Previous Issue
Volume 4, June
 
 

Appl. Biosci., Volume 4, Issue 3 (September 2025) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 2291 KiB  
Article
Gamma Irradiation Enhances the In Vitro Biocontrol Potential of Trichoderma Species Against Major Rice Pathogens Rhizoctonia solani and Pyricularia oryzae
by Bang Diep Tran, Huyen Thanh Tran, Dang Sang Hoang, Hong Nhung Tran, Ngoc Khanh Linh Dao, Xuan Vinh Le, Xuan An Tran, Hong Duong Nguyen, Thi Thu Hong Le and Thi Huyen Do
Appl. Biosci. 2025, 4(3), 41; https://doi.org/10.3390/applbiosci4030041 - 20 Aug 2025
Viewed by 240
Abstract
Improving the efficacy of microbial biocontrol agents is a pivotal strategy for sustainable management of rice blast and sheath blight caused by Pyricularia oryzae and Rhizoctonia solani, respectively, in Vietnam. In this study, Trichoderma sp. TVN-A0 and Trichoderma sp. TVN-H0 were irradiated [...] Read more.
Improving the efficacy of microbial biocontrol agents is a pivotal strategy for sustainable management of rice blast and sheath blight caused by Pyricularia oryzae and Rhizoctonia solani, respectively, in Vietnam. In this study, Trichoderma sp. TVN-A0 and Trichoderma sp. TVN-H0 were irradiated by gamma to generate mutants for screening the enhanced antagonistic activity against P. oryzae and R. solani. The potential mutants were screened by antifungal metabolite production via the cellophane membrane assay (ICM), antagonistic performance through dual culture confrontation assays (IDC), volatile organic compound bioassays (IVOCs), and chitinase activity. As a result, among five potential mutants derived from each wild-type strain (AM1-AM5 and HM1-HM5), mutant AM2 originated from TVN-A0, and mutant HM2 derived from TVN-H0 demonstrated the highest inhibition rates and chitinase activities. The AM2 exhibited ICM of 96.71% against R. solani, 92.57% against P. oryzae, IDC of 87.76%, and IVOCs of 83.57%, while HM2 possessed ICM of 95.33% against R. solani, 85.28% against P. oryzae, IDC of 91.24%, and IVOCs of 79.33%. The genetic differences among mutants and their parents were investigated by RAPD. The non-GMO AM2 and HM2 mutants are promising candidates for biocontrol of the diseases caused by P. oryzae and R. solani in Vietnam. Full article
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Viewed by 336
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

14 pages, 4892 KiB  
Article
Comparison of Susceptibility to Microbiological Contamination in FAMEs Synthesized from Residual and Refined Lard During Simulated Storage
by Samuel Lepe-de-Alba, Conrado Garcia-Gonzalez, Fernando A. Solis-Dominguez, Rafael Martínez-Miranda, Mónica Carrillo-Beltrán, José L. Arcos-Vega, Carlos A. Sagaste-Bernal, Armando Pérez-Sánchez, Marcos A. Coronado-Ortega and José R. Ayala-Bautista
Appl. Biosci. 2025, 4(3), 39; https://doi.org/10.3390/applbiosci4030039 - 4 Aug 2025
Viewed by 293
Abstract
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as [...] Read more.
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as fuel supply chain, and to identify the microorganisms developed. The plates were seeded according to ASTM E-1259 and the instructions provided by the manufacturer of the Bushnell Haas agar. Microbiological growth was observed at the FAME–water interface of FAME obtained from residual lard. Using the MALDI-TOF mass spectrometry technique, Pseudomonas aeruginosa and Streptomyces violaceoruber bacteria were identified in the residual lard FAMEs, with the latter being previously reported in FAMEs. The implications of microorganism development on the physicochemical quality of FAMEs are significant, as it leads to an increase in the acid index, which may negatively impact metals by inducing corrosion. The refined lard FAMEs did not show any development of microorganisms. The present research concluded that residual lard tends to be more prone to microbiological attack if the conditions of water and temperature affect microbial growth. The findings will contribute to the knowledge base for a safer introduction of FAMEs into the biofuel matrix. Full article
Show Figures

Figure 1

14 pages, 2030 KiB  
Article
In Vitro Assessment of the Antimicrobial and Antibiofilm Activities of Commercial Toothpastes Against Streptococcus mutans
by Yun Ju Lee and Jeong Nam Kim
Appl. Biosci. 2025, 4(3), 38; https://doi.org/10.3390/applbiosci4030038 - 2 Aug 2025
Viewed by 459
Abstract
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy [...] Read more.
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy of 12 commercially available toothpaste products, including those with specialized functions. Statistical significance was assessed to validate the differences observed among the toothpaste samples. Their effects on Streptococcus mutans, the primary pathogen responsible for dental caries, were evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined, and bacterial growth was measured to compare antimicrobial activities. Toothpaste containing 1000 μg/mL fluoride and whitening toothpaste exhibited the strongest antimicrobial effects, effectively inhibiting S. mutans growth. Additionally, bamboo salt-enriched and tartar-control toothpaste demonstrated inhibitory effects on bacterial growth. Assays to evaluate the ability of cells to form biofilms and the expression of genes involved in biofilm formation revealed a partial correlation between biofilm formation and spaP, gtfB, gtfC, and gtfD expression, although some showed opposite trends. Collectively, this study provides valuable insights into the antimicrobial and biofilm inhibition capabilities of commercial toothpastes against S. mutans, offering a foundation for evaluating the efficacy of functional toothpaste products. Full article
Show Figures

Figure 1

15 pages, 1343 KiB  
Review
Plant Latex Proteases in Hemostasis: Beyond Thrombin-like Activity
by Linesh-Kumar Selvaraja and Siti-Balqis Zulfigar
Appl. Biosci. 2025, 4(3), 37; https://doi.org/10.3390/applbiosci4030037 - 1 Aug 2025
Viewed by 241
Abstract
Plant latex is a rich source of proteolytic enzymes with potential biomedical applications, particularly in hemostasis. Among them, thrombin-like enzymes (TLEs) have garnered interest in their ability to mimic thrombin by catalyzing the conversion of fibrinogen to fibrin, facilitating clot formation. While TLEs [...] Read more.
Plant latex is a rich source of proteolytic enzymes with potential biomedical applications, particularly in hemostasis. Among them, thrombin-like enzymes (TLEs) have garnered interest in their ability to mimic thrombin by catalyzing the conversion of fibrinogen to fibrin, facilitating clot formation. While TLEs from snake venoms have been well-characterized and applied clinically, their plant-derived counterparts remain underexplored. This review critically examines the structural and functional characteristics of TLEs from plant latex, comparing them to animal-derived TLEs and evaluating their role in both procoagulant and fibrinolytic processes. Emphasis is placed on dual fibrinogenolytic and fibrinolytic activities exhibited by latex proteases, which often vary with concentration, incubation time, and protease type. In vitro coagulation assays and electrophoretic analyses are discussed as critical tools for characterizing their multifunctionality. By addressing the knowledge gaps and proposing future directions, this paper positions plant latex proteases as promising candidates for development in localized hemostatic and thrombolytic therapies. Full article
(This article belongs to the Special Issue Plant Natural Compounds: From Discovery to Application (2nd Edition))
Show Figures

Graphical abstract

12 pages, 1374 KiB  
Review
Ethanol-Producing Micro-Organisms of Human Gut: A Biological Phenomenon or a Disease?
by Aladin Abu Issa, Yftach Shoval and Fabio Pace
Appl. Biosci. 2025, 4(3), 36; https://doi.org/10.3390/applbiosci4030036 - 15 Jul 2025
Viewed by 549
Abstract
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, [...] Read more.
The discovery that human beings may endogenously produce ethanol is not new and dates back at the end of the 19th century; recently, however, it has become clear that through the proliferation of gut microorganisms that produce ethanol from sugars or other substrates, blood alcohol level may be greater than 0, despite Homo sapiens sapiens lacking the enzymatic pathways to produce it. Very rarely this can lead to symptoms and/or to a disease, named gut fermentation syndrome or auto-brewery syndrome (ABS). The list of microorganisms (mostly bacteria and fungi) is very long and contains almost 100 different strains, and many metabolic pathways are involved. Endogenous ethanol production is a neglected entity, but it may be suspected in patients in whom ethanol consumption may be firmly excluded. Nevertheless, due to the growing prevalence of NAFLD (now renamed as MAFLD) worldwide, an ethanol-producing microorganism responsible for endogenous ethanol production such as Klebsiella pneumoniae or Saccharomices cerevisiae is increasingly sought in NAFLD patients, or in patients with metabolic diseases such as diabetes mellitus, obesity, or metabolic syndrome, at least in selected instances. In the absence of standard diagnostic and therapeutic guidelines, ABS requires a detailed patient history, including dietary habits, alcohol consumption, and gastrointestinal symptoms, and a comprehensive physical examination to detect unexplained ethanol intoxication. It has been proposed to start the diagnostic protocol with a standardized carbohydrate challenge test, followed, if positive, by the use of antifungal agents or antibiotics; indeed, fecal microbiota transplantation might be the only way to cure a patient with refractory ABS. Scientific societies should produce internationally agreed recommendations for ABS and other conditions linked to excessive endogenous ethanol production. Full article
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
by Lilisbeth Rodríguez-Castro, Adriel M. Sierra, Juan Carlos Villarreal Aguilar and Kristin Saltonstall
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Viewed by 342
Abstract
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during [...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems. Full article
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Bioinformatics Analysis of Unique High-Density Lipoprotein-MicroRNAs Cargo Reveals Its Neurodegenerative Disease Potential
by Diana Marisol Abrego-Guandique, Maria Cristina Caroleo, Filippo Luciani and Erika Cione
Appl. Biosci. 2025, 4(3), 34; https://doi.org/10.3390/applbiosci4030034 - 8 Jul 2025
Viewed by 595
Abstract
Recent findings have identified high-density lipoprotein (HDL) as a carrier of microRNAs, small non-coding RNAs that regulate gene expression, suggesting a potential novel functional and biochemical role for HDL-microRNA cargo. Here, we conduct an in-depth bioinformatics analysis of unique HDL-microRNA cargo to uncover [...] Read more.
Recent findings have identified high-density lipoprotein (HDL) as a carrier of microRNAs, small non-coding RNAs that regulate gene expression, suggesting a potential novel functional and biochemical role for HDL-microRNA cargo. Here, we conduct an in-depth bioinformatics analysis of unique HDL-microRNA cargo to uncover their molecular mechanisms and potential applications as clinical biomarkers. First, using the Gene Expression Omnibus (GEO), we performed computational analysis on public human microRNA array datasets (GSE 25425; platform GPL11162) obtained from highly purified fractions of HDL in human plasma in order to identify their unique miRNA cargo. This led to the identification of eleven miRNAs present only in HDL, herein listed: hsa-miR-210, hsa-miR-26a-1, hsa-miR-628-3p, hsa-miR-31, hsa-miR-501-5p, hsa-miR-100-3p, hsa-miR-571, hsa-miR-100-5p, hsa-miR-23a, hsa-miR-550, and hsa-miR-432. Then, these unique miRNAs present in HDL were analyzed using a bioinformatics approach to recognize their validated target genes. The ClusterProfiler R package applied gene ontology and KEGG enrichment analysis. The key genes mainly enriched in the biological process of cellular regulation were identified and linked to neurodegeneration. Finally, the protein–protein interaction and co-expression network were analyzed using the STRING and GeneMANIA Cytoscape plugins. Full article
Show Figures

Figure 1

14 pages, 1124 KiB  
Article
Evolution of the Genetic Diversity and Spatial Distribution of Self-Establishing Black Locust (Robinia Pseudoacacia L.) Stands
by Sinilga Černulienė, Rita Verbylaitė and Vidas Stakėnas
Appl. Biosci. 2025, 4(3), 33; https://doi.org/10.3390/applbiosci4030033 - 7 Jul 2025
Viewed by 379
Abstract
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization. [...] Read more.
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization. The aim of the study reported on here was to assess the genetic diversity of selected R. pseudoacacia stands in Lithuania in districts with the highest black locust stands frequency and to evaluate its spatial distribution in self-establishing stands. To achieve this aim, we employed four nuclear SSR loci (Rops 02, Rops 05, Rops 06, and Rops 08) and investigated the genetic diversity of five R. pseudoacacia plots. The study results reveal that R. pseudoacacia in Lithuania is genetically diverse (the average allele number per plot was 3.66, and the average Ho was 0.83). R. pseudoacacia in the plots forms tight clonal groups that hardly intermix with each other; it also spreads by seeds (66 single-copy genotypes were found in total in all 5 investigated plots). R. pseudoacacia stands in Lithuania originate from different seed sources and from different introduction events, as revealed by the allelic pattern, genetic diversity, and genetic differentiation among the research plots. Full article
Show Figures

Figure 1

17 pages, 541 KiB  
Article
Multi-Sensor Comparison for Nutritional Diagnosis in Olive Plants: A Machine Learning Approach
by Catarina Manuelito, João de Deus, Miguel Damásio, André Leitão, Luís Alcino Conceição, Rocío Arias-Calderón, Carla Inês, António Manuel Cordeiro, Eduardo Fernandes, Luís Albino, Miguel Barbosa, Filipe Fonseca and José Silvestre
Appl. Biosci. 2025, 4(3), 32; https://doi.org/10.3390/applbiosci4030032 - 2 Jul 2025
Viewed by 341
Abstract
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of [...] Read more.
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of two sensor-based approaches—proximal sensing with a FLAME spectrometer and remote sensing via UAV-mounted multispectral imaging—compared with foliar chemical analyses as the reference standard, for diagnosing the nutritional status of olive trees. The research was conducted in Elvas, Portugal, between 2022 and 2023, across three olive cultivars (‘Azeiteira’, ‘Arbequina’, and ‘Koroneiki’) subjected to different fertilisation regimes. Machine learning (ML) models showed strong correlations between sensor data and nutrient levels: the multispectral sensor performed best for phosphorus (P) (determination coefficient [R2] = 0.75) and potassium (K) (R2 = 0.73), while the FLAME spectrometer was more accurate for nitrogen (N) (R2 = 0.64). These findings underscore the potential of sensor-based technologies for non-destructive, real-time nutrient monitoring, with each sensor offering specific strengths depending on the target nutrient. This work contributes to more sustainable and data-driven fertilisation strategies in precision agriculture. Full article
Show Figures

Figure 1

17 pages, 1668 KiB  
Article
Microencapsulated Jaboticaba Berry (M. cauliflora) Juice Improves Storage Stability and In Vitro Bioaccessibility of Polyphenols
by Tatiana de Muros Amaral Barcellos, Mônica Volino-Souza, Carini Aparecida Lelis, Carlos Adam Conte Junior and Thiago da Silveira Alvares
Appl. Biosci. 2025, 4(3), 31; https://doi.org/10.3390/applbiosci4030031 - 20 Jun 2025
Viewed by 365
Abstract
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility [...] Read more.
Jaboticaba berry is a rich source of polyphenols with bioactive properties. However, polyphenols are known for their high reactivity under environmental conditions, which poses a challenge to producing stable, functional components for the food industry. This study investigated the storage stability and bioaccessibility of polyphenols in microencapsulated jaboticaba juice over 21 days at three storage temperatures: −20 °C, 4 °C, and 25 °C. Additionally, phenolic compounds and antioxidant capacity were evaluated before and after in vitro simulated gastrointestinal digestion. Microencapsulation was performed by spray drying at 160 °C using maltodextrin at different concentrations (10%, 12%, and 15%) as the wall material. The results showed that the stability of polyphenols during storage was significantly influenced by both temperature and the proportion of maltodextrin. Greater degradation of phenolic compounds was observed at 25 °C, particularly in the formulation with 10% maltodextrin. On the other hand, the bioaccessibility of polyphenols was significantly higher in microencapsulated juice after simulated gastrointestinal digestion compared to non-encapsulated jaboticaba juice (p < 0.05). These findings suggest that microencapsulation technique improved the bioaccessibility of phenolic compounds in jaboticaba and promoted better stability with the use of a higher concentration of maltodextrin. In conclusion, microencapsulation is a promising strategy for the development of functional food products enriched with natural bioactive compounds, providing greater protection and efficiency in delivering their health benefits. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop