Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review
Abstract
:1. Introduction
2. Terrestrial Edible Cyanobacteria: Nostoc spp., Aphanothece sacrum, and Nostochopsis lobatus
2.1. Distribution
2.2. Life Cycle and Reproduction
2.3. Culture Conditions and Large-Scale Culture
Cyanobacterium | Optimal Conditions | References |
---|---|---|
Nostoc flagelliforme | pH: 8.0–9.5 Temperature: 25–30 °C Light: 60 µmol photons m−2 s−1 Medium: BG-11 Fed-batch cultivation | [20,55,56] |
Nostoc commune | pH: 3–10 Temperature: 20–33 °C Light: High intensity post-rehydration Medium: BG-11 or fertilizer-based | [22,24,58] |
Nostoc sphaeroides | pH: 7.0–7.5 Temperature: 25 °C Light: 90 µmol photons m−2 s−1 (white light) Medium: Nitrogen-free BG-11 | [27,47,59] |
Nostoc sphaericum | pH: 6.5–7.0 Temperature: 22–30 °C Light: 28–30 µmol photons m−2 s−1 Medium: Nitrogen-free BG-11 | [49,60,61] |
Nostoc verrucosum | pH: 7.5 Temperature: 13–18 °C Light: 2–4 µmol photons m−2 s−1 Medium: Modified nitrogen-free BG-11 supplemented with biotin, thiamine, and cyanocobalamin | [30,31,50] |
Aphanothece sacrum | Temperature: approximately 20 °C Light: 40–80 µmol photons m−2 s−1 Medium: AST or AST-5xNP (synthetic) | [14,34,39] |
Nostochopsis lobatus | pH: 7.5–7.8 Temperature: 20–30 °C Light: 80–300 µmol photons m−2 s−1 Medium: Nitrogen-free BG-11 with supplements | [41,45,63] |
2.4. Food Consumption History and Potential Uses
2.5. Risks, Challenges, and Considerations for Sustainable Utilization
3. The Potential of Cyanobacteria in Climate Change Adaptation and Food Security
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboal, M.; Werner, O.; García-Fernández, M.E.; Palazón, J.A.; Cristóbal, J.C.; Williams, W. Should ecomorphs be conserved? The case of Nostoc flagelliforme, an endangered extremophile cyanobacteria. J. Nat. Conserv. 2016, 30, 52–64. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Winter, A.; Sherman, C.E.; Trotter, J.A. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nat. Clim. Change 2024, 14, 171–177. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef]
- Rodrigues Dias, R.; Deprá, M.C.; Ragagnin de Menezes, C.; Queiroz Zepka, L.; Jacob-Lopes, E. The high-value product, bio-waste, and eco-friendly energy as the tripod of the microalgae biorefinery: Connecting the dots. Sustainability 2023, 15, 11494. [Google Scholar] [CrossRef]
- Naka, A.; Kurahashi, M. Impact of salinity fluctuations on Dunaliella salina biomass production. Appl. Biosci. 2024, 3, 213–219. [Google Scholar] [CrossRef]
- Gul, S.; Shahnaz, L.; Raiz, S.; Nawaz, M.F. Microalgae: Production, consumption and challenges. In Algae as a Natural Solution for Challenges in Water-Food-Energy Nexus: Toward Carbon Neutrality; Springer: Singapore, 2024; pp. 31–59. [Google Scholar]
- Lu, Z.; Beal, C.M.; Johnson, Z.I. Comparative performance and technoeconomic analyses of two microalgae harvesting systems evaluated at a commercially relevant scale. Algal Res. 2022, 64, 102667. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Kiong, T.S.; Jathar, L.; Ghazali, N.N.N.; Ramesh, S.; Awasarmol, U.; Ong, H.C. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. Chemosphere 2024, 353, 141540. [Google Scholar] [CrossRef]
- de Paula Pereira, A.S.A.; Silva, T.A.; Magalhães, I.B.; Ferreira, J.; Braga, M.Q.; Lorentz, J.F.; Assemany, P.P.; do Couto, E.d.A.; Calijuri, M.L. Biocompounds from wastewater-grown microalgae: A review of emerging cultivation and harvesting technologies. Sci. Total Environ. 2024, 920, 170918. [Google Scholar] [CrossRef]
- Takenaka, H.; Yamaguchi, Y. Commercial-scale culturing of cyanobacteria: An industrial experience. In Cyanobacteria: An Economic Perspective; Wiley: Hoboken, NJ, USA, 2014; pp. 293–301. [Google Scholar]
- Baweja, P.; Sahoo, D. Classification of algae. In The Algae World; Springer: Dordrecht, The Netherlands, 2015; pp. 31–55. [Google Scholar]
- Dodds, W.K.; Gudder, D.A.; Mollenhauer, D. The ecology of Nostoc. J. Phycol. 1995, 31, 2–18. [Google Scholar] [CrossRef]
- Yu, H.; Jia, S.; Dai, Y. Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J. Appl. Phycol. 2009, 21, 127–133. [Google Scholar] [CrossRef]
- Ohki, K.; Kanesaki, Y.; Suzuki, N.; Okajima, M.; Kaneko, T.; Yoshikawa, S. Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori). J. Gen. Appl. Microbiol. 2019, 65, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.; Paulsen, B.S.; Klaveness, D. Studies on polysaccharides from three edible species of Nostoc (Cyanobacteria) with different colony morphologies: Comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J. Phycol. 1998, 34, 962–968. [Google Scholar] [CrossRef]
- Gantar, M.; Svirčev, Z. Microalgae and cyanobacteria: Food for thought. J. Phycol. 2008, 44, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Mateo, P.; Perona, E.; Berrendero, E.; Leganés, F.; Martín, M.; Golubić, S. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol. Ecol. 2011, 76, 185–198. [Google Scholar] [CrossRef]
- Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. J. Appl. Phycol. 1998, 10, 37–49. [Google Scholar] [CrossRef]
- Gao, X.; Ai, Y.; Qiu, B. Drought adaptation of a terrestrial macroscopic cyanobacterium, Nostoc flagelliforme, in arid areas: A review. Afr. J. Microbiol. Res. 2012, 6, 5728. [Google Scholar]
- Gao, K.; Ye, C. Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae), under aquatic conditions. J. Phycol. 2003, 39, 617–623. [Google Scholar] [CrossRef]
- Liang, W.; Zhou, Y.; Wang, L.; You, X.; Zhang, Y.; Cheng, C.-L.; Chen, W. Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration. J. Proteom. 2012, 75, 5604–5627. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Jespersen, T.S. Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (−269 to 105 °C), pH and salt stress. Oecologia 2012, 169, 331–339. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Liu, Y.; Wang, X.; Zhang, H.; Shang, R.; Laba, C.; Wujin, C.; Hao, B.; Wang, S. Structural characteristic of polysaccharide isolated from Nostoc commune, and their potential as radical scavenging and antidiabetic activities. Sci. Rep. 2022, 12, 22155. [Google Scholar] [CrossRef]
- Tamaru, Y.; Takani, Y.; Yoshida, T.; Sakamoto, T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 2005, 71, 7327–7333. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Lu, J.; Wang, Z.; Li, D. The influence of soil and water physicochemical properties on the distribution of Nostoc sphaeroides (Cyanophyceae) in paddy fields and biochemical comparison with indoor cultured biomass. J. Appl. Phycol. 2013, 25, 1737–1745. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, Q.; Lu, F.; Liu, G.; Hu, Z. Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta). Prog. Nat. Sci. 2008, 18, 1475–1483. [Google Scholar] [CrossRef]
- Ma, R.; Lu, F.; Bi, Y.; Hu, Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnol. Lett. 2015, 37, 1663–1669. [Google Scholar] [CrossRef]
- Méndez-Ancca, S.; Pepe-Victoriano, R.; Gonzales, H.H.S.; Zambrano-Cabanillas, A.W.; Marín-Machuca, O.; Rojas, J.C.Z.; Maquera, M.M.; Huanca, R.F.; Aguilera, J.G.; Zuffo, A.M. Physicochemical evaluation of cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the region of Moquegua for food purposes. Foods 2023, 12, 1939. [Google Scholar] [CrossRef]
- Pérez-Lloréns, J.L. Microalgae: From staple foodstuff to avant-garde cuisine. Int. J. Gastron. Food Sci. 2020, 21, 100221. [Google Scholar] [CrossRef]
- Oku, N.; Yonejima, K.; Sugawa, T.; Igarashi, Y. Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum. Biosci. Biotechnol. Biochem. 2014, 78, 1147–1150. [Google Scholar] [CrossRef]
- Inoue-Sakamoto, K.; Nazifi, E.; Tsuji, C.; Asano, T.; Nishiuchi, T.; Matsugo, S.; Ishihara, K.; Kanesaki, Y.; Yoshikawa, H.; Sakamoto, T. Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum. J. Gen. Appl. Microbiol. 2018, 64, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Hiraga, Y.; Yamaguchi, Y.; Sakaki, S.; Takenaka, H. Anti-melanogenic and anti-oxidative effects of Nostoc verrucosum (ashitsuki) extracts. Cosmetics 2023, 10, 30. [Google Scholar] [CrossRef]
- Mollenhauer, D.; Bengtsson, R.; Lindstrøm, E.-A. Macroscopic cyanobacteria of the genus Nostoc: A neglected and endangered constituent of European inland aquatic biodiversity. Eur. J. Phycol. 1999, 34, 349–360. [Google Scholar] [CrossRef]
- Fujishiro, T.; Ogawa, T.; Matsuoka, M.; Nagahama, K.; Takeshima, Y.; Hagiwara, H. Establishment of a pure culture of the hitherto uncultured unicellular cyanobacterium Aphanothece sacrum, and phylogenetic position of the organism. Appl. Environ. Microbiol. 2004, 70, 3338–3345. [Google Scholar] [CrossRef] [PubMed]
- Okajima-Kaneko, M.; Ono, M.; Kabata, K.; Kaneko, T. Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure Appl. Chem. 2007, 79, 2039–2046. [Google Scholar] [CrossRef]
- Komárek, J.; Kaštovský, J.; Jezberová, J. Phylogenetic and taxonomic delimitation of the cyanobacterial genus Aphanothece and description of Anathece gen. nov. Eur. J. Phycol. 2011, 46, 315–326. [Google Scholar] [CrossRef]
- Kumar, J.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. UV-B induces biomass production and nonenzymatic antioxidant compounds in three cyanobacteria. J. Appl. Phycol. 2016, 28, 131–140. [Google Scholar] [CrossRef]
- Oku, N.; Matsumoto, M.; Yonejima, K.; Tansei, K.; Igarashi, Y. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum. Beilstein J. Org. Chem. 2014, 10, 1808–1816. [Google Scholar] [CrossRef]
- Matsuda, S.; Sugawa, H.; Shirakawa, J.-I.; Ohno, R.-I.; Kinoshita, S.; Ichimaru, K.; Arakawa, S.; Nagai, M.; Kabata, K.; Nagai, R. Aphanothece sacrum (Sur.) Okada prevents cataractogenesis in type 1 diabetic mice. J. Nutr. Sci. Vitaminol. 2017, 63, 263–268. [Google Scholar] [CrossRef]
- Moreno, J.L.; Aboal, M.; Monteagudo, L. On the presence of Nostochopsis lobata Wood ex Bornet et Flahault in Spain: Morphological, ecological and biogeographical aspects. Nova Hedwig. 2012, 95, 373–390. [Google Scholar] [CrossRef]
- Tiwari, D. The heterocysts of the blue-green alga Nostochopsis lobatus: Effects of cultural conditions. New Phytol. 1978, 81, 653–656. [Google Scholar] [CrossRef]
- Peerapornpisal, Y.; Amornledpison, D.; Rujjanawate, C.; Ruangrit, K.; Kanjanapothi, D. Two endemic species of macroalgae in Nan river, northern Thailand, as therapeutic agents. Sci. Asia 2006, 32 (Suppl. S1), 71–76. [Google Scholar] [CrossRef]
- Thiamdao, S.; Motham, M.; Pekkoh, J.; Mungmai, L.; Peerapornpisal, Y. Nostochopsis lobatus Wood em. Geitler (Nostocales), edible algae in northern Thailand. Chiang Mai J. Sci 2012, 39, 119–127. [Google Scholar]
- Oku, N.; Hayashi, S.; Yamaguchi, Y.; Takenaka, H.; Igarashi, Y. Nostochopcerol, a new antibacterial monoacylglycerol from the edible cyanobacterium Nostochopsis lobatus. Beilstein J. Org. Chem. 2023, 19, 133–138. [Google Scholar] [CrossRef]
- Pandey, U.; Pandey, J. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus. Bioresour. Technol. 2008, 99, 4520–4523. [Google Scholar] [CrossRef] [PubMed]
- Skinner, S.; Entwisle, T.J. Non-marine algae of Australia: 1. Survey of colonial gelatinous blue-green macroalgae (Cyanobacteria). Telopea 2001, 9, 573–599. [Google Scholar] [CrossRef]
- Li, D.; Xing, W.; Li, G.; Liu, Y. Cytochemical changes in the developmental process of Nostoc sphaeroides (cyanobacterium). J. Appl. Phycol. 2009, 21, 119–125. [Google Scholar] [CrossRef]
- Li, H.; Su, L.; Chen, S.; Zhao, L.; Wang, H.; Ding, F.; Chen, H.; Shi, R.; Wang, Y.; Huang, Z. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules 2018, 23, 508. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Absalón, I.; Tavera, R. Life cycle of Nostoc sphaericum (Nostocales, Cyanoprokaryota) in tropical wetlands. Nova Hedwig. 2009, 88, 117–128. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kumihashi, K.; Kunita, S.; Masaura, T.; Inoue-Sakamoto, K.; Yamaguchi, M. The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation. FEMS Microbiol. Ecol. 2011, 77, 385–394. [Google Scholar] [CrossRef]
- Agrawal, S. Some chemical and biological properties of culture filtrate of Nostochopsis lobatus. Folia Microbiol. 1994, 39, 133–136. [Google Scholar] [CrossRef]
- Diao, Y.; Yang, Z. Evaluation of morphological variation and biomass growth of Nostoc commune under laboratory conditions. J. Environ. Biol. 2014, 35, 485–489. [Google Scholar]
- Wolf, E.; Schübler, A. Phycobiliprotein fluorescence of Nostoc punctiforme changes during the life cycle and chromatic adaptation: Characterization by spectral confocal laser scanning microscopy and spectral unmixing. Plant Cell Environ. 2005, 28, 480–491. [Google Scholar] [CrossRef]
- Augusto, A.P. Algas: Toda Una Vida; Universidad Cesar Vallejo: Trujillo, Peru, 2016. (In Spanish) [Google Scholar]
- Tan, N.; Jia, S.R.; Han, P.P.; Guo, W.; Dai, Y.J. The open culture of Nostoc flagelliforme with a 25 L open pond. Adv. Mater. Res. 2012, 554, 1009–1012. [Google Scholar] [CrossRef]
- Shen, S.-G.; Jia, S.-R.; Wu, Y.-K.; Yan, R.-R.; Lin, Y.-H.; Zhao, D.-X.; Han, P.-P. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohydr. Polym. 2018, 198, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Møller, C.L.; Vangsøe, M.T.; Sand-Jensen, K. Comparative growth and metabolism of gelatinous colonies of three cyanobacteria, Nostoc commune, Nostoc pruniforme and Nostoc zetterstedtii, at different temperatures. Freshw. Biol. 2014, 59, 2183–2193. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Román, J.; Gómez-Serrano, C.; Cantón, Y.; Acién, F. Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J. Appl. Phycol. 2019, 31, 2217–2230. [Google Scholar] [CrossRef]
- Hao, Z.; Li, D.; Li, Y.; Wang, Z.; Xiao, Y.; Wang, G.; Liu, Y.; Hu, C.; Liu, Q. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS. Adv. Space Res. 2011, 48, 1565–1571. [Google Scholar] [CrossRef]
- Ishihara, K.; Watanabe, R.; Uchida, H.; Suzuki, T.; Yamashita, M.; Takenaka, H.; Nazifi, E.; Matsugo, S.; Yamaba, M.; Sakamoto, T. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light. J. Photochem. Photobiol. B Biol. 2017, 172, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Choque-Quispe, D.; Ligarda-Samanez, C.A.; Choque-Quispe, Y.; Froehner, S.; Solano-Reynoso, A.M.; Moscoso-Moscoso, E.; Carhuarupay-Molleda, Y.F.; Peréz-Salcedo, R. Stability in aqueous solution of a new spray-dried hydrocolloid of high Andean algae Nostoc sphaericum. Polymers 2024, 16, 537. [Google Scholar] [CrossRef]
- Herbas-De la Cruz, R.K.; Choque-Quispe, Y.; Choque-Quispe, D.; Ligarda-Samanez, C.A.; Froehner, S.; Buleje-Campos, D.; Ramos-Pacheco, B.S.; Peralta-Guevara, D.E.; Pérez-Salcedo, R.; Yauris-Silvera, C.R. Flocculant capacity of hydrocolloid extracted from high Andean algae (Nostoc sphaericum) in the treatment of artificial wastewater: An approach. Case Stud. Chem. Environ. Eng. 2023, 8, 100515. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Koketsu, M. Isolation and analysis of polysaccharide showing high hyaluronidase inhibitory activity in Nostochopsis lobatus MAC0804NAN. J. Biosci. Bioeng. 2016, 121, 345–348. [Google Scholar] [CrossRef]
- Li, Z.; Guo, M. Healthy efficacy of Nostoc commune Vaucher. Oncotarget 2018, 9, 14669–14679. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Liu, Y.; Ai, S.; Qin, F.; Li, Z.; Zhang, H.; Huang, Z. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydr. Polym. 2011, 83, 1821–1827. [Google Scholar] [CrossRef]
- Johnson, H.E.; King, S.R.; Banack, S.A.; Webster, C.; Callanaupa, W.J.; Cox, P.A. Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J. Ethnopharmacol. 2008, 118, 159–165. [Google Scholar] [CrossRef]
- Seguil Mirones, C.G.; Mendoza Falcon, Z.K.; Casimiro Soriano, E.M. Evaluation of edible film formulations of Nostoc sphaericum applied in the preservation of strawberries. Aliment. Cienc. Ing. 2020, 27, 79–93. [Google Scholar] [CrossRef]
- Motoyama, K.; Tanida, Y.; Hata, K.; Hayashi, T.; Hashim, I.I.A.; Higashi, T.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Kaneko, S. Anti-inflammatory effects of novel polysaccharide sacran extracted from cyanobacterium Aphanothece sacrum in various inflammatory animal models. Biol. Pharm. Bull. 2016, 39, 1172–1178. [Google Scholar] [CrossRef]
- Okeyoshi, K.; Okajima, M.K.; Kaneko, T. The cyanobacterial polysaccharide sacran: Characteristics, structures, and preparation of LC gels. Polym. J. 2021, 53, 81–91. [Google Scholar] [CrossRef]
- Okajima, M.K.; Sornkamnerd, S.; Kaneko, T. Development of functional bionanocomposites using cyanobacterial polysaccharides. Chem. Rec. 2018, 18, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, E.; Yabuta, Y.; Takenaka, S.; Yamaguchi, Y.; Takenaka, H.; Watanabe, F. Characterization of corrinoid compounds from edible cyanobacterium Nostochopsis sp. J. Nutr. Sci. Vitaminol. 2012, 58, 50–53. [Google Scholar] [CrossRef]
- Takenaka, H.; Yamaguchi, Y.; Sakaki, S.; Watarai, K.; Tanaka, N.; Hori, M.; Seki, H.; Tsuchida, M.; Yamada, A.; Nishimori, T. Safety evaluation of Nostoc flagelliforme (Nostocales, Cyanophyceae) as a potential food. Food Chem. Toxicol. 1998, 36, 1073–1077. [Google Scholar] [CrossRef]
- Nunez, J.; Mendoza, A. Fatty acids composition and nutritional effect in rats of cushuro (Nostoc sphaericum vaucher). Pharmacologyonline 2006, 3, 676–682. [Google Scholar]
- Sand-Jensen, K. Ecophysiology of gelatinous Nostoc colonies: Unprecedented slow growth and survival in resource-poor and harsh environments. Ann. Bot. 2014, 114, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Jia, S.; Qiao, C.; Hong, W.-H.; Cho, K.-A. Cultivation of Nostoc flagelliforme on solid medium. Korean J. Environ. Biol. 2005, 23, 135–140. [Google Scholar]
Cyanobacterium | Habitat | Key Features | References |
---|---|---|---|
Nostoc flagelliforme | Arid and semi-arid regions, Loess Plateau (China), deserts, saline environments | Forms macroscopic colonies, tolerates droughts, high evaporation rates | [1,18,21] |
Nostoc commune | Global: polar to tropical regions, nutrient-poor soils, rocks, freshwater surfaces | Withstands extreme temperatures, desiccation cycles, soil stabilization | [22,23,24] |
Nostoc sphaeroides | Mountain paddy fields, Zouma Town (China), nutrient-rich soils | Forms spherical macrocolonies, thrives in winter, vulnerable to herbicides | [25,26,27] |
Nostoc sphaericum | High-altitude regions, Andes (South America), lakes, rivers, wetlands | Forms spherical colonies (10–25 mm), thrives at high altitudes | [28,29] |
Nostoc verrucosum | Cool, clear, shallow streams, Japan, riverbeds | Requires low temperatures, high water clarity, vulnerable to habitat loss | [30,31,32,33] |
Aphanothece sacrum | Clean streams, rivers, Kyushu (Japan), stony substrata | Endemic to Japan, endangered, inhabits oligotrophic, mineral-rich waters | [14,34,35,36,37,38,39] |
Nostochopsis lobatus | Tropical, temperate climates, riverbeds, Nan and Mekong Rivers (Thailand) | Forms gelatinous colonies, thrives in clean/moderately clean water | [40,41,42,43,44,45] |
Cyanobacterium | Region: Traditional Name | Applications | References |
---|---|---|---|
Nostoc flagelliforme | China: “Facai” or hair-like vegetable | Consumed in China for over 2000 years. Functional foods, nutraceuticals, antiviral and antioxidant properties. | [13,18,56] |
Nostoc commune | Peru: “Llullucha” | Consumed for centuries in Asia, particularly in China, and in Peru. Functional food, therapeutic applications, soil restoration, sustainable cultivation. | [23,52,58,64,65,66] |
Nostoc sphaeroides | China: “Ge-Xian-Mi” | Used historically as food and medicine. Pharmaceuticals, cosmetics, Controlled Ecological Life Support Systems (CELSS). | [25,48,59] |
Nostoc sphaericum | Peru: “Cushuro” | Combating anemia and malnutrition, phycogastronomy, food preservation. | [28,60,67] |
Nostoc verrucosum | Japan: “Ashitsuki” | Its cultural importance dates back to the eighth century. Natural antimicrobial agent, antimelanogenic applications, cosmetics. | [30,32] |
Aphanothece sacrum | Japan: “Suizenji-nori” | Culinary uses, anti-inflammatory, bioengineering, therapeutic applications. | [14,34,35,38,39,68,69,70] |
Nostochopsis lobatus | Thailand: “Lon” | Pharmaceuticals, cosmetics, anti-inflammatory and anti-gastric ulcer properties. | [42,43,44,63,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurahashi, M.; Naka, A. Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review. Appl. Biosci. 2025, 4, 26. https://doi.org/10.3390/applbiosci4020026
Kurahashi M, Naka A. Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review. Applied Biosciences. 2025; 4(2):26. https://doi.org/10.3390/applbiosci4020026
Chicago/Turabian StyleKurahashi, Midori, and Angelica Naka. 2025. "Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review" Applied Biosciences 4, no. 2: 26. https://doi.org/10.3390/applbiosci4020026
APA StyleKurahashi, M., & Naka, A. (2025). Edible Terrestrial Cyanobacteria for Food Security in the Context of Climate Change: A Comprehensive Review. Applied Biosciences, 4(2), 26. https://doi.org/10.3390/applbiosci4020026