Previous Issue
Volume 4, March
 
 

Appl. Biosci., Volume 4, Issue 2 (June 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
34 pages, 1183 KiB  
Review
Can Caenorhabditis elegans Serve as a Reliable Model for Drug and Nutraceutical Discovery?
by Opeyemi. O. Deji-Oloruntoba, Taiwo. O. Elufioye, Stephen Adeniyi Adefegha and Miran Jang
Appl. Biosci. 2025, 4(2), 23; https://doi.org/10.3390/applbiosci4020023 - 2 May 2025
Viewed by 74
Abstract
Experimental research demands the selection of appropriate models to align with study objectives and conditions. Traditional experimental models, such as in vivo animal studies and in vitro systems like organoids, present nutraceutical and pharmaceutical research limitations such as high cost, ethical concerns, long [...] Read more.
Experimental research demands the selection of appropriate models to align with study objectives and conditions. Traditional experimental models, such as in vivo animal studies and in vitro systems like organoids, present nutraceutical and pharmaceutical research limitations such as high cost, ethical concerns, long lifespan, and difficult genetic manipulation. Caenorhabditis elegans has proved to be a valuable model as a result of its genetic and physiological similarities to higher organisms, fully sequenced genome, short life cycle, and transparency. These features enable high-throughput screening, molecular pathway analysis, and lifespan and healthspan assays. C. elegans has significantly advanced the discovery of bioactive molecules with therapeutic potential, shedding light on aging, neurodegeneration, metabolic disorders, and immune responses. Its utility in pharmacokinetics and validation of nutraceuticals underscores its role in longevity and metabolic health research. Additionally, its conserved stress response, apoptosis, and pathogen recognition pathways facilitate the study of pharmacological interventions for inflammation, oxidative stress, and infections. This study evaluates the applicability of C. elegans as a model for in vivo screening, analyses its role in drug efficacy testing, and discusses relevant advancements, associated difficulties, and what to expect of C. elegans in research. Full article
Show Figures

Figure 1

17 pages, 5654 KiB  
Article
Maximizing Common Bean (Phaseolus vulgaris L.) Productivity Through Application of Organic and Inorganic Fertilizers in Alkaline Soil
by Safiullah Habibi, Shafiqullah Aryan, Ali Yawar Seerat, Kalimullah Saighani and Mohammad Daud Haidari
Appl. Biosci. 2025, 4(2), 22; https://doi.org/10.3390/applbiosci4020022 - 1 May 2025
Viewed by 111
Abstract
Common beans are a vital source of protein, vitamins, and minerals. Increasing common beans productivity is crucial for improving food security and farmers’ incomes globally. This study evaluated the growth and yield responses of common beans to integrated organic and inorganic fertilizers under [...] Read more.
Common beans are a vital source of protein, vitamins, and minerals. Increasing common beans productivity is crucial for improving food security and farmers’ incomes globally. This study evaluated the growth and yield responses of common beans to integrated organic and inorganic fertilizers under field conditions at the Faculty of Agriculture, Kabul University. The trial was repeated over two consecutive growing seasons in 2020 and 2021, using a randomized complete block design with 18 treatments and three replications. The fertilizers used included urea (N) (0, 60, and 90 kg/ha), diammonium phosphate (D) (0, 50, and 100 kg/ha), and farmyard manure (O) (0 and 5000 kg/ha). The results show that integrated fertilizers, particularly O5000N60D50, O5000N60D100, O5000N90D50, and O5000N90D100, significantly increased growth and yield parameters. In 2020, the grain yield increased significantly (p < 0.05) by 75.6, 76.7, and 68.4% with the O5000N60D50, O5000N60D100, and O5000N90D100 treatments, respectively. In 2021, O5000N60D50, O5000N60D100, and O5000N90D50 showed significant yield increases of 94.7, 89.6, and 97.9%, respectively. The grain yield strongly correlated with the SPAD value (r = 0.84), number of pods per plant (r = 0.71), and number of seeds per pod (r = 0.66) in 2020, and it more strongly correlated with the SPAD value (r = 0.91), number of pods per plant (r = 0.77), and number of seeds per pod (r = 0.76) in 2021. A principal component analysis highlighted the effectiveness of organic–inorganic fertilizer combinations, particularly O5000N60D50, in enhancing productivity while potentially reducing inorganic fertilizer application. This study demonstrates that integrating organic and inorganic fertilizers enhances sustainable crop productivity and reduces negative environmental impacts, particularly in regions facing nutrient depletion and drought conditions. Full article
Show Figures

Figure 1

9 pages, 1785 KiB  
Communication
Bioactive Factors Isolated and Purified from Bovine Colostrum Can Restore Extracellular Matrix Under Degradation by Metalloproteinases
by Federica Coppa, Graziella Giuffrida, Giulia Iannello, Stefania Pennisi, Greta Ferruggia and Maria Violetta Brundo
Appl. Biosci. 2025, 4(2), 21; https://doi.org/10.3390/applbiosci4020021 - 8 Apr 2025
Viewed by 259
Abstract
The ECM is composed of a considerable number of biochemically and structurally diverse constituents. ECM is a highly dynamic system that constantly receives and sends biological, chemical and mechanical signals. Several studies suggest that mechanical signals derived from the extracellular microenvironment regulate skin [...] Read more.
The ECM is composed of a considerable number of biochemically and structurally diverse constituents. ECM is a highly dynamic system that constantly receives and sends biological, chemical and mechanical signals. Several studies suggest that mechanical signals derived from the extracellular microenvironment regulate skin regeneration and wound healing. Tests measuring collagen contraction showed a significant difference in contraction activation in samples treated with the 2% colostrum derivative mixture compared to the control. The analysis of the supernatant showed an inhibition of metalloproteinase-2 expression and an increase in collagen secretion by fibroblasts in treatment samples. Our hypothesis is that the molecules extracted and purified from bovine colostrum can restore the ECM environment qualitative and quantitative characteristics, thus permitting, through a mechanical action, the restoration of the wound due to the transduction of the signal activated by the integrins. Full article
(This article belongs to the Special Issue Anatomy and Regenerative Medicine: From Methods to Applications)
Show Figures

Graphical abstract

12 pages, 2064 KiB  
Article
Umckalin Promotes Melanogenesis in B16F10 Cells Through the Activation of Wnt/β-Catenin and MAPK Signaling Pathways
by So-Yeon Oh and Chang-Gu Hyun
Appl. Biosci. 2025, 4(2), 20; https://doi.org/10.3390/applbiosci4020020 - 2 Apr 2025
Viewed by 303
Abstract
Melanogenesis is regulated by melanogenic enzymes such as tyrosinase (TYR), TRP-1, and TRP-2, whose expression is controlled by the microphthalmia-associated transcription factor (MITF). Various signaling pathways, including cAMP/PKA, MAPK/ERK, Wnt/β-catenin, and PI3K/Akt, are involved in this process and have been a focal point [...] Read more.
Melanogenesis is regulated by melanogenic enzymes such as tyrosinase (TYR), TRP-1, and TRP-2, whose expression is controlled by the microphthalmia-associated transcription factor (MITF). Various signaling pathways, including cAMP/PKA, MAPK/ERK, Wnt/β-catenin, and PI3K/Akt, are involved in this process and have been a focal point of research for treating pigmentation disorders. However, developing effective therapies for conditions like vitiligo remains a significant challenge. In this study, the effects of umckalin on melanogenesis and its molecular mechanisms were investigated using B16F10 cells, a mouse melanoma cell line widely used as a model for melanin production studies. B16F10 cells produce melanin via melanosomes and express key melanogenic enzymes such as TYR, TRP-1, and TRP-2, making them a reliable model system. Our findings demonstrate that umckalin promotes melanogenesis in a concentration-dependent manner by upregulating TRP-1 expression and activating the MITF signaling pathway. Additionally, umckalin modulated key signaling pathways, including GSK3β/β-catenin and MAPK, to enhance melanogenesis. In conclusion, umckalin enhances melanogenic enzyme activity by activating critical signaling pathways, thereby promoting melanin synthesis. These findings suggest that umckalin could be a promising candidate for developing therapeutic agents for pigmentation disorders such as vitiligo. Further studies are required to explore its mechanisms and clinical applications in greater detail. Full article
(This article belongs to the Special Issue Plant Natural Compounds: From Discovery to Application)
Show Figures

Figure 1

45 pages, 990 KiB  
Review
Enzymatic Oxidants, Antioxidants, and Inflammatory Bowel Disease
by R. Steven Esworthy
Appl. Biosci. 2025, 4(2), 19; https://doi.org/10.3390/applbiosci4020019 - 1 Apr 2025
Viewed by 254
Abstract
The role of oxidants and antioxidants in inflammatory bowel disease (IBD) has been actively explored since the early 1980s, starting with the role of the respiratory burst of neutrophils and ischemia in bowel pathology. Since that time, the enzymatic components contributing to the [...] Read more.
The role of oxidants and antioxidants in inflammatory bowel disease (IBD) has been actively explored since the early 1980s, starting with the role of the respiratory burst of neutrophils and ischemia in bowel pathology. Since that time, the enzymatic components contributing to the pool of reactive oxygen species, including superoxide, H2O2, and lipid hydroperoxides, and the counteracting antioxidants—catalase, glutathione peroxidases (Gpx), peroxiredoxins (PRDX), superoxide dismutases, and others—have been fleshed out. My perspective on IBD is from the role of the balance or imbalance of enzymatic oxidant sources and enzymatic antioxidants in the inflammatory process. I will present evidence on the involvement of oxidant and antioxidant processes in IBD based, as much as possible, on my experiences with Gpxs. This evidence will be discussed in terms of both the immune system and local bowel oxidant and antioxidant systems. As Gpxs are generally selenium-dependent, possible deficiencies in selenium uptake in active IBD and the impact on Gpx expression will be explored. The more recently introduced ferroptosis, an iron-dependent lipid peroxidation-based pathological process, will be reviewed for its possible involvement in IBD. Full article
(This article belongs to the Special Issue Feature Papers in Applied Biosciences 2024)
10 pages, 456 KiB  
Article
AssayBLAST: A Bioinformatic Tool for In Silico Analysis of Molecular Multiparameter Assays
by Maximilian Collatz, Sascha D. Braun, Martin Reinicke, Elke Müller, Stefan Monecke and Ralf Ehricht
Appl. Biosci. 2025, 4(2), 18; https://doi.org/10.3390/applbiosci4020018 - 1 Apr 2025
Viewed by 254
Abstract
Accurate primer and probe design is essential for molecular applications, including PCR, qPCR, and molecular multiparameter assays like microarrays. The novel software tool AssayBLAST addresses this need by simulating interactions between oligonucleotides and target sequences. AssayBLAST handles large sets of primer and probe [...] Read more.
Accurate primer and probe design is essential for molecular applications, including PCR, qPCR, and molecular multiparameter assays like microarrays. The novel software tool AssayBLAST addresses this need by simulating interactions between oligonucleotides and target sequences. AssayBLAST handles large sets of primer and probe sequences simultaneously and supports comprehensive assay designs by allowing users to identify off-target binding, calculate melting temperatures, and ensure strand specificity, a critical but often overlooked aspect. AssayBLAST performs two optimized BLAST-based searches for each primer or probe sequence, checking the forward and reverse strands for off-target interactions and strand-specific binding accuracy. The results are compiled into a mapping table containing binding sites, mismatches, and strand orientation, allowing users to validate large sets of oligonucleotides across predefined custom databases for a complete and optimal theoretical assay design. AssayBLAST was evaluated against experimental Staphylococcus aureus microarray data, achieving 97.5% accuracy in predicting probe–target hybridization outcomes. This high accuracy demonstrates the method’s effectiveness in reliably using BLAST hits and mismatch counts to predict microarray results. AssayBLAST provides a reliable, scalable solution for in silico primer and probe validation, effectively supporting large-scale assay designs and optimizations. Its accurate prediction of hybridization outcomes demonstrates its utility in enhancing the efficiency and reliability of molecular assays. Full article
Show Figures

Figure 1

20 pages, 2078 KiB  
Review
Bacterial Sialidases: Biological Significance and Application
by Stephan Engibarov, Yana Gocheva, Irina Lazarkevich and Rumyana Eneva
Appl. Biosci. 2025, 4(2), 17; https://doi.org/10.3390/applbiosci4020017 - 1 Apr 2025
Viewed by 329
Abstract
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides). [...] Read more.
This review summarizes recent findings on the diverse roles of bacterial sialidases in microbial biology. Bacterial sialidases, also known as neuraminidases, are exog α-lycosidases that cleave terminal sialic acid residues from a number of complex compounds designated as sialoglycoconjugates (glycoproteins, glycolipids and oligosaccharides). Metabolically, they are involved in sialic acid catabolism, providing energy, carbon and nitrogen sources. Catabolic degradation of sialic acids is a physiological feature that can be considered an important virulence factor in pathogenic microorganisms. Sialidases play a pivotal role in host–pathogen interactions and promotion of bacterial colonization. The activity of these enzymes enables bacterial adhesion, biofilm formation, tissue invasion, and also provides immune evasion by exposing cryptic receptors and modifying immune components. Many different perspectives are being developed for the potential application of sialidases. In the field of medicine, they are being explored as appropriate targets for antimicrobials, vaccines, diagnostic preparations and in tumor immunotherapy. In the field of enzymatic synthesis, they are used for the regioselective production of oligosaccharide analogs, enzymatic separation of isoenzymes and as a tool for structural analysis of sialylated glycans, among other applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop