EMG was not influenced by interaction between BWS and BFR for RF (p = 0.761), BF (p = 0.845), TA (p = 0.684), GA (p = 0.129), or SF (p = 0.345). Furthermore, RF (p = 0.479), BF (p = 0.639), TA (p = 0.684), GA (p = 0.404), and SF (p = 0.161) were influenced by the main effect of BFR. RF (p = 0.102), BF (p = 0.675), TA (p = 0.900), and SF (p = 0.740) were influenced by the main effect of BWS. However, GA was influenced by BWS regardless of BFR (p = 0.039). Conclusions: The combination of an acute application of BFR and BWS did not influence lower extremity muscle activity when walking at a self-selected pace. Further research is needed to continue to explore the neuromuscular responses to the combination of BFR and BWS under varying levels of BFR application, BWS, and walking speeds.
Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Unilateral Swing Leg Resistance on Propulsion and Other Gait Characteristics During Treadmill Walking in Able-Bodied Individuals
by
Sylvana Minkes-Weiland, Han Houdijk, Heleen A. Reinders-Messelink, Luc H. V. van der Woude, Paul P. Hartman and Rob den Otter
Biomechanics 2025, 5(4), 71; https://doi.org/10.3390/biomechanics5040071 - 23 Sep 2025
Abstract
Background/Objectives: Swing leg resistance may stimulate propulsive force, required for forward progression and leg swing, in post-stroke patients. To assess the potential of swing leg resistance in rehabilitation, more knowledge is needed on how this unilateral manipulation affects gait. Therefore, we explored
[...] Read more.
Background/Objectives: Swing leg resistance may stimulate propulsive force, required for forward progression and leg swing, in post-stroke patients. To assess the potential of swing leg resistance in rehabilitation, more knowledge is needed on how this unilateral manipulation affects gait. Therefore, we explored the bilateral effects of a unilateral swing leg resistance on muscle activity, kinematics, and kinetics of gait in able-bodied individuals. Methods: Fourteen able-bodied participants (8 female, aged 20.7 ± 0.8 years, BMI 23.5 ± 1.9) walked on an instrumented treadmill at 0.28 m/s, 0.56 m/s, and 0.83 m/s with and without unilateral swing leg resistance provided by a weight (0 kg, 0.5 kg, 1.25 kg, and 2 kg) attached to the leg through a pulley system. Propulsion and braking forces, swing time, step length, transverse ground reaction torques, and muscle activity in the gluteus medius (GM), biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), medial gastrocnemius (MG), and soleus (SOL) were compared between conditions. Statistical analyses were performed using repeated measures ANOVAs, with a significance level of 5%. Results: Peak propulsive force and propulsive duration increased bilaterally, while peak braking force decreased bilaterally with unilateral swing leg resistance. In addition, the swing time of the perturbed leg increased with swing leg resistance. Muscle activity in the perturbed leg (GM, BF, RF, VM, MG) and the unperturbed leg (GM, BF, VM, MG, SOL) increased. Only in the BF (perturbed leg, late swing) and MG (unperturbed leg, early stance) did the muscle activity decrease with swing leg resistance. No adaptations in step length and transverse ground reaction torques were observed. Specific effects were enhanced by gait speed. Conclusions: Unilateral swing leg resistance can evoke effects that might stimulate the training of propulsion. A study in post-stroke patients should be conducted to test whether prolonged exposure to unilateral swing leg resistance leads to functional training effects.
Full article
(This article belongs to the Section Gait and Posture Biomechanics)
►▼
Show Figures

Figure 1
Open AccessArticle
Achieving Competitive Excellence in Taekwondo: The Relationship Between Unloaded Countermovement Jump Kinetic Variables and Sport-Specific Motor Tasks
by
Alex Ojeda-Aravena, Rafael Lima Kons, Eduardo Báez-San Martín, Jairo Azócar-Gallardo and Xurxo Dopico-Calvo
Biomechanics 2025, 5(3), 70; https://doi.org/10.3390/biomechanics5030070 - 12 Sep 2025
Abstract
Background. In taekwondo (TKD), high-intensity actions—particularly kicks and rapid changes of direction—are key determinants of sport-specific performance. Kinetic vari-ables derived from unloaded countermovement jumps (CMJs) are employed as proxies of neuromuscular efficiency. However, most studies have examined the link between CMJ outputs and
[...] Read more.
Background. In taekwondo (TKD), high-intensity actions—particularly kicks and rapid changes of direction—are key determinants of sport-specific performance. Kinetic vari-ables derived from unloaded countermovement jumps (CMJs) are employed as proxies of neuromuscular efficiency. However, most studies have examined the link between CMJ outputs and TKD using jump height alone in sport-specific tasks. Objective. To determine the associations between unloaded CMJ-derived kinetic variables and sport-specific performance, identifying key determinants of repeated high-intensity kicking capacity and change-of-direction ability. Methods. Fifteen national-team athletes (nine men, six women; 18–27 years) completed unloaded CMJ testing (Day 1) and, after 48 h, the Taekwondo-Specific Agility Test (TSAT) and the Multiple Frequency Speed of Kick Test (FSKTMULT) (Day 2). Results. For FSKTMULT, jump height (r = 0.545–0.746), take-off velocity (r = 0.548–0.799), and mean power (r = 0.602–0.799) were positively correlated with the number of kicks across all sets (p = 0.001–0.044). Stepwise regression identified mean power as the sole significant predictor, explaining 32–46% of the variance across sets. For TSAT, time correlated negatively with mean power (r = −0.678, p = 0.008), mean force (r = −0.536, p = 0.048), and RFD (0–30%) (r = −0.655, p = 0.011). Mean power and mid-propulsion impulse (30–60%) jointly explained 72.8% of the variance in TSAT time (R2 = 0.728, p < 0.001). Conclusions. Unloaded CMJ mean power and mid-propulsion impulse (30–60%) emerge as proxies of neuromuscular efficiency linked to sport-specific perfor-mance, supporting their use for athlete monitoring and targeted training.
Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse
by
Liam J. Houlton, Jeremy A. Moody, Theodoros M. Bampouras and Joseph I. Esformes
Biomechanics 2025, 5(3), 69; https://doi.org/10.3390/biomechanics5030069 - 6 Sep 2025
Abstract
Background: Cluster sets (CSs) maintain velocity and power in compound movements by employing similar propulsion strategies or maintaining impulse through different mechanisms. This study aimed to explore the effect of four CS conditions on back squat (BS) propulsion and provide models for estimating
[...] Read more.
Background: Cluster sets (CSs) maintain velocity and power in compound movements by employing similar propulsion strategies or maintaining impulse through different mechanisms. This study aimed to explore the effect of four CS conditions on back squat (BS) propulsion and provide models for estimating changes in propulsion based on repetition and set number. Methods: Twenty male participants (age = 28.3 ± 3.1 years, stature = 1.74 ± 8.21 m, body mass = 84.80 ± 7.80 kg, BS 1RM = 140.90 ± 24.20 kg) completed four data collection sessions. Each session consisted of three sets of five repetitions at 80% 1RM BS with three minutes of unloaded inter-set rest, using varying intra-set rest intervals. Experimental conditions included 0 s (TRAD), 10 s (CS10), 20 s (CS20), and 30 s (CS30) inter-repetition rest, randomly assigned to sessions in a counterbalanced order. Ground reaction force data were collected on dual force platforms sampling at 1000 Hz, from which net propulsive impulse (JPROP), mean force (MF), and propulsion time (tPROP) were calculated. Conditions and sets were analysed using a 4 × 3 (CONDITION*SET) repeated-measures ANOVA to assess differences between conditions and sets, and linear mixed models (LMMs) were used to provide regression equations for each dependent variable in each condition. Results: The ANOVA revealed no significant interactions for any dependent variable. No main effects of CONDITION or SET were observed for JPROP. The main effects of CONDITION showed that MF was significantly lower in TRAD than CS20 (g = 0.757) and CS30 (g = 0.749). tPROP was significantly higher in TRAD than CS20 (g = 0.437) and CS30 (g = 0.569). The main effects of SET showed that MF was significantly lower in S2 (g = 0.691) and S3 (g = 1.087) compared to S1. tPROP was significantly higher in S2 (g = 0.866) and S3 (g = 1.179) compared to S1. LMMs for CS20 and CS30 revealed no significant effect (p > 0.05) between repetition or set number and dependent variables. Conclusions: The results suggest that CS20 and CS30 maintain JPROP by limiting MF and tPROP attenuation. This is less rest than that suggested by the previous literature, which may influence programming decisions during strength and power mesocycles to maximise training time and training density. LMMs provide accurate estimates of BS propulsive force attenuation when separating repetitions by up to 30 s, which may help practitioners optimise training load for long-term adaptations.
Full article
(This article belongs to the Topic The Mechanics of Movement: Biomechanics in Sports Performance)
Open AccessArticle
Three-Dimensional Electrogoniometry Device and Methods for Measuring and Characterizing Knee Mobility and Multi Directional Instability During Gait
by
Jose I. Sanchez, Mauricio Plaza and Nicolas Echeverria
Biomechanics 2025, 5(3), 68; https://doi.org/10.3390/biomechanics5030068 - 2 Sep 2025
Abstract
Background/Objectives: this study describes the development of a novel three-dimensional electrogoniometer for the quantitative assessment of knee mobility and stability during gait. The primary objective is to determine whether real-time measurements obtained during dynamic activity provide more clinically relevant information than traditional static
[...] Read more.
Background/Objectives: this study describes the development of a novel three-dimensional electrogoniometer for the quantitative assessment of knee mobility and stability during gait. The primary objective is to determine whether real-time measurements obtained during dynamic activity provide more clinically relevant information than traditional static assessments. Methods: the device employs angular position encoders to capture knee joint kinematics—specifically flexion, extension, rotation, and tibial translation—during locomotion. Data are transmitted in real time to an Android-based application, enabling immediate graphical visualization. A descriptive observational study was conducted involving healthy participants and individuals with anterior cruciate ligament (ACL) injuries to evaluate the device’s performance. Results: results showed that the electrogoniometer captured knee flexion-extension with a range of up to 90°, compared to 45° typically recorded using conventional systems. The device also demonstrated enhanced sensitivity in detecting variations in tibial translation during gait cycles. Conclusions: this electrogoniometer provides a practical tool for clinical assessment of knee function, enabling real-time monitoring of joint behavior during gait. By capturing functional mobility and stability more accurately than static methods, it may enhance diagnostic precision and support more effective rehabilitation planning in orthopedic settings.
Full article
(This article belongs to the Section Gait and Posture Biomechanics)
►▼
Show Figures

Figure 1
Open AccessBrief Report
Do Outcome or Movement Strategy Variables Provide Better Insights into Asymmetries During Multiple-Hops?
by
Anthony Sharp, Jonathon Neville, Ryu Nagahara, Tomohito Wada and John Cronin
Biomechanics 2025, 5(3), 67; https://doi.org/10.3390/biomechanics5030067 - 2 Sep 2025
Cited by 1
Abstract
Multiple-hops performed horizontally in series effectively assess return-to-play readiness, as they mimic the propulsive and decelerative demands of sports. Movement strategy variables (kinetic variables) offer more insight into injury recovery than outcome-based measures (kinematic variables) like hop distance alone. This study focused on
[...] Read more.
Multiple-hops performed horizontally in series effectively assess return-to-play readiness, as they mimic the propulsive and decelerative demands of sports. Movement strategy variables (kinetic variables) offer more insight into injury recovery than outcome-based measures (kinematic variables) like hop distance alone. This study focused on kinematic and kinetic variables to assess asymmetries during triple-hop (3-Hop) and quintuple-hop (5-Hop) tests with 44 male athletes from university sports clubs and teams. The aim was to determine the magnitude and potential direction of asymmetry and compare the sensitivity of kinematic and kinetic variables. Results showed mean kinematic asymmetries below 7.1% (range: 0.00 to 28.9%), while average kinetic asymmetries were as high as 38.8% (range: 0.0% to 95.4%). These findings suggest that kinetic variables are more sensitive in assessing movement strategy, providing more detailed insight into rehabilitation and return-to-play decisions. The study emphasizes the importance of considering both outcome and movement strategy variables in injury recovery. These results have practical applications for clinicians and coaches supporting those in return-to-play scenarios, as well as those addressing performance deficits, therefore offering valuable information to refine exercise prescriptions and athletic program design.
Full article
(This article belongs to the Topic The Mechanics of Movement: Biomechanics in Sports Performance)
►▼
Show Figures

Figure 1
Open AccessBrief Report
Increased Hip-Flexion Gait as an Exercise Modality for the Reduction of Knee Joint Contact Forces: A Preliminary Investigation
by
Tanner Thorsen and Nuno Oliveira
Biomechanics 2025, 5(3), 66; https://doi.org/10.3390/biomechanics5030066 - 2 Sep 2025
Abstract
Background: Increased hip-flexion gait (HFgait) has been shown to promote increased aerobic demands by increasing peak swing-phase hip-flexion angles while walking at comfortable speeds. Biomechanically, HFgait produces a gait pattern similar to walking, while removing the flight phase from running and reducing
[...] Read more.
Background: Increased hip-flexion gait (HFgait) has been shown to promote increased aerobic demands by increasing peak swing-phase hip-flexion angles while walking at comfortable speeds. Biomechanically, HFgait produces a gait pattern similar to walking, while removing the flight phase from running and reducing tibial accelerations. We sought to identify knee joint contact forces between HFgait and common exercise modalities, including running, walking, and cycling, across intensity levels. Methods: Ten healthy participants completed two bouts (low and high intensity) of four different exercises: treadmill running, walking, HFgait, and cycling. Tibiofemoral joint compressive force (TCF) was estimated using a static optimization-based approach. Results: Peak TCF was greater in running compared to HFgait, walking, and cycling; greater in HFgait compared to cycling; and greater in walking compared to cycling. The integral of TCF (iTCF) was greater in running compared to cycling, greater in HFgait compared to running, walking, and cycling, and greater in walking compared to running and cycling. Conclusions: HFgait produced lower knee joint loading than running, comparable joint loading to walking, and greater joint loading than cycling. Thus, HFgait may serve as an exercise modality for populations where joint loading is of particular concern, while achieving aerobic demands similar to running or increased functional demands compared to stationary cycling.
Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals: Second Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Gait Analysis in Multiple Sclerosis: A Scoping Review of Advanced Technologies for Adaptive Rehabilitation and Health Promotion
by
Anna Tsiakiri, Spyridon Plakias, Georgios Giarmatzis, Georgia Tsakni, Foteini Christidi, Marianna Papadopoulou, Daphne Bakalidou, Konstantinos Vadikolias, Nikolaos Aggelousis and Pinelopi Vlotinou
Biomechanics 2025, 5(3), 65; https://doi.org/10.3390/biomechanics5030065 - 2 Sep 2025
Abstract
Background/Objectives: Multiple sclerosis (MS) often leads to gait impairments, even in early stages, and can affect autonomy and quality of life. Traditional assessment methods, while widely used, have been criticized because they lack sensitivity to subtle gait changes. This scoping review aims
[...] Read more.
Background/Objectives: Multiple sclerosis (MS) often leads to gait impairments, even in early stages, and can affect autonomy and quality of life. Traditional assessment methods, while widely used, have been criticized because they lack sensitivity to subtle gait changes. This scoping review aims to map the landscape of advanced gait analysis technologies—both wearable and non-wearable—and evaluate their application in detecting, characterizing, and monitoring possible gait dysfunction in individuals with MS. Methods: A systematic search was conducted across PubMed and Scopus databases for peer-reviewed studies published in the last decade. Inclusion criteria focused on original human research using technological tools for gait assessment in individuals with MS. Data from 113 eligible studies were extracted and categorized based on gait parameters, technologies used, study design, and clinical relevance. Results: Findings highlight a growing integration of advanced technologies such as inertial measurement units, 3D motion capture, pressure insoles, and smartphone-based tools. Studies primarily focused on spatiotemporal parameters, joint kinematics, gait variability, and coordination, with many reporting strong correlations to MS subtype, disability level, fatigue, fall risk, and cognitive load. Real-world and dual-task assessments emerged as key methodologies for detecting subtle motor and cognitive-motor impairments. Digital gait biomarkers, such as stride regularity, asymmetry, and dynamic stability demonstrated high potential for early detection and monitoring. Conclusions: Advanced gait analysis technologies can provide a multidimensional, sensitive, and ecologically valid approach to evaluating and detecting motor function in MS. Their clinical integration supports personalized rehabilitation, early diagnosis, and long-term disease monitoring. Future research should focus on standardizing metrics, validating digital biomarkers, and leveraging AI-driven analytics for real-time, patient-centered care.
Full article
(This article belongs to the Section Gait and Posture Biomechanics)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomechanics, Healthcare, IJERPH, Nutrients, Sports, Sensors, Muscles, Foods
Endurance and Ultra-Endurance: Implications of Training, Recovery, Nutrition, and Technology on Performance and Health
Topic Editors: Nicolas Berger, Russ BestDeadline: 31 December 2025
Topic in
Biomechanics, JFMK, Sports
Concurrent Strength and Endurance Training
Topic Editors: Alejandro Pérez-Castilla, Manuel A. Rodríguez PérezDeadline: 28 February 2026
Topic in
Biomechanics, JFMK, Sensors, Sports
Current Perspectives and Future Directions in Sports Biomechanics
Topic Editors: Pedro Forte, Rafael Peixoto, Luís BranquinhoDeadline: 25 May 2026
Topic in
Biology, Brain Sciences, Sports, Biomechanics, JFMK, Physiologia
The Mechanics of Movement: Biomechanics in Sports Performance
Topic Editors: Mario Bernardo-Filho, Danúbia Da Cunha De Sá-Caputo, Redha TaiarDeadline: 31 July 2026
Conferences
Special Issues
Special Issue in
Biomechanics
Biomechanics in Sport and Ageing: Artificial Intelligence
Guest Editors: Tibor Hortobágyi, Melissa Boswell, Ka-Chun (Joseph) SiuDeadline: 20 December 2025
Special Issue in
Biomechanics
Computational Modeling and AI Applications in Injury Biomechanics and Rehabilitation
Guest Editors: Sujata Khandare, Fan GaoDeadline: 25 January 2026
Special Issue in
Biomechanics
Gait and Balance Control in Typical and Special Individuals: Second Edition
Guest Editor: Luis TeixeiraDeadline: 25 March 2026
Special Issue in
Biomechanics
Cutting-Edge Biomechanics: Unlocking the Future of Biomedical Engineering
Guest Editor: Ye ZengDeadline: 30 April 2026
Topical Collections
Topical Collection in
Biomechanics
Locomotion Biomechanics and Motor Control
Collection Editor: Ka-Chun (Joseph) Siu



