Intersegmental Coordination Patterns During Heel Rise: Effects of Knee Position and Movement Phases
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Heel-Rise Performance
3.2. Intersegmental Coordination Between Shank Rotation in the Horizontal Plane and Hindfoot Rotation in the Frontal Plane (Figure 1)
3.2.1. Ascending Phase
- Early period
- Middle period
- Late Period
3.2.2. Descending Phase
- Early period
- Middle period
- Late period

3.3. Intersegmental Coordination Between Hindfoot and Forefoot in the Sagittal Plane (Figure 2)
3.3.1. Ascending Phase
- Early period
- Middle period
- Late period
3.3.2. Descending Phase
3.4. Intersegmental Coordination Between Hindfoot and Forefoot in the Frontal Plane
3.4.1. Ascending Phase
- Early period
- Middle period


- Late period
3.4.2. Descending Phase
- Early and middle periods
- Late period
4. Discussion
4.1. Effect of Movement Phase and Periods on Intersegmental Coordination
4.2. Effect of Knee Joint Configurations on Intersegmental Coordination
4.3. Limitations
4.4. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CI | Confidence Interval |
| ANOVA | Analysis of Variance |
| DD | Distal Dominance |
| PD | Proximal Dominance |
| FPI | Foot Posture Index |
References
- Alfredson, H.; Pietilä, T.; Jonsson, P.; Lorentzon, R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am. J. Sports Med. 1998, 26, 360–366. [Google Scholar] [CrossRef]
- Flanagan, S.P.; Song, J.-E.; Wang, M.-Y.; Greendale, G.A.; Azen, S.P.; Salem, G.J. Biomechanics of the heel-raise exercise. J. Aging Phys. Act. 2005, 13, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Losier, K.; Schneiders, A.G.; García, J.A.; Sullivan, S.J.; Simoneau, G.G. Influence of knee flexion angle and age on triceps surae muscle activity during heel raises. J. Strength Cond. Res. 2012, 26, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- Madeley, L.T.; Munteanu, S.E.; Bonanno, D.R. Endurance of the ankle joint plantar flexor muscles in athletes with medial tibial stress syndrome: A case-control study. J. Sci. Med. Sport 2007, 10, 356–362. [Google Scholar] [CrossRef]
- Richardson, J.K.; Sandman, D.; Vela, S. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch. Phys. Med. Rehabil. 2001, 82, 205–209. [Google Scholar] [CrossRef]
- Lee, S.M.; Cynn, H.S.; Yoon, T.L.; Lee, J.H. Effects of different heel-raise-lower exercise interventions on the strength of plantarflexion, balance, and gait parameters in stroke survivors. Physiother. Theory Pract. 2017, 33, 706–715. [Google Scholar] [CrossRef]
- Phan, C.B.; Shin, G.; Lee, K.M.; Koo, S. Skeletal kinematics of the midtarsal joint during walking: Midtarsal joint locking revisited. J. Biomech. 2019, 95, 109287. [Google Scholar] [CrossRef]
- Wang, C.; Geng, X.; Wang, S.; Ma, X.; Wang, X.; Huang, J.; Zhang, C.; Chen, M.L.; Yang, J.; Wang, K. In vivo kinematic study of the tarsal joints complex based on fluoroscopic 3D–2D registration technique. Gait Posture 2016, 49, 54–60. [Google Scholar] [CrossRef]
- Farris, D.J.; Birch, J.; Kelly, L. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism. J. R. Soc. Interface 2020, 17, 20200208. [Google Scholar] [CrossRef]
- Sichting, F.; Ebrecht, F. The rise of the longitudinal arch when sitting, standing, and walking: Contributions of the windlass mechanism. PLoS ONE 2021, 16, e0249965. [Google Scholar] [CrossRef]
- Williams, L.R.; Ridge, S.T.; Johnson, A.W.; Arch, E.S.; Bruening, D.A. The influence of the windlass mechanism on kinematic and kinetic foot joint coupling. J. Foot Ankle Res. 2022, 15, 16. [Google Scholar] [CrossRef]
- Khamis, S.; Yizhar, Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007, 25, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Fourchet, F.; Girard, O.; Kelly, L.; Horobeanu, C.; Millet, G.P. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J. Sci. Med. Sport 2015, 18, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Tourillon, R.; Gojanovic, B.; Fourchet, F. How to Evaluate and Improve Foot Strength in Athletes: An Update. Front. Sports Act. Living 2019, 1, 46. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, R.L.; Tome, J.; Hillin, C.D.; Flemister, A.S.; Houck, J. Adult-acquired flatfoot deformity and age-related differences in foot and ankle kinematics during the single-limb heel-rise test. J. Orthop. Sports Phys. Ther. 2014, 44, 283–290. [Google Scholar] [CrossRef]
- Krautwurst, B.K.; Wolf, S.I.; Dreher, T. Three-dimensional evaluation of heel raise test in pediatric planovalgus feet and normal feet. Gait Posture 2016, 48, 146–151. [Google Scholar] [CrossRef]
- Leardini, A.; Benedetti, M.; Berti, L.; Bettinelli, D.; Nativo, R.; Giannini, S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 2007, 25, 453–462. [Google Scholar] [CrossRef]
- Pohl, M.B.; Messenger, N.; Buckley, J.G. Forefoot, rearfoot and shank coupling: Effect of variations in speed and mode of gait. Gait Posture 2007, 25, 295–302. [Google Scholar] [CrossRef]
- Seo, S.G.; Lee, D.Y.; Moon, H.J.; Kim, S.J.; Kim, J.; Lee, K.M.; Chung, C.Y.; Choi, I.H. Repeatability of a multi-segment foot model with a 15-marker set in healthy adults. J. Foot Ankle Res. 2014, 7, 24. [Google Scholar] [CrossRef]
- Cook, J.L.; Purdam, C.R. The challenge of managing tendinopathy in competing athletes. Br. J. Sports Med. 2014, 48, 506–509. [Google Scholar] [CrossRef]
- Docking, S.I.; Cook, J. How do tendons adapt? Going beyond tissue responses to understand positive adaptation and pathology development: A narrative review. J. Musculoskelet. Neuronal Interact. 2019, 19, 300–310. [Google Scholar]
- Redmond, A.C.; Crane, Y.Z.; Menz, H.B. Normative values for the Foot Posture Index. J. Foot Ankle Res. 2008, 1, 6. [Google Scholar] [CrossRef]
- Takabayashi, T.; Edama, M.; Inai, T.; Kubo, M. Shank and rearfoot coordination and its variability during running in flatfoot. J. Biomech. 2021, 115, 110119. [Google Scholar] [CrossRef] [PubMed]
- Houck, J.R.; Neville, C.G.; Tome, J.; Flemister, A. Foot kinematics during a bilateral heel rise test in participants with stage II posterior tibial tendon dysfunction. J. Orthop. Sports Phys. Ther. 2009, 39, 593–603. [Google Scholar] [CrossRef]
- Saltzman, C.L.; Nawoczenski, D.A.; Talbot, K.D. Measurement of the medial longitudinal arch. Arch. Phys. Med. Rehabil. 1995, 76, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, J.; Harrington, M.; Thompson, N.; Zavatsky, A.; Theologis, T. Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 2006, 23, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Needham, R.A.; Naemi, R.; Hamill, J.; Chockalingam, N. Analysing patterns of coordination and patterns of control using novel data visualisation techniques in vector coding. Foot 2020, 44, 101678. [Google Scholar] [CrossRef]
- Hunt, A.E.; Smith, R.M.; Torode, M.; Keenan, A.-M. Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin. Biomech. 2001, 16, 592–600. [Google Scholar] [CrossRef]
- Pohl, M.B.; Buckley, J.G. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin. Biomech. 2008, 23, 334–341. [Google Scholar] [CrossRef]
- Edama, M.; Takabayashi, T.; Inai, T.; Kikumoto, T.; Ito, W.; Nakamura, E.; Hirabayashi, R.; Ikezu, M.; Kaneko, F.; Kageyama, I. Differences in the strain applied to Achilles tendon fibers when the subtalar joint is overpronated: A simulation study. Surg. Radiol. Anat. 2019, 41, 595–599. [Google Scholar] [CrossRef]
- Sara, L.K.; Gutsch, S.B.; Hunter, S.K. The single-leg heel raise does not predict maximal plantar flexion strength in healthy males and females. PLoS ONE 2021, 16, e0253276. [Google Scholar] [CrossRef]
- Ugbolue, U.C.; Yates, E.L.; Ferguson, K.; Wearing, S.C.; Gu, Y.; Lam, W.-K.; Baker, J.S.; Dutheil, F.; Sculthorpe, N.F.; Dias, T. Electromyographic Assessment of the Lower Leg Muscles during Concentric and Eccentric Phases of Standing Heel Raise. Healthcare 2021, 9, 465. [Google Scholar] [CrossRef]
- DiLiberto, F.E.; Nawoczenski, D.A. Ankle and Midfoot Power During Single-Limb Heel Rise in Healthy Adults. J. Appl. Biomech. 2020, 36, 52–55. [Google Scholar] [CrossRef]
| Variable | Value |
|---|---|
| Age (years) | 21.0 (0) |
| Height (cm) | 165.7 (10.3) |
| Body weight (kg) | 56.1 (8.8) |
| BMI (kg/m2) | 20.4 (1.9) |
| Dominant leg (R:L) | 11:1 |
| Sex (male–female) | 6:6 |
| Foot length (cm) | 24.4 (2.0) |
| Truncated foot length (cm) | 19.3 (1.7) |
| Normalized arch height (%) | 17.2 (2.8) |
| Extended | Flexed | p Value a | Effect Size (95%CI b) | ||
|---|---|---|---|---|---|
| Knee | Ext(−) Flex(+) | −0.3 (6.8) | 35.5 (17.9) | <0.001 *** | −2.25 (−44.81, −26.79) |
| Shank | IR(−) ER(+) | −3.4 (19.9) | −7.1 (19.6) | 0.585 | 0.16 (−9.22, 16.65) |
| Hindfoot | PF(−) DF(+) | 11.3 (3.8) | 19.5 (6.7) | <0.001 *** | −1.37 (−11.65, −4.84) |
| Ever(−) Inver(+) | −5.9 (6.1) | −7.5 (9.7) | 0.639 | 0.14 (−4.79, 7.92) | |
| Forefoot | PF(−) DF(+) | −1.1 (8.5) | 6.0 (11.4) | 0.092 | −0.53 (−14.74, 0.44) |
| Ever(−) Inver(+) | 1.9 (4.7) | 1.3 (5.1) | 0.763 | 0.09 (−3.13, 4.30) | |
| Hallux | Flex(−) Ext(+) | −33.8 (20.2) | −33.5 (20.6) | 0.970 | −0.01 (−13.99, 13.45) |
| Extended | Flexed | p Value a | F b | Partial η2 (95%CI c) | ||
|---|---|---|---|---|---|---|
| Displacement | ||||||
| Pelvis, cm | Upward | 6.3 (1.5) | 5.2 (2.0) | 0.804 | 0.065 | 0.01 (0.01, 0.33) |
| Anterior | 4.3 (1.1) | 4.1 (1.0) | 0.187 | 2.005 | 0.17 (0.01, 0.60) | |
| Knee, cm | Anterior | 4.3 (1.1) | 5.6 (2.8) | 0.465 | 0.576 | 0.05 (0.01, 0.59) |
| Heel, cm | Upward | 10.5 (2.0) | 11.4 (2.6) | 0.725 | 0.131 | 0.01 (0.01, 0.59) |
| Normalized heel height, % | Upward | 54.5 (9.2) | 59.1 (12.7) | 0.614 | 0.225 | 0.03 (0.01, 0.67) |
| Ascending Phase | Descending Phase | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Extended | Flexed | p Value a | F c | Partial η2 (95%CI d) | Extended | Flexed | p Value a | F c | Partial η2 (95%CI d) | |||
| Shank | horizontal | Early | 1.4 (0.9) | 1.7 (1.1) | 0.969 | 0.002 | 0 (0, 0.44) | 0.7 (0.5) | 0.8 (0.8) | 0.402 | 0.765 | 0.07 (0, 0.63) |
| Middle | 1.8 (1.2) | 2.3 (1.6) | 0.134 | 2.658 | 0.21 (0, 0.61) | 1.7 (1.5) | 1.6 (1.4) | 0.591 | 0.308 | 0.03 (0, 0.44) | ||
| Late | 1.0 (0.8) | 1.2 (1.0) | 0.291 | 1.241 | 0.11 (0, 0.58) | 2.6 (1.2) | 3.3 (1.6) | 0.452 | 0.613 | 0.06 (0, 0.48) | ||
| p value b | 0.055 | 0.043 * | <0.001 *** | <0.001 *** | ||||||||
| Hindfoot | sagittal | Early | 1.9 (1.2) | 2.4 (1.6) | 0.657 | 0.209 | 0.02 (0, 0.25) | 2.8 (1.4) | 2.8 (1.7) | 0.096 | 3.372 | 0.25 (0.01, 0.62) |
| Middle | 9.8 (2.9) | 10.5 (3.4) | 0.177 | 0.183 | 0.02 (0, 0.28) | 8.3 (2.6) | 8.6 (3.3) | 0.437 | 0.657 | 0.06 (0, 0.47) | ||
| Late | 4.8 (2.4) | 4.8 (1.5) | 0.682 | 0.178 | 0.02 (0, 0.36) | 4.7 (3.2) | 6.0 (3.0) | 0.032 * | 6.407 | 0.42 (0.02, 0.96) | ||
| p value b | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||||||||
| frontal | Early | 1.1 (1.0) | 1.3 (1.3) | 0.789 | 0.075 | 0.01 (0, 0.459) | 1.0 (1.2) | 1.1 (1.2) | 0.908 | 0.014 | 0 (0, 0.30) | |
| Middle | 4.2 (3.9) | 4.0 (3.7) | 0.563 | 0.358 | 0.03 (0, 0.26) | 3.6 (3.3) | 3.1 (3.0) | 0.986 | 0 | 0 (0, 0.59) | ||
| Late | 2.2 (2.1) | 1.7 (1.5) | 0.844 | 0.041 | 0 (0, 0.49) | 2.9 (2.1) | 2.4 (2.3) | 0.908 | 0.014 | 0 (0, 0.30) | ||
| p value b | 0.002 ** | <0.001 *** | <0.001 *** | 0.003 ** | ||||||||
| Forefoot | sagittal | Early | 1.5 (0.9) | 1.2 (0.8) | 0.751 | 0.109 | 0.01 (0, 0.46) | 2.4 (1.7) | 2.9 (2.4) | 0.553 | 0.378 | 0.04 (0, 0.37) |
| Middle | 6.9 (3.1) | 6.6 (4.3) | 0.121 | 2.864 | 0.22 (0, 0.60) | 6.8 (2.9) | 6.3 (3.7) | 0.145 | 2.496 | 0.20 (0.01, 0.57) | ||
| Late | 5.3 (2.1) | 5.0 (2.4) | 0.469 | 0.566 | 0.05 (0, 0.41) | 3.8 (2.1) | 2.5 (1.6) | 0.263 | 1.401 | 0.12 (0, 0.53) | ||
| p value b | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||||||||
| frontal | Early | 0.9 (0.7) | 1.0 (0.5) | 0.303 | 1.180 | 0.11 (0, 0.56) | 0.9 (0.6) | 1.0 (0.9) | 0.818 | 0.056 | 0.01 (0, 0.36) | |
| Middle | 3.9 (2.2) | 2.7 (1.8) | 0.762 | 0.097 | 0.01 (0, 0.47) | 4.0 (2.0) | 2.6 (1.7) | 0.553 | 0.377 | 0.04 (0, 0.45) | ||
| Late | 2.9 (1.6) | 1.8 (0.9) | 0.422 | 0.701 | 0.07 (0, 0.41) | 1.5 (1.5) | 0.9 (0.6) | 0.491 | 0.512 | 0.05 (0, 0.22) | ||
| p value b | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||||||||
| Hallux | sagittal | Early | 1.4 (0.8) | 1.3 (0.7) | 0.866 | 0.030 | 0 (0, 0.44) | 1.5 (1.3) | 2.0 (1.8) | 0.586 | 0.317 | 0.03 (0, 0.67) |
| Middle | 3.1 (1.8) | 4.5 (3.3) | 0.983 | 0 | 0 (0, 0.55) | 2.1 (1.5) | 4.1 (3.3) | 0.636 | 0.238 | 0.02 (0, 0.61) | ||
| Late | 1.7 (0.6) | 2.3 (1.7) | 0.893 | 0.019 | 0 (0, 0.50) | 1.8 (1.1) | 1.7 (1.1) | 0.301 | 1.191 | 0.11 (0, 0.50) | ||
| p value b | 0.007 ** | <0.001 *** | 0.461 | 0.003 ** | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, Y.; Tayama, A.; Iizuka, T.; Tomita, Y. Intersegmental Coordination Patterns During Heel Rise: Effects of Knee Position and Movement Phases. Biomechanics 2025, 5, 87. https://doi.org/10.3390/biomechanics5040087
Abe Y, Tayama A, Iizuka T, Tomita Y. Intersegmental Coordination Patterns During Heel Rise: Effects of Knee Position and Movement Phases. Biomechanics. 2025; 5(4):87. https://doi.org/10.3390/biomechanics5040087
Chicago/Turabian StyleAbe, Yota, Aimi Tayama, Tomoki Iizuka, and Yosuke Tomita. 2025. "Intersegmental Coordination Patterns During Heel Rise: Effects of Knee Position and Movement Phases" Biomechanics 5, no. 4: 87. https://doi.org/10.3390/biomechanics5040087
APA StyleAbe, Y., Tayama, A., Iizuka, T., & Tomita, Y. (2025). Intersegmental Coordination Patterns During Heel Rise: Effects of Knee Position and Movement Phases. Biomechanics, 5(4), 87. https://doi.org/10.3390/biomechanics5040087

