Previous Issue
Volume 9, June
 
 

Soil Syst., Volume 9, Issue 3 (September 2025) – 16 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 629 KiB  
Article
In Vitro Evaluation of Enhanced Efficiency Nitrogen Fertilizers Using Two Different Soils
by Samuel Okai, Xinhua Yin, Lori Allison Duncan, Daniel Yoder, Debasish Saha, Forbes Walker, Sydney Logwood, Jones Akuaku and Nutifafa Adotey
Soil Syst. 2025, 9(3), 80; https://doi.org/10.3390/soilsystems9030080 - 16 Jul 2025
Abstract
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have [...] Read more.
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have investigated the performance of urea- and urea ammonium nitrate (UAN)-based EENF on soils with contrasting properties. Controlled-environment incubation experiments were conducted on two soils with different properties to evaluate the efficacy of urea and UAN forms of EENF to minimize ammonia volatilization losses. The experiments were set up as a completely randomized design, with seven treatments replicated four times for 16 days. The N treatments, which were surface-applied at 134 kg N ha−1, included untreated urea, untreated UAN, urea+ANVOLTM (urease inhibitor product), UAN+ANVOLTM, environmentally smart nitrogen (ESN®), SUPERU® (urease and nitrification inhibitor product), and urea+Excelis® (urease and nitrification inhibitor product). In this study, urea was more susceptible to ammonia loss (24.12 and 26.49% of applied N) than UAN (5.24 and 16.17% of applied N), with lower ammonia volatility from soil with a pH of 5.8 when compared to 7.0. Urea-based EENF products performed better in soil with a pH of 5.8 compared to the soil with pH 7.0, except for ESN, which was not influenced by pH. In contrast, the UAN-based EENF was more effective in the high-pH soil (7.0). Across both soils, all EENFs reduced cumulative ammonia loss by 32–91% in urea and 27–70% in UAN, respectively, when compared to their untreated forms. The urea-based EENF formulations containing both nitrification and urease inhibitors were the least effective among the EENF types, performing particularly poorly in high-pH soil (pH 7.0). In conclusion, the efficacy of EENF is dependent on soil pH, N source, and the form of EENF. These findings underscore the importance of tailoring EENF applications to specific soil conditions and N sources to optimize N use efficiency (NUE), enhance economic returns for producers, and minimize environmental impacts. Full article
Show Figures

Figure 1

17 pages, 2162 KiB  
Article
Exploring Protist Communities in the Rhizosphere of Cultivated and Wild Date Palms
by Dana A. Abumaali, Sara H. Al-Hadidi, Talaat Ahmed, Ameni Ben Zineb, Abdul Rashid P. Rasheela, Amer Fayad Al-khis, Sowaid Ali Al-Malki, Mahmoud W. Yaish, Hassan Hassan, Roda Al-Thani and Juha M. Alatalo
Soil Syst. 2025, 9(3), 79; https://doi.org/10.3390/soilsystems9030079 - 15 Jul 2025
Abstract
Protists represent a major component of eukaryotic diversity within the soil microbiome, playing critical roles in mediating carbon and nitrogen cycling and influencing nutrient availability and soil health. Their diversity is shaped by multiple factors, including temperature, pH, organic matter content, and land [...] Read more.
Protists represent a major component of eukaryotic diversity within the soil microbiome, playing critical roles in mediating carbon and nitrogen cycling and influencing nutrient availability and soil health. Their diversity is shaped by multiple factors, including temperature, pH, organic matter content, and land use. In this study, we investigated the protist diversity in rhizosphere soils from both wild and cultivated date palm varieties. Our results identified nitrate, nitrite, calcium, and carbon content as key soil factors significantly correlated with protist diversity. Only 9.2% (42) of operational taxonomic units (OTUs) were shared across all soil samples, suggesting that these taxa possess traits enabling adaptation to extreme environmental conditions. The dominant protist families belonged to Rhizaria, Alveolata, Amoebozoa, and Archaeplastida, primarily comprising bacterial consumers, alongside taxa from Stramenopiles, Opisthokonta, Hacrobia, and Excavata. At the class level, Filosa-Sarcomonadea, Colpodea, Variosea, Tubulinea, and Chlorophyceae were the most abundant. Filosa-Sarcomonadea and Colpodea were positively correlated with bacterial and fungal genera, suggesting their role as consumers, while Variosea showed a negative correlation with bacteria, reflecting predator-prey dynamics. Notably, the protist community composition in wild date palm rhizosphere soils was distinct from that in cultivated soils, with Opisthokonta being particularly abundant, likely reflecting adaptation to drought conditions. Overall, this study highlights the significant differences in protist diversity and community structure between wild and cultivated date palm ecosystems. Full article
Show Figures

Figure 1

38 pages, 2675 KiB  
Review
Factors Influencing the Impact of Anaerobic Digestates on Soil Properties
by Péter Ragályi, Orsolya Szécsy, Nikolett Uzinger, Marianna Magyar, Anita Szabó and Márk Rékási
Soil Syst. 2025, 9(3), 78; https://doi.org/10.3390/soilsystems9030078 - 14 Jul 2025
Viewed by 164
Abstract
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in [...] Read more.
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in anaerobic digesters to produce biogas. This review focuses on the properties of anaerobic digestates and their effects on physical, chemical and biological soil parameters discussing the benefits, limitations and potential risks. Due to the variety of technologies and raw materials used, anaerobic digestates have diverse properties. Therefore, their impact on specific soil parameters, such as bulk density, aggregate stability, pH, electrical conductivity (EC), soil organic matter (SOM) or microbial activity can vary in magnitude and direction. These effects are also influenced by the variety of soils. Although digestates usually have a significant macro- and micronutrient content, their potentially toxic components or high salt content may limit their use. Despite the limitations, the application of anaerobic digestates generally has more advantages than disadvantages. The use of good-quality anaerobic digestates can improve the physical and chemical properties of the soil, increase soil nutrient and SOM content, as well as soil microbial activity. Full article
Show Figures

Figure 1

18 pages, 1595 KiB  
Article
An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems
by Ewa M. Furmanczyk, Dawid Kozacki, Morgane Ourry, Samuel Bickel, Expedito Olimi, Sylvie Masquelier, Sara Turci, Anne Bohr, Heinrich Maisel, Lorenzo D’Avino and Eligio Malusà
Soil Syst. 2025, 9(3), 77; https://doi.org/10.3390/soilsystems9030077 - 14 Jul 2025
Viewed by 51
Abstract
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic [...] Read more.
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic groups’ abundance in fifteen fields hosting different cropping systems and managed according to organic or conventional practices. The nematode population densities differed significantly across cropping systems and management types covering various European climatic zones (spanning 121 to 799 individuals per sample). Population density was affected by the duration of the cropping system, with the lowest value in the vegetable cropping system (on average about 300 individuals) and the highest in the long-term fruiting system (on average more than 500 individuals). The occurrence and abundance of the different trophic groups was partly dependent on the cropping system or the management method, particularly for the bacteria, fungal and plant feeders. The taxonomical classification of a subset of samples allowed us to identify 22 genera and one family (Dorylaimidae) within the five trophic groups. Few taxa were observed in all fields and samples (i.e., Rhabditis and Cephalobus), while Aphelenchoides or Pratylenchus were present in the majority of samples. Phosphorus content was the only soil chemical parameter showing a positive correlation with total nematode population and bacterial feeders’ absolute abundance. Based on the nematological ecological indices, all three cropping systems were characterized by disturbed soil conditions, conductive and dominated by bacterivorous nematodes. This knowledge could lead to a choice of soil management practices that sustain a transition toward healthy soils. Full article
Show Figures

Figure 1

2 pages, 160 KiB  
Correction
Correction: Antonucci et al. Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions. Soil Syst. 2025, 9, 10
by Francesca Antonucci, Simona Violino, Loredana Canfora, Małgorzata Tartanus, Ewa M. Furmanczyk, Sara Turci, Maria G. Tommasini, Nika Cvelbar Weber, Jaka Razinger, Morgane Ourry, Samuel Bickel, Thomas A. J. Passey, Anne Bohr, Heinrich Maisel, Massimo Pugliese, Francesco Vitali, Stefano Mocali, Federico Pallottino, Simone Figorilli, Anne D. Jungblut, Hester J. van Schalkwyk, Corrado Costa and Eligio Malusàadd Show full author list remove Hide full author list
Soil Syst. 2025, 9(3), 76; https://doi.org/10.3390/soilsystems9030076 - 14 Jul 2025
Viewed by 41
(This article belongs to the Special Issue Use of Modern Statistical Methods in Soil Science)
20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 129
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia
by Nikolay M. Gorbach, Viktor V. Startsev, Evgenia V. Yakovleva, Anton S. Mazur and Alexey A. Dymov
Soil Syst. 2025, 9(3), 74; https://doi.org/10.3390/soilsystems9030074 - 11 Jul 2025
Viewed by 118
Abstract
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three [...] Read more.
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three stages from grassy wetlands to its current state as a pine-Sphagnum peatland. Analysis revealed substantial carbon storage (81.4 kg m−2) within the peat deposit. Macrocharcoal particles were consistently present throughout the peat deposits, demonstrating continuous fire activity across the bog’s developing. High charcoal particle accumulation rates occurred not only during warm periods like the Holocene thermal maximum but also during colder and wetter periods. These periods include recent centuries, when high charcoal accumulation rates are likely due to increased human activity. Statistical analysis showed significant relationships between macrocharcoal content and several peat characteristics: higher charcoal levels correlated with increased soil carbon (r = 0.6), greater aromatic compounds (r = 0.8), and elevated polycyclic aromatic hydrocarbons (r = 0.7), all with p < 0.05. These findings highlight how fire has consistently shaped this ecosystem’s development and carbon storage capacity over millennia, with apparent intensification during recent centuries potentially linked to anthropogenic influences on fire regimes in the boreal zone. Full article
Show Figures

Figure 1

17 pages, 3651 KiB  
Article
Moss Biochar Facilitates Root Colonization of Halotolerant Halomonas salifodinae for Promoting Plant Growth Under Saline–Alkali Stress
by Wenyue Wang, Yunlong Liu, Zirun Zhao, Rou Liu, Fang Wang, Zhuo Zhang and Qilin Yu
Soil Syst. 2025, 9(3), 73; https://doi.org/10.3390/soilsystems9030073 - 11 Jul 2025
Viewed by 95
Abstract
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, [...] Read more.
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, their stable colonization on plant roots should be further strengthened. In this study, we investigated the effect of moss biochar on the root colonization of the exogenous halotolerant Halomonas salifodinae isolated from saline lake sediments. During the incubation with the bacteria, the biochar strongly bound the bacterium and induced biofilm formation on the biochar surface. When the biochar and the bacterium were added into the culturing soil of the forage grass Medicago sativa, the biochar remarkably assisted the root binding and biofilm formation of this bacterium on the plant roots. Under the biochar–bacterium combined treatment, the numbers of total bacteria, halotolerant bacteria, and nitrogen-fixing bacteria increased from 105.5 CFU/g soil to 107.2 CFU/g soil, from 104.5 CFU/g soil to 106.1 CFU/g soil, and from 104.7 CFU/g soil to 106.3 CFU/g soil, respectively. After 30 days of culturing, the biochar and the bacterium in combination increased the plant height from 10.3 cm to 36 cm, and enhanced the accumulation of chlorophyll a, reducing sugars, soluble proteins, and superoxide dismutase in the leaves. Moreover, the combined treatment increased the activity of soil enzymes, including peroxidase, alkaline phosphatase, and urease. Meanwhile, the levels of various cations in the rhizosphere soil were reduced by the combined treatment, e.g., Na+, Cu2+, Fe2+, Mg2+, Mn2+, etc., indicating an improvement in the soil quality. This study developed the biochar–halotolerant bacterium joint strategy to improve the yield of forage grasses in saline–alkali soil. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

14 pages, 2403 KiB  
Article
Drought Stress Enhances Mycorrhizal Colonization in Rice Landraces Across Agroecological Zones of Far-West Nepal
by Urmila Dhami, Nabin Lamichhane, Sudan Bhandari, Gunanand Pant, Lal Bahadur Thapa, Chandra Prasad Pokhrel, Nikolaos Monokrousos and Ram Kailash Prasad Yadav
Soil Syst. 2025, 9(3), 72; https://doi.org/10.3390/soilsystems9030072 - 9 Jul 2025
Viewed by 213
Abstract
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, [...] Read more.
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, Mid-hill) of Far-West Nepal under drought stress. Field experiments exposed landraces to control, intermittent, and complete drought treatments, with soil properties and root colonization analyzed. Results revealed FMS and IRS variations driven by soil composition and genotype. Mid-hill soils (acidic, high organic matter) showed lower FMS but elevated IRS under drought, while neutral pH in Tarai and silt/clay-rich soils supported higher FMS. Sandy soil in Inner-Tarai also promoted FMS. Drought significantly increased IRS, particularly in Anjana and Sauthiyari (Tarai), Chiudi and Shanti (Inner-Tarai), and Chamade and Jhumke (Mid-hill), which exhibited IRS surges of 171–388%. These landraces demonstrated symbiotic resilience, linking mycorrhizal networks to enhanced nutrient/water uptake. Soil organic matter and nutrient levels amplified IRS responses, underscoring fertility’s role in adaptation. FMS ranged from 50 to 100%, and IRS 1.20–19.74%, with intensity being a stronger drought-tolerance indicator than frequency. The study highlights the conservation urgency for these landraces, as traditional varieties decline due to hybrid adoption. Their drought-inducible mycorrhizal symbiosis offers a sustainable strategy for climate-resilient rice production, emphasizing soil–genotype interactions in agroecological adaptation. Full article
Show Figures

Figure 1

17 pages, 315 KiB  
Article
Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield
by Marcos Alfonso Lastiri-Hernández, Javier Pérez-Inocencio, Eloy Conde-Barajas, María de la Luz Xochilt Negrete-Rodríguez and Dioselina Álvarez-Bernal
Soil Syst. 2025, 9(3), 71; https://doi.org/10.3390/soilsystems9030071 - 8 Jul 2025
Viewed by 411
Abstract
Biochar is a carbon-rich material produced through the pyrolysis of agricultural waste. It effectively enhances the physical, chemical, and biological properties of salinity-affected soils. Chickpea (Cicer arietinum L.) is the world’s third most important legume crop, currently cultivated in over 50 countries. [...] Read more.
Biochar is a carbon-rich material produced through the pyrolysis of agricultural waste. It effectively enhances the physical, chemical, and biological properties of salinity-affected soils. Chickpea (Cicer arietinum L.) is the world’s third most important legume crop, currently cultivated in over 50 countries. However, no study has yet established recommended biochar application rates for this crop under saline soil conditions. Therefore, this study aimed to assess the chemical properties of a clay soil following the application of varying rates of biochar and NaCl, and to evaluate their subsequent effects on the growth and yield of Cicer arietinum L. To evaluate the effect of biochar, a completely randomized experimental design with ten replicates was implemented. The biochar was produced from corncobs (Zea mays) and applied at two rates (1.5% and 3%). Soil salinity levels were classified into three groups: non-saline (S1 = 1.2 dS·m−1), low/moderate salinity (S2 = 4.2 dS·m−1), and moderate salinity (S3 = 5.6 dS·m−1). The treatments were placed in pots for 100 days. The results demonstrated that biochar applications at 1.5% and 3% rates improved both soil chemical properties (pH, EC, SAR, and ESP) and the growth of C. arietinum across all evaluated treatments. The 3% biochar treatment showed superior effects compared to the 1.5% application. Therefore, biochar application in C. arietinum production emerges as an effective agronomic strategy to mitigate abiotic stress while simultaneously enhancing crop productivity and sustainability. Full article
23 pages, 4329 KiB  
Article
Sediment Fingerprinting Enables the Determination of Soil Erosion Sources and Sediment Transport Processes in a Topographically Complex Nile Headwater Basin
by Amartya K. Saha, Christopher L. Dutton, Marc Manyifika, Sarah C. Jantzi and Sylvere N. Sirikare
Soil Syst. 2025, 9(3), 70; https://doi.org/10.3390/soilsystems9030070 - 4 Jul 2025
Viewed by 171
Abstract
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used [...] Read more.
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used to identify erosional hotspots and sediment transport processes in highly mountainous regions undergoing swift land use transformation. This technique involves a statistical comparison of the elemental composition of suspended sediments in river water with the elemental composition of soils belonging to different geological formations present in the catchment, thereby determining the sources of the suspended sediment. Suspended sediments were sampled five times over dry and wet seasons in all major headwater tributaries, as well as the main river channel, and compared with soils from respective delineated watersheds. Elemental composition was obtained using laser ablation inductively coupled plasma mass spectrometry, and elements were chosen that could reliably distinguish between the various geological types. The final results indicate different levels of sediment contribution from different geological types. A three-level intervention priority system was devised, with Level 1 indicating the areas with the most serious erosion. Potential sources were located on an administrative map, with the highest likely erosion over the study period (Level 1) occurring in Kabuga cell in the Mwogo sub-catchment, Nganzo and Nyamirama cells in the Nyagako sub-catchment and Kanyana cell in the NNYU downstream sub-catchment. This map enables the pinpointing of site visits in an extensive and rugged terrain to verify the areas and causes of erosion and the pathways of sediment transport. Sediment concentrations (mg L−1) were the highest in the Secoko and Satinsyi tributaries. The composition of suspended sediment was seen to be temporally and spatially dynamic at each sampling point, suggesting the need for an adequate number of sampling locations to identify erosion hotspots in a large mountainous watershed. Apart from prioritizing rehabilitation locations, the detailed understanding of critical zone soil–land cover–climate processes is an important input for developing region-specific watershed management and policy guidelines. Full article
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Free-Range Chickens Reared Within an Olive Grove Influenced the Soil Microbial Community and Carbon Sequestration
by Luisa Massaccesi, Rosita Marabottini, Chiara Poesio, Simona Mattioli, Cesare Castellini and Alberto Agnelli
Soil Syst. 2025, 9(3), 69; https://doi.org/10.3390/soilsystems9030069 - 3 Jul 2025
Viewed by 171
Abstract
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in [...] Read more.
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in an olive grove on the soil chemical and biochemical properties, including the total organic carbon (TOC), total nitrogen (TN), microbial biomass (Cmic), basal respiration, and microbial community structure, as well as the soil’s capability to stock organic carbon and total nitrogen. A field experiment was conducted in an olive grove grazed by chickens for over 20 years, with the animal load decreasing with distance from the poultry houses. At 20 m, where the chicken density was highest, the soils showed reduced OC and TN contents and a decline in fungal biomass. This was mainly due to the loss of both aboveground vegetation and root biomass from intensive grazing. At 50 m, where grazing pressure was lower, the soil OC, TN, and microbial community size and activity were similar to those in a control, ungrazed area. These findings suggest that high chicken density can negatively affect soil health, while moderate grazing allows for the recovery of vegetation and soil organic matter. Rational management of free-range chicken grazing, particularly through the control of chicken density or managing grazing time and frequency, is therefore recommended to preserve soil functions and fertility. Full article
Show Figures

Figure 1

22 pages, 2784 KiB  
Article
Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia
by Mayra De la Rosa-Mendoza, Mario Viña-Pico and José Marrugo-Negrete
Soil Syst. 2025, 9(3), 68; https://doi.org/10.3390/soilsystems9030068 - 1 Jul 2025
Viewed by 355
Abstract
The main problem associated with mining is the release of heavy metals into the environment, impacting the soil and overall environment. Mercury is one of the most contaminating heavy metals. It is present in soils, sediments, surface water, and groundwater. The objective of [...] Read more.
The main problem associated with mining is the release of heavy metals into the environment, impacting the soil and overall environment. Mercury is one of the most contaminating heavy metals. It is present in soils, sediments, surface water, and groundwater. The objective of this research was to evaluate the phytoremediation carried out by the native plant Piper marginatum, in soils contaminated by mercury in an experimental lot in the municipality of Ayapel, where artisanal and small-scale gold mining is carried out. A soil phytoremediation process was carried out at a field scale using the plant species Piper marginatum in a 2.4 ha plot historically contaminated by gold mining, located in Ayapel, Colombia. A completely randomized experimental design was used with nine experimental plots, which were planted with Piper marginatum, and three controls, without planting. Through an initial soil sampling, the physicochemical characteristics and total mercury content in this matrix were determined. Piper marginatum seedlings were planted in the experimental plots and remained in the field for a period of six months. The plant biomass was collected and a final soil sampling was performed for total mercury analysis to determine the total percentage of mercury removal. The results obtained indicated mercury concentrations in soils ranging from 40.80 to 52,044.4 µg kg−1 in the experimental plots and ranged from 55.9 to 2587.4 µg kg−1 in the controls. In the plots planted with Piper marginatum, a 37.3% decrease in total mercury was achieved, while in the plots without planting there was a 23.5% increase. In plants, the average T Hg concentrations in the roots, stems, and leaves were 109.2 µg kg−1, 80.6 µg kg−1, and 122.6 µg kg−1, respectively. An average BCF < 1 and an average TF > 1 were obtained. Full article
Show Figures

Figure 1

19 pages, 2377 KiB  
Article
Field Evaluation of a Portable Multi-Sensor Soil Carbon Analyzer: Performance, Precision, and Limitations Under Real-World Conditions
by Lucas Kohl, Clarissa Vielhauer, Atilla Öztürk, Eva-Maria L. Minarsch, Christian Ahl, Wiebke Niether, John Clifton-Brown and Andreas Gattinger
Soil Syst. 2025, 9(3), 67; https://doi.org/10.3390/soilsystems9030067 - 27 Jun 2025
Viewed by 321
Abstract
Soil organic carbon (SOC) monitoring is central to carbon farming Monitoring, Reporting, and Verification (MRV), yet high laboratory costs and sparse sampling limit its scalability. We present the first independent field validation of the Stenon FarmLab multi-sensor probe across 100 temperate European arable-soil [...] Read more.
Soil organic carbon (SOC) monitoring is central to carbon farming Monitoring, Reporting, and Verification (MRV), yet high laboratory costs and sparse sampling limit its scalability. We present the first independent field validation of the Stenon FarmLab multi-sensor probe across 100 temperate European arable-soil samples, benchmarking its default outputs and a simple pH-corrected model against three laboratory reference methods: acid-treated TOC, temperature-differentiated TOC (SoliTOC), and total carbon dry combustion. Uncorrected FarmLab algorithms systematically overestimated SOC by +0.20% to +0.27% (SD = 0.25–0.28%), while pH adjustment reduced bias to +0.11% and tightened precision to SD = 0.23%. Volumetric moisture had no significant effect on measurement error (r = −0.14, p = 0.16). Bland–Altman and Deming regression demonstrated improved agreement after pH correction, but formal equivalence testing (accuracy, precision, concordance) showed that no in-field model fully matched laboratory standards—the pH-corrected variant passed accuracy and concordance evaluation yet failed the precision criterion (p = 0.0087). At ~EUR 3–4 per measurement versus ~EUR 44 for lab analysis, FarmLab facilitates dense spatial sampling. We recommend a hybrid monitoring strategy combining routine, pH-corrected in-field mapping with laboratory-based recalibrations alongside expanded calibration libraries, integrated bulk density measurement, and adaptive machine learning to achieve both high-resolution and certification-grade rigor. Full article
Show Figures

Figure 1

17 pages, 673 KiB  
Article
Upgraded Protocol for Microplastics’ Extraction from the Soil Matrix by Sucrose Density Gradient Centrifugation
by Tara Grujić, Elmira Saljnikov, Slobodan Stefanović, Vojislav Lazović, Snežana Belanović Simić and Žaklina Marjanović
Soil Syst. 2025, 9(3), 66; https://doi.org/10.3390/soilsystems9030066 - 27 Jun 2025
Viewed by 590
Abstract
As land plastic pollution has piled up in recent decades, small products of its degradation, microplastics (MPs), have emerged as a rapidly growing problem in soil environments. The first step in MP evaluation from soils is the extraction of MP particles, and it [...] Read more.
As land plastic pollution has piled up in recent decades, small products of its degradation, microplastics (MPs), have emerged as a rapidly growing problem in soil environments. The first step in MP evaluation from soils is the extraction of MP particles, and it appears to be a particularly difficult substrate to work with. Aggregate formation and the presence of other organic particles of similar sizes appeared as challenges in constructing an efficient and trustworthy protocol for MP extraction from soils. Density separation-based methods are usually applied and finding efficient cost- and environment-friendly solutions is of high importance, while data comparability is a key factor in increasing general knowledge on the topic. Here, we propose an environmentally friendly protocol based on density separation using sucrose solution. Its efficiency for MP extraction from soil was tested and validated. Protocol validation showed that its use in the extraction of PE was efficient for all examined MP sizes (>32 μm) and PVC >500 μm with high recovery rates, while the extraction of PVC >125 μm is justified since sucrose solution is practically cost-free and completely environmentally safe. Result validation indicates that the proposed protocol has high potential for MP extraction from difficult soil samples. Full article
Show Figures

Graphical abstract

19 pages, 2419 KiB  
Article
Microbial Community Shifts and Functional Constraints of Dechlorinators in a Legacy Pharmaceutical-Contaminated Soil
by Xinhong Gan, Qian Liu, Xiaolong Liang, Yudong Chen, Yang Xu and Tingting Mu
Soil Syst. 2025, 9(3), 65; https://doi.org/10.3390/soilsystems9030065 - 25 Jun 2025
Viewed by 248
Abstract
Soil microbial communities are essential for the natural attenuation of organic pollutants, yet their ecological responses under long-term contamination remain insufficiently understood. This study examined the bacterial community structure and the abundance of dechlorinating bacteria at a decommissioned pharmaceutical-chemical site in northern Jiangsu [...] Read more.
Soil microbial communities are essential for the natural attenuation of organic pollutants, yet their ecological responses under long-term contamination remain insufficiently understood. This study examined the bacterial community structure and the abundance of dechlorinating bacteria at a decommissioned pharmaceutical-chemical site in northern Jiangsu Province, China, where the primary pollutants were dichloromethane, 1,2-dichloroethane, and toluene. Eighteen soil samples from the surface (0.2 m) and deep (2.2 m) layers were collected using a Geoprobe-7822DT system and analyzed for physicochemical properties and microbial composition via 16S rRNA gene amplicon sequencing. The results showed that the bacterial community composition was significantly shaped by the soil pH, moisture content, pollutant type, and depth. Dechlorinating bacteria were detected at all sites but exhibited low relative abundance, with higher concentrations in the surface soils. Desulfuromonas, Desulfitobacterium, and Desulfovibrio were the dominant dechlorinators, while Dehalococcoides appeared only in the deep soils. A network analysis revealed positive correlations between the dechlorinators and BTEX-degrading and fermentative taxa, indicating potential cooperative interactions in pollutant degradation. However, the low abundance of dechlorinators suggests that the intrinsic bioremediation capacity is limited. These findings provide new insights into microbial ecology under complex organic pollution, and support the need for integrated remediation strategies that enhance microbial functional potential in legacy-contaminated soils. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop