Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions
Abstract
1. Introduction
2. Conservation Agriculture
2.1. Principles and Practices
2.1.1. Minimum Soil Disturbance
2.1.2. Permanent Soil Cover
2.1.3. Crop Rotation
2.2. Key Types of Conservation Agriculture Practices
2.2.1. No-Tillage (NT)
2.2.2. Reduced Tillage (RT)
2.2.3. Mulching
2.2.4. Cover Cropping
3. Effects of CA on Soil Properties
3.1. Effects of CA on Soil Physical Properties
3.1.1. Soil Structure
3.1.2. Bulk Density
3.1.3. Water Infiltration and Retention
3.1.4. Reduced Erosion
3.2. Effects of CA on Soil Chemical Properties
3.2.1. Soil Organic Carbon
3.2.2. Soil pH
3.2.3. Cation Exchange Capacity (CEC)
3.2.4. Nutrients Cycling
3.2.5. Mitigating Climate Changes and Greenhouse Gas Emissions
3.3. Effects of CA on Soil Biological Properties
4. Potential Benefits of CA for Promoting Soil Health
4.1. Soil Carbon, Soil Health and Climate Resilience
4.2. Reduction in Input Dependence
4.3. Long-Term Economic Benefits
5. Future Directions and Technological Innovations in CA
5.1. Precision Agriculture and AI Digital Tools
5.2. Low-Disturbance Machinery and Seeding Technologies in CA
5.3. Bio-Based Inputs in Conservation Agriculture
5.4. Challenges and Limitations in Adopting Technological Innovations in Conservation Agriculture
Innovation Area | Description | Technological Examples | Benefits to Conservation Agriculture (CA) | References |
---|---|---|---|---|
Precision Agriculture and AI Digital Tools | Use of real-time, site-specific data and AI for crop and resource management | GPS, GIS, remote sensing, drones, IoT, AI/ML, soil sensors, mobile apps, digital twins, blockchain | Enhances input efficiency, reduces environmental damage, supports data-driven decisions | [130,133,134,135] |
UAVs for weed/pest mapping and crop monitoring; mobile platforms for advisory | Targeted input use, reduced herbicide usage, better crop monitoring | [139,140,141,142,143] | ||
Low-Disturbance Machinery and Seeding Technologies | Machinery that minimizes soil disruption while allowing effective crop establishment | No-till drills, strip-till equipment, precision planters with GPS/VRT, two-wheel tractors, jab planters | Preserves soil structure, reduces erosion, maintains soil health and moisture | [8,49,145,148,150] |
Bio-based Inputs in CA | Use of natural products to enhance soil fertility, pest control, and ecosystem balance | Biofertilizers (e.g., Rhizobium, Azospirillum), biopesticides (e.g., Bt), biochar from plant biomass | Reduces chemical input dependency, improves soil fertility, promotes resilience | [156,159,166,167] |
6. Socioeconomic and Policy Considerations for CA Adoption
6.1. Incentive Structures and Subsidies for CA Adoption
6.2. Capacity Building and Extension Services
6.3. Gender Inclusiveness and Support for Smallholder Farmers
7. Areas for Further Research and Innovation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AMF | Arbuscular Mycorrhiza Fungi |
CA | Conservation Agriculture |
CEC | Cation Exchange Capacity |
CLCA | Conservation Agriculture in Crop-Livestock Systems |
GHG | Greenhouse Gases |
GIS | Geographic Information System |
GSM | Global System for Mobile Communications |
GPS | Global Positioning System |
ICT | Information and Communications Technology |
IoT | Internet of Things |
NT | No tillage |
PA | Precision Agriculture |
RT | Reduced tillage |
SDI | Subsurface Drip Irrigation |
SOC | Soil Organic Carbon |
VRT | Variable Rate Technology |
References
- Mrabet, R. Sustainable agriculture for food and nutritional security. In Sustainable Agriculture and the Environment; Academic Press: Cambridge, MA, USA, 2023; pp. 25–90. [Google Scholar]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, K.; Wang, Y.; Zhao, R.; Xie, Z.; Hu, Q. Effects of conservation agriculture on carbon dynamics across eroded slopes: A global synthesis. Agric. Ecosyst. Environ. 2025, 389, 109696. [Google Scholar] [CrossRef]
- Rodrigues, C.I.; Brito, L.M.; Nunes, L.J. Soil carbon sequestration in the context of climate change mitigation: A review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Sen, M.; Roy, A.; Rani, K.; Nalia, A.; Das, T.; Tigga, P.; Rakshit, D.; Atta, K.; Mondal, S.; Das, A. Crop residue: Status, distribution, management, and agricultural sustainability. In Waste Management for Sustainable and Restored Agricultural Soil; Academic Press: Cambridge, MA, USA, 2024; pp. 167–201. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Moreno-Garcia, M.; Gomez-Ariza, M.R.; Ordoñez-Fernandez, R.; Trivino-Tarradas, P.; Kassam, A.; Gil-Ribes, J.A.; Basch, G.; Carbonell-Bojollo, R. Climate change adaptability and mitigation with conservation agriculture. In Rethinking Food and Agriculture; Woodhead Publishing: Cambridge, UK, 2021; pp. 231–246. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Naresh, R.; Singh, N.K.; Sachan, P.; Mohanty, L.K.; Sahoo, S.; Pandey, S.K.; Singh, B. Enhancing sustainable crop production through innovations in precision agriculture technologies. J. Sci. Res. Rep. 2024, 30, 89–113. [Google Scholar] [CrossRef]
- Sharma, K.; Shivandu, S.K. Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens. Int. 2024, 3, 100292. [Google Scholar] [CrossRef]
- Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial intelligence in agriculture: Advancing crop productivity and sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
- Khan, N. Unlocking Innovation in Crop Resilience and Productivity: Breakthroughs in Biotechnology and sustainable farming. Innov. Discov. 2024, 1, 28. [Google Scholar] [CrossRef]
- Dev, P.; Khandelwal, S.; Yadav, S.C.; Arya, V.; Mali, H.R.; Yadav, K.K. Conservation agriculture for sustainable agriculture. Int. Int. J. Plant Soil Sci. 2023, 35, 1–11. [Google Scholar] [CrossRef]
- Upadhyay, A.; Zhang, Y.; Koparan, C.; Rai, N.; Howatt, K.; Bajwa, S.; Sun, X. Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review. Comput. Electron. Agric. 2024, 225, 109363. [Google Scholar] [CrossRef]
- Ngoma, H.; Angelsen, A.; Jayne, T.S.; Chapoto, A. Understanding adoption and impacts of conservation agriculture in eastern and southern Africa: A review. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Cordeau, S. Moving conservation agriculture from principles to a performance-based production system. Renew. Agric. Food Syst. 2024, 39, e12. [Google Scholar] [CrossRef]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable bioconversion of wetland plant biomass for Pleurotus ostreatus var. florida cultivation: Studies on proximate and biochemical characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Toth, M.; Stumpp, C.; Klik, A.; Strauss, P.; Mehdi-Schulz, B.; Liebhard, G.; Strohmeier, S. Long-term effects of tillage systems on soil health of a silt loam in Lower Austria. Soil Tillage Res. 2024, 241, 106120. [Google Scholar] [CrossRef]
- Omer, E.; Szlatenyi, D.; Csenki, S.; Alrwashdeh, J.; Czako, I.; Láng, V. Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture 2024, 14, 2114. [Google Scholar] [CrossRef]
- Ahmed, Z.; Shew, A.; Nalley, L.; Popp, M.; Green, V.S.; Brye, K. An examination of thematic research, development, and trends in remote sensing applied to conservation agriculture. Int. Soil Water Conserv. Res. 2024, 12, 77–95. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Seufert, V.; Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2019, 2, 378–385. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Malaspina, M.; Chantre, G.R.; Yanniccari, M. Effect of cover crops mixtures on weed suppression capacity in a dry sub-humid environment of Argentina. Front. Agron. 2024, 5, 1330073. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Bhatt, R. Zero tillage impacts on soil environment and properties. J. Environ. Agric. Sci. 2017, 10, 1–9. [Google Scholar]
- Adil, M.; Lu, S.; Yao, Z.; Zhang, C.; Lu, H.; Bashir, S.; Maitah, M.; Gul, I.; Razzaq, S.; Qiu, L. No-tillage enhances soil water storage, grain yield and water use efficiency in dryland wheat (Triticum aestivum) and maize (Zea mays) cropping systems: A global meta-analysis. Funct. Plant Biol. 2024, 51, FP23267. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, D.S.; Silva, B.M.; de Oliveira, G.C.; Moreira, S.G.; da Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- Almagro, M.; Díaz-Pereira, E.; Boix-Fayos, C.; Zornoza, R.; Sánchez-Navarro, V.; Re, P.; Fernández, C.; Martínez-Mena, M. The combination of crop diversification and no tillage enhances key soil quality parameters related to soil functioning without compromising crop yields in a low-input rainfed almond orchard under semiarid Mediterranean conditions. Agric. Ecosyst. Environ. 2023, 345, 108320. [Google Scholar] [CrossRef]
- Gan, Y.T.; Huang, G.B.; Li, L.L.; Liu, J.H.; Hu, Y.G. Unique conservation tillage practices in northwest China. No-Till Farming Syst. 2009, 60, 429–445. [Google Scholar]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.; Shalaby, T.A.; Ramadan, K.M.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Morgan, R. Effects of irrigation, dairy effluent dispersal and stocking on soil properties of the Waimate District, New Zealand. Geoderma Reg. 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture–a panacea to improve soil physical health. Curr. Sci. 2017, 10, 52–61. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Oliveira, D.M.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agric. 2018, 75, 255–272. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, L.A.; Hu, K.; Hao, J.; Li, F.; Gao, Z.; Wang, X. Influence of tillage, straw-returning and mineral fertilization on the stability and associated organic content of soil aggregates in the North China Plain. Agronomy 2020, 10, 951. [Google Scholar] [CrossRef]
- Eze, S.; Dougill, A.J.; Banwart, S.A.; Hermans, T.D.; Ligowe, I.S.; Thierfelder, C. Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Res. 2020, 201, 104639. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of soil properties and earthworms in organic and conventional farming systems after seven years of dairy farm conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Gómez-Muñoz, B.; Jensen, L.S.; Munkholm, L.; Olesen, J.E.; Møller Hansen, E.; Bruun, S. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Sci. Soc. Am. J. 2021, 85, 1465–1478. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, S.; Rajbanshi, J. Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis. Sci. Total Environ. 2022, 805, 150428. [Google Scholar] [CrossRef]
- Kuang, N.; Tan, D.; Li, H.; Gou, Q.; Li, Q.; Han, H. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 105786. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Telles, T.S.; Melo, T.R.; Righetto, A.J.; Didoné, E.J.; Barbosa, G.M. Soil management practices adopted by farmers and how they perceive conservation agriculture. Rev. Bras. Ciência Solo 2022, 46, e0210151. [Google Scholar] [CrossRef]
- Araya, T.; Ochsner, T.E.; Mnkeni, P.N.; Hounkpatin, K.O.; Amelung, W. Challenges and constraints of conservation agriculture adoption in smallholder farms in sub-Saharan Africa: A review. Int. Soil Water Conserv. Res. 2024, 12, 828–843. [Google Scholar] [CrossRef]
- Petito, M.; Cantalamessa, S.; Pagnani, G.; Degiorgio, F.; Parisse, B.; Pisante, M. Impact of conservation agriculture on soil erosion in the annual cropland of the Apulia Region (Southern Italy) based on the RUSLE-GIS-GEE framework. Agronomy 2022, 12, 281. [Google Scholar] [CrossRef]
- Barrowclough, M.; Stehouwer, R.; Alwang, J.; Gallagher, R.; Mosquera, V.B.; Dominguez, J.M. Conservation agriculture on steep slopes in the Andes: Promise and obstacles. J. Soil Water Conserv. 2016, 71, 91–102. [Google Scholar] [CrossRef]
- Zuazo, V.H.; Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers: A review. Sustain. Agric. 2009, 28, 785–811. [Google Scholar] [CrossRef]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation management decreases surface runoff and soil erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Choudhary, S.; Gajanand, M.C.; Choudhary, M.S. Conservation Agriculture and its Impact on Physical, Chemical and Biological Properties of Soil: A Review. Int. J. Bioresour. Sci. 2021, 8, 113–122. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative agriculture—A literature review on the practices and mechanisms used to improve soil health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Manono, B.O. Effects of Irrigation, Effluent Dispersal and Organic Farming on Earthworms and Soil Microbes in New Zealand Dairy Farms. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2014. Available online: https://hdl.handle.net/10523/5097 (accessed on 15 June 2025).
- Biswas, S.; Singh, S.; Bera, A. Regenerative Nutrient Management Practices for Enhancing Plant Nutrition and Soil Health. In Regenerative Agriculture for Sustainable Food Systems; Springer Nature: Singapore, 2024; pp. 303–339. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Dey, A.; Dwivedi, B.S.; Bhattacharyya, R.; Datta, S.P.; Meena, M.C.; Jat, R.K.; Gupta, R.K.; Jat, M.L.; Singh, V.K.; Das, D.; et al. Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic Plains. Soil Use Manag. 2020, 36, 429–438. [Google Scholar] [CrossRef]
- Mishra, A.K.; Shinjo, H.; Jat, H.S.; Jat, M.L.; Kumar Jat, R.; Funakawa, S. Conservation agriculture enhances crop productivity and soil carbon fractions in Indo-Gangetic Plains of India. Front. Sustain. Food Syst. 2024, 8, 1476292. [Google Scholar] [CrossRef]
- Piccoli, I.; Chiarini, F.; Carletti, P.; Furlan, L.; Lazzaro, B.; Nardi, S.; Berti, A.; Sartori, L.; Dalconi, M.C.; Morari, F. Disentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern Italy. Agric. Ecosyst. Environ. 2016, 230, 68–78. [Google Scholar] [CrossRef]
- Cavalieri-Polizeli, K.M.; Guedes Filho, O.; Romanoski, V.S.; Ruthes, B.E.; Calábria, Z.P.; de Oliveira, L.B. Conservative farming systems and their effects on soil organic carbon and structural quality. Soil Tillage Res. 2024, 242, 106143. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Cai, Y.; Yang, Q.; Chang, S.X. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Sci. Total Environ. 2020, 716, 137164. [Google Scholar] [CrossRef]
- Muchabi, J.; Lungu, O.I.; Mweetwa, A.M. Conservation agriculture in Zambia: Effects on selected soil properties and biological nitrogen fixation in soya beans (Glycine max (L.) Merr). Sustain. Agric. Res. 2014, 3, 28–36. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F.; VerhulstZ, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Tolessa, D.; Du Preez, C.C.; Ceronio, G.M. Effect of tillage system and nitrogen fertilization on the pH, extractable phosphorus and exchangeable potassium of Nitisols in Western Ethiopia. Afr. J. Agric. Res. 2014, 9, 2669–2680. [Google Scholar] [CrossRef][Green Version]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B.; Cambardella, C.A. How does tillage intensity affect chemical soil health indicators? A United States meta-analysis. Agrosystems Geosci. Environ. 2020, 3, e20083. [Google Scholar] [CrossRef]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Nthebere, K.; Tata, R.; Bhimireddy, P.; Chandran, L.P.; Gudapati, J.; Admala, M.; Sinha, N.K.; Srikanth, T.B.; Prasad, K. Impact of Conservation Agriculture on Soil Quality and Cotton–Maize System Yield in Semi-Arid India. Sustainability 2025, 17, 978. [Google Scholar] [CrossRef]
- Sairam, M.; Mondal, T.K.; Gaikwad, D.J.; Pramanick, B.; Maitra, S. Conservation agriculture impacts on soil organic car-bon and soil properties. In Advances in Agricultural Technology; Maitra, S., Gaikwad, D.J., Santosh, D.T., Eds.; Griffon: Canada, 2023; pp. 267–283. ISBN 978-17-77795-91-7. [Google Scholar]
- Williams, A.; Jordan, N.R.; Smith, R.G.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Koide, R.T.; Davis, A.S. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 2018, 8, 8467. [Google Scholar] [CrossRef]
- Mondal, S.; Saha, S.; Das, S.R.; Chatterjee, D. Impact of conservation agriculture on soil health and environmental sustainability. In Climate Change Impacts on Soil-Plant-Atmosphere Continuum; Springer Nature: Singapore, 2024; pp. 255–281. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.; Al-Shihmani, L.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Mulatu, G. Influence of Conservation Agriculture on Certain Soil Qualities Both Physical and Chemical in Relation to Sustainable Agriculture Practices a Review. Int. J. Biochem. Biophys. Mol. Biol. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H. Effects of stock type, irrigation and effluent dispersal on earthworm species composition, densities and biomasses in New Zealand pastures. Pedobiologia 2015, 58, 187–193. [Google Scholar] [CrossRef]
- Jagadesh, M.; Dash, M.; Kumari, A.; Singh, S.K.; Verma, K.K.; Kumar, P.; Bhatt, R.; Sharma, S.K. Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration. Microbiol. Res. 2024, 285, 127764. [Google Scholar] [CrossRef]
- Wahdan, S.F.; Asran, A.G.; Abdellatef, M.; Atia, M.A.; Ji, L. Arbuscular mycorrhizal fungi in organic versus conventional farming. In Arbuscular Mycorrhizal Fungi and Higher Plants: Fundamentals and Applications; Springer Nature: Singapore, 2024; pp. 259–286. [Google Scholar] [CrossRef]
- Nortjé, G.P.; Laker, M.C. Soil fertility trends and management in conservation agriculture: A South African perspective. South. Afr. J. Plant Soil 2021, 38, 247–257. [Google Scholar] [CrossRef]
- Wacker, T.S.; Jensen, L.S.; Thorup-Kristensen, K. Conservation agriculture affects soil organic matter distribution, microbial metabolic capacity and nitrogen turnover under Danish field conditions. Soil Tillage Res. 2022, 224, 105508. [Google Scholar] [CrossRef]
- Boulakia, S.; Tivet, F.; Husson, O.; Séguy, L. Nutrient management practices and benefits in Conservation Agriculture systems. In Advances in Conservation Agriculture; Burleigh Dodds Science Publishing: Sawston, UK, 2020; pp. 169–198. [Google Scholar]
- Oyeogbe, A.I. Nitrogen management in conservation agriculture. In Nitrogen in Agriculture-Physiological, Agricultural and Ecological Aspects; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Ahngar, T.A.; Rashid, Z.; Bhat, R.A.; Raja, W.; Iqbal, S.; Mir, M.S.; Jan, S. Role of Conservation Agriculture for Sustaining Soil Quality and Improving Crop Productivity—A Review. Curr. J. Appl. Sci. Technol. 2020, 39, 44–54. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Nitu, T.T.; Milu, U.M.; Jahangir, M.M. Cover crops and soil nitrogen cycling. In Cover Crops and Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2021; pp. 209–226. [Google Scholar]
- Anil, A.S.; Sharma, V.K.; Jiménez-Ballesta, R.; Parihar, C.M.; Datta, S.P.; Barman, M.; Chobhe, K.A.; Kumawat, C.; Patra, A.; Jatav, S.S. Impact of long-term conservation agriculture practices on phosphorus dynamics under maize-based cropping systems in a sub-tropical soil. Land 2022, 11, 1488. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Lee, D.J.; Siddique, K.H. Sustainable agricultural practices for food security and ecosystem services. Environ. Sci. Pollut. Res. 2022, 29, 84076–84095. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Drury, C.F.; Liebig, M.; Johnson, J.M.; Wang, Z.; Feng, H.; Abalos, D. The role of conservation agriculture practices in mitigating N2O emissions: A meta-analysis. Agron. Sustain. Dev. 2023, 43, 63. [Google Scholar] [CrossRef]
- Ullah, M.S.; Malekian, R.; Randhawa, G.S.; Gill, Y.S.; Singh, S.; Esau, T.J.; Zaman, Q.U.; Afzaal, H.; Du, D.L.; Farooque, A.A. The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review. Rev. Environ. Sci. Bio/Technol. 2024, 23, 1105–1130. [Google Scholar] [CrossRef]
- Han, C.; Zhou, W.; Gu, Y.; Wang, J.; Zhou, Y.; Xue, Y.; Shi, Z.; Siddique, K.H. Effects of tillage regime on soil aggregate-associated carbon, enzyme activity, and microbial community structure in a semiarid agroecosystem. Plant Soil 2024, 498, 543–559. [Google Scholar] [CrossRef]
- Teng, J.; Hou, R.; Dungait, J.A.; Zhou, G.; Kuzyakov, Y.; Zhang, J.; Tian, J.; Cui, Z.; Zhang, F.; Delgado-Baquerizo, M. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, F.K.; Yaqub, M.T.; Maniyunda, L.M.; Alalwany, A.A.; Abubakar, F.; Anyebe, O. Soil classification and land suitability evaluation for tomato cultivation using analytic hierarchy process under different land uses. Heliyon 2025, 11, e41681. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, P.; Kumari, P.; Malik, K.; Kashyap, P.L.; Kumar, S.; Bhardwaj, A.K.; Singh, G.P. Conservation agriculture based crop management practices impact diversity and population dynamics of the insect-pests and their natural enemies in agroecosystems. Front. Sustain. Food Syst. 2023, 7, 1173048. [Google Scholar] [CrossRef]
- Chaudhari, S.; Upadhyay, A.; Kulshreshtha, S. Influence of organic amendments on soil properties, microflora and plant growth. Sustain. Agric. Rev. 2021, 52, 147–191. [Google Scholar] [CrossRef]
- Pittarello, M.; Chiarini, F.; Menta, C.; Furlan, L.; Carletti, P. Changes in soil quality through conservation agriculture in north-eastern Italy. Agriculture 2022, 12, 1007. [Google Scholar] [CrossRef]
- de Santiago, A.; Recena, R.; Perea-Torres, F.; Moreno, M.T.; Carmona, E.; Delgado, A. Relationship of soil fertility to biochemical properties under agricultural practices aimed at controlling land degradation. Land Degrad. Dev. 2019, 30, 1121–1129. [Google Scholar] [CrossRef]
- Neemisha, S.S. Soil enzymes and their role in nutrient cycling. In Structure and Functions of Pedosphere; Springer Nature: Singapore, 2022; pp. 173–188. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Dash, P.K.; Padhy, S.R. Impact of conservation agriculture on greenhouse gas emission and its implications. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture; Springer: Singapore, 2021; pp. 339–358. [Google Scholar] [CrossRef]
- Manono, B.O. Carbon dioxide, nitrous oxide and methane emissions from the Waimate District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earthworms. Cogent Environ. Sci. 2016, 2, 1256564. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Mahmood, A.; Awan, M.I.; Barbanti, L.; Seleiman, M.F.; Bakhsh, G.; Alkharabsheh, H.M.; Babur, E.; Shao, J.; et al. Management strategies to mitigate N2O emissions in agriculture. Life 2022, 12, 439. [Google Scholar] [CrossRef]
- He, H.M.; Liu, L.N.; Munir, S.; Bashir, N.H.; Yi, W.A.; Jing, Y.A.; LI, C.Y. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, W.; Ngo, H.H.; Wei, W.; Ding, A.; Ni, B.; Hoang, N.B.; Zhang, H. Ways to mitigate greenhouse gas production from rice cultivation. J. Environ. Manag. 2024, 368, 122139. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef]
- Gara, A.; Toyoda, H.; Iwamoto, H.; Abdeta, S.; Geleto, J. Environmental and Economical Impact of Soil Conservation: Case Study of Boset, Ethiopia. J. New Sci. 2018, 54, 3581–3593. [Google Scholar]
- Tadiello, T.; Acutis, M.; Perego, A.; Schillaci, C.; Valkama, E. Soil organic carbon under conservation agriculture in Mediterranean and humid subtropical climates: Global meta-analysis. Eur. J. Soil Sci. 2023, 74, e13338. [Google Scholar] [CrossRef]
- Singh, S.P.; Naresh, R.K.; Vivek, S.K.; Kumar, V.; Mahajan, N.C.; Mrunalini, K.; Chandra, M.S.; Prasad, K.S. Conservation agriculture effects on aggregates carbon storage potential and soil microbial community dynamics in the face of climate change under semi-arid conditions: A review. J. Pharmacogn. Phytochem. 2019, 8, 59–69. [Google Scholar]
- Camarotto, C.; Piccoli, I.; Dal Ferro, N.; Polese, R.; Chiarini, F.; Furlan, L.; Morari, F. Have we reached the turning point? Looking for evidence of SOC increase under conservation agriculture and cover crop practices. Eur. J. Soil Sci. 2020, 71, 1050–1063. [Google Scholar] [CrossRef]
- Ibnmrhar, M.; Bouabdli, A.; Baghdad, B.; Moussadek, R. Unlocking the potential of conservation agriculture for soil carbon sequestration influenced by soil texture and climate: A worldwide systematic review. J. Arid. Agric. 2023, 9, 108–131. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Jayaraman, S.; Sahu, M.; Sinha, N.K.; Mohanty, M.; Chaudhary, R.S.; Yadav, B.; Srivastava, L.K.; Hati, K.M.; Patra, A.K.; Dalal, R.C. Conservation agricultural practices impact on soil organic carbon, soil aggregation and greenhouse gas emission in a vertisol. Agriculture 2022, 12, 1004. [Google Scholar] [CrossRef]
- McNunn, G.; Karlen, D.L.; Salas, W.; Rice, C.W.; Mueller, S.; Muth, D., Jr.; Seale, J.W. Climate smart agriculture opportunities for mitigating soil greenhouse gas emissions across the US Corn-Belt. J. Clean. Prod. 2020, 268, 122240. [Google Scholar] [CrossRef]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.P.; Cardinael, R.; Chen, S.; et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob. Change Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef]
- Freitag, M.; Friedrich, T.; Kassam, A. The carbon footprint of Conservation Agriculture. Int. J. Agric. Sustain. 2024, 22, 2331949. [Google Scholar] [CrossRef]
- M’hamed, H.C.; Rezgui, M.; Ferchichi, N.; Toukabri, W.; Somrani, O.; Rezgui, M.; Bahri, H.; Barbouchi, M.; Frija, A.; Rinaldi, M.; et al. Resilience of Conservation Agriculture to Rainfall Deficits: A Long-Term Study on Durum Wheat Yield in Tunisia. Ital. J. Agron. 2025, 20, 100031. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P. Tillage intensity and straw retention impacts on soil organic carbon, phosphorus and biological pools in soil aggregates under rice-wheat cropping system in Punjab, north-western India. Eur. J. Agron. 2023, 149, 126913. [Google Scholar] [CrossRef]
- Alalaf, A.H.; Abbas, A.K.; Mahmood, S.S.; AlTaey, D.K.; Al-Tawaha, A.R.; Al-Tawaha, A.R.; Mehdizadeh, M.; Abbas, G. Using clean alternatives and reducing reliance on chemical fertilizers added to soil to achieve agricultural sustainability. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 022011. [Google Scholar] [CrossRef]
- Paudel, S.; Sah, L.P.; Devkota, M.; Poudyal, V.; Prasad, P.V.; Reyes, M.R. Conservation agriculture and integrated pest management practices improve yield and income while reducing labor, pests, diseases and chemical pesticide use in smallholder vegetable farms in Nepal. Sustainability 2020, 12, 6418. [Google Scholar] [CrossRef]
- Cantero-Martínez, C.; Plaza-Bonilla, D.; Angás, P.; Álvaro-Fuentes, J. Best management practices of tillage and nitrogen fertilization in Mediterranean rainfed conditions: Combining field and modelling approaches. Eur. J. Agron. 2016, 79, 119–130. [Google Scholar] [CrossRef][Green Version]
- Manono, B. Agro-ecological role of earthworms (Oligochaetes) in sustainable agriculture and nutrient use efficiency: A review. J. Agric. Ecol. Res. Int. 2016, 8, 1–18. [Google Scholar] [CrossRef]
- Khasabulli, B.D.; Mutisya, M.D.; Anyango, S.P.; Manono, B.O.; Odhiambo, D.G. Soil microbial biomass, microbial population and diversity in maize-banana based agroforestry system in Kisii County, Kenya. Asian J. Res. Crop Sci. 2023, 8, 230–239. [Google Scholar] [CrossRef]
- Fogliatto, S.; Patrucco, L.; De Palo, F.; Moretti, B.; Milan, M.; Vidotto, F. Cover crops as green mulching for weed management in rice. Ital. J. Agron. 2021, 16, 1850. [Google Scholar] [CrossRef]
- Nikolić, N.; Loddo, D.; Masin, R. Effect of crop residues on weed emergence. Agronomy 2021, 11, 163. [Google Scholar] [CrossRef]
- Jew, E.K.; Whitfield, S.; Dougill, A.J.; Mkwambisi, D.D.; Steward, P. Farming systems and conservation agriculture: Technology, structures and agency in Malawi. Land Use Policy 2020, 95, 104612. [Google Scholar] [CrossRef]
- Thierfelder, C.; Bunderson, W.T.; Jere, Z.D.; Mutenje, M.; Ngwira, A. Development of conservation agriculture (CA) systems in Malawi: Lessons learned from 2005 to 2014. Exp. Agric. 2016, 52, 579–604. [Google Scholar] [CrossRef]
- Che, Y.; Rejesus, R.M.; Cavigelli, M.A.; White, K.E.; Aglasan, S.; Knight, L.G.; Dell, C.; Hollinger, D.; Lane, E.D. Long-term economic impacts of no-till adoption. Soil Secur. 2023, 13, 100103. [Google Scholar] [CrossRef]
- Boinceanz, B.; Dent, D.; Boincean, B.; Dent, D. Tillage and conservation agriculture. In Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils; Springer: Cham, Switzerland, 2019; pp. 125–149. [Google Scholar] [CrossRef]
- Manono, B.O.; Khan, S.; Kithaka, K.M. A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth 2025, 6, 48. [Google Scholar] [CrossRef]
- Singh, A.; Mehrotra, R.; Rajput, V.D.; Dmitriev, P.; Singh, A.K.; Kumar, P.; Tomar, R.S.; Singh, O.; Singh, A.K. Geoinformatics, artificial intelligence, sensor technology, big data: Emerging modern tools for sustainable agriculture. In Sustainable Agriculture Systems and Technologies; Wiley: Hoboken, NJ, USA, 2022; pp. 295–313. [Google Scholar] [CrossRef]
- Sadiq, F.K.; Ya’u, S.L.; Aliyu, J.; Maniyunda, L.M. Evaluation of land suitability for soybean production using GIS-based multi-criteria approach in Kudan Local Government area of Kaduna State Nigeria. Environ. Sustain. Indic. 2023, 20, 100297. [Google Scholar] [CrossRef]
- Li, C.; Tang, Y.; McHugh, A.D.; Wu, X.; Liu, M.; Li, M.; Xiong, T.; Ling, D.; Tang, Q.; Liao, M.; et al. Development and performance evaluation of a wet-resistant strip-till seeder for sowing wheat following rice. Biosyst. Eng. 2022, 220, 146–158. [Google Scholar] [CrossRef]
- Duraimurugan, N.; Akalya, G.; Aravind, S. Empowering Precision Agriculture: A Comprehensive Real-Time Monitoring and Decision Support System for Farmers. In Proceedings of the 2025 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 11–13 February 2025; pp. 1215–1222. [Google Scholar] [CrossRef]
- Ajith, S.; Vijayakumar, S.; Elakkiya, N. Yield prediction, pest and disease diagnosis, soil fertility mapping, precision irrigation scheduling, and food quality assessment using machine learning and deep learning algorithms. Discov. Food 2025, 5, 67. [Google Scholar] [CrossRef]
- Mansoor, S.; Iqbal, S.; Popescu, S.M.; Kim, S.L.; Chung, Y.S.; Baek, J.H. Integration of smart sensors and IOT in precision agriculture: Trends, challenges and future prospectives. Front. Plant Sci. 2025, 16, 1587869. [Google Scholar] [CrossRef]
- Attah, R.U.; Garba, B.M.; Gil-Ozoudeh, I.; Iwuanyanwu, O. Leveraging geographic information systems and data analytics for enhanced public sector decision-making and urban planning. Magna Sci. Adv. Res. Rev. 2024, 12, 152–163. [Google Scholar] [CrossRef]
- Verna, E.; Genta, G.; Galetto, M. Enhanced Food Quality by Digital Traceability in Food Processing Industry. Food Eng. Rev. 2025, 17, 359–383. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N. Unmanned aerial vehicles: A unique platform for low-altitude remote sensing for crop management. In Weed Science for Sustainable Agriculture, Environment and Biodiversity: Proceedings of the Plenary and Lead Papers of the 25th Asian-Pacific Weed Science Society Conference; Indian Society of Weed Science: Hisar, India, 2015; pp. 185–192. [Google Scholar]
- Fulton, J.; Darr, M. GPS, GIS, Guidance, and Variable-rate Technologies for Conservation Management. Precision Conservation: Geospat. Tech. Agric. Nat. Resour. Conserv. 2017, 59, 65–81. [Google Scholar] [CrossRef]
- Nayak, B.B.; Mrudula, D.; Prasanna, T.; Bhupal, G. New Generation Technologies for Precision Nutrient Management for Sustainable Agriculture. In Current Trends in Agriculture & Allied Sciences; SP Publishing: Delhi, India, 2024. [Google Scholar]
- Sarvestani, G.S.; Edalat, M.; Shirzadifar, A.; Pourghasemi, H.R. Early Season Dominant Weed Mapping in Maize Field Using Unmanned Aerial Vehicle (UAV) Imagery: Towards Developing Prescription Map. Smart Agric. Technol. 2025, 11, 100956. [Google Scholar] [CrossRef]
- Moghadam, P.; Lowe, T.; Edwards, E.J. Digital twin for the future of orchard production systems. Proceedings 2019, 36, 92. [Google Scholar] [CrossRef]
- Okomba, N.S.; Esan, A.O.; Omodunbi, B.A.; Sobowale, A.A.; Adanigbo, O.O.; Oguntuase, O.O. IOT based solar powered pump for agricultural irrigation and control system. Fudma J. Sci. 2023, 7, 192–199. [Google Scholar] [CrossRef]
- Ullah, S.; Hafeez, G.; Rukh, G.; Albogamy, F.R.; Murawwat2, S.; Ali, F.; Khan, F.A.; Khan, S.; Rehman, K. A Smart Sensors-Based Solar-Powered System to Monitor and Control Tube Well for Agriculture Applications. Processes 2022, 10, 1654. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Allman, M.; Dudáková, Z.; Jankovský, M.; Juško, V.; Merganič, J. Soil and residual stand disturbances after harvesting in close-to-nature managed forests. Forests 2023, 14, 910. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter content and crop yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef]
- Friedrich, T. The role of no or minimum mechanical soil disturbance in Conservation Agriculture systems. In Advances in Conservation Agriculture; Burleigh Dodds Science Publishing: Sawston, UK, 2020; pp. 155–178. [Google Scholar]
- Singh, R.C. Machinery for Conservation Agriculture: Indian Perspective. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security. In Conservation Agriculture for Sustainable Agriculture; Springer: Singapore, 2021; pp. 499–509. [Google Scholar] [CrossRef]
- Potratz, D.J.; Mourtzinis, S.; Gaska, J.; Lauer, J.; Arriaga, F.J.; Conley, S.P. Strip-till, other management strategies, and their interactive effects on corn grain and soybean seed yield. Agron. J. 2020, 112, 72–80. [Google Scholar] [CrossRef]
- Virk, S.S.; Fulton, J.P.; Porter, W.M.; Pate, G.L. Row-crop planter performance to support variable-rate seeding of maize. Precis. Agric. 2020, 21, 603–619. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, N.; Chen, L. Sensing technologies and automation for precision agriculture. In Women in Precision Agriculture: Technological Breakthroughs, Challenges and Aspirations for a Prosperous and Sustainable Future; Springer: Cham, Switzerland, 2021; pp. 35–54. [Google Scholar] [CrossRef]
- de Araúujo, A.G.; Sims, B.; Desbiolles, J.; Bolonhezi, D.; Haque, E.; Jin, H.; Fayad, J.A.; Kienzle, J.; do Prado Wildner, L.; Hongwen, L.; et al. The status of mechanization in Conservation Agriculture systems. In Advances in Conservation Agriculture; Burleigh Dodds Science Publishing: Sawston, UK, 2020; pp. 427–496. [Google Scholar]
- Dibbern, T.; Romani, L.A.; Massruhá, S.M. Main drivers and barriers to the adoption of Digital Agriculture technologies. Smart Agric. Technol. 2024, 8, 100459. [Google Scholar] [CrossRef]
- Priya, A.K.; Alagumalai, A.; Balaji, D.; Song, H. Bio-based agricultural products: A sustainable alternative to agrochemicals for promoting a circular economy. RSC Sustain. 2023, 1, 746–762. [Google Scholar] [CrossRef]
- Anyebe, O.; Sadiq, F.K.; Manono, B.O.; Matsika, T.A. Biochar Characteristics and Application: Effects on Soil Ecosystem Services and Nutrient Dynamics for Enhanced Crop Yields. Nitrogen. 2025, 6, 31. [Google Scholar] [CrossRef]
- Parewa, H.P.; Joshi, N.; Meena, V.S.; Joshi, S.; Choudhary, A.; Ram, M.; Meena, S.C.; Jain, L.K. Role of biofertilizers and biopesticides in organic farming. In Advances in Organic Farming; Woodhead Publishing: Cambridge, UK, 2021; Chapter 9; pp. 133–159. [Google Scholar] [CrossRef]
- Sharma, B.; Tiwari, S.; Kumawat, K.C.; Cardinale, M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci. Total Environ. 2023, 860, 160476. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Malik, K.; Chejara, S.; Rajwar, D.; Narjary, B.; Chandra, P. Integration of organics in nutrient management for rice-wheat system improves nitrogen use efficiency via favorable soil biological and electrochemical responses. Front. Plant Sci. 2023, 13, 1075011. [Google Scholar] [CrossRef]
- Li, H.P.; Han, Q.Q.; Liu, Q.M.; Gan, Y.N.; Rensing, C.; Rivera, W.L.; Zhao, Q.; Zhang, J.L. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol. Res. 2023, 272, 127375. [Google Scholar] [CrossRef]
- Shakila, P.J.; Vijaya, T. Biofertilizers: A review on advancing sustainable agriculture and enhancing soil health. In The Unity of Life: Interdisciplinary Connections across the Sciences; Deep Science Publishing: Yakutiye, Erzurum, Turkey, 2024; pp. 46–53. [Google Scholar] [CrossRef]
- Badagliacca, G.; Testa, G.; La Malfa, S.G.; Cafaro, V.; Lo Presti, E.; Monti, M. Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in mediterranean agroecosystems: A Review. Horticulturae 2024, 10, 427. [Google Scholar] [CrossRef]
- Patani, A.; Patel, M.; Islam, S.; Yadav, V.K.; Prajapati, D.; Yadav, A.N.; Sahoo, D.K.; Patel, A. Recent advances in Bacillus-mediated plant growth enhancement: A paradigm shift in redefining crop resilience. World J. Microbiol. Biotechnol. 2024, 40, 77. [Google Scholar] [CrossRef]
- Kumar, P.; Kamle, M.; Borah, R.; Mahato, D.K.; Sharma, B. Bacillus thuringiensis as microbial biopesticide: Uses and application for sustainable agriculture. Egypt. J. Biol. Pest Control 2021, 31, 95. [Google Scholar] [CrossRef]
- Midingoyi, S.K.; Kassie, M.B.; Affognon, H.D.; Macharia, I.; LeRu, B. Estimating the impact of biological control of maize stemborers on productivity and poverty in Kenya: A continuous treatment approach. Environ. Dev. Sustain. 2024, 26, 5067–5088. [Google Scholar] [CrossRef]
- Dai, M.; Shen, Y.; Li, X.; Liu, J.; Zhang, S.; Miao, H. Digital Twin System of Pest Management Driven by Data and Model Fusion. Agriculture 2024, 14, 1099. [Google Scholar] [CrossRef]
- Manono, B.O. Small-Scale Farming in the United States: Challenges and Pathways to Enhanced Productivity and Profitability. Sustainability 2025, 17, 6752. [Google Scholar] [CrossRef]
- Baudron, F.; Nazare, R.; Matangi, D. The role of mechanization in transformation of smallholder agriculture in Southern Africa: Experience from Zimbabwe. In Transforming Agriculture in Southern Africa; Routledge: Abingdon, UK, 2019; pp. 152–160. [Google Scholar]
- Enters, T. Incentives for soil conservation. In Response to Land Degradation; CRC Press: Boca Raton, FL, USA, 2019; pp. 351–361. [Google Scholar]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Ruben, R. What Smallholders Want: Effective Strategies for Rural Poverty Reduction. Sustainability 2024, 16, 5525. [Google Scholar] [CrossRef]
- El Bakali, I.; Ait El Mekki, A.; Maatala, N.; Harbouze, R. A systematic review on the impact of incentives on the adoption of conservation agriculture: New guidelines for policymakers and researchers. Int. J. Agric. Sustain. 2023, 21, 2290415. [Google Scholar] [CrossRef]
- Adusumilli, N.; Wang, H.; Dodla, S.; Deliberto, M. Estimating risk premiums for adopting no-till and cover crops management practices in soybean production system using stochastic efficiency approach. Agric. Syst. 2020, 178, 102744. [Google Scholar] [CrossRef]
- Hazell, P.; Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Secur. 2020, 25, 100326. [Google Scholar] [CrossRef]
- Becerra-Encinales, J.F.; Bernal-Hernandez, P.; Beltrán-Giraldo, J.A.; Cooman, A.P.; Reyes, L.H.; Cruz, J.C. Agricultural extension for adopting technological practices in developing countries: A scoping review of barriers and dimensions. Sustainability 2024, 16, 3555. [Google Scholar] [CrossRef]
- Prajapati, C.S.; Priya, N.K.; Bishnoi, S.; Vishwakarma, S.K.; Buvaneswari, K.; Shastri, S.; Tripathi, S.; Jadhav, A. The Role of Participatory Approaches in Modern Agricultural Extension: Bridging Knowledge Gaps for Sustainable Farming Practices. J. Exp. Agric. Int. 2025, 47, 204–222. [Google Scholar] [CrossRef]
- Mushtaq, U.; Goswami, K. Agricultural extension and farm entrepreneurship: Evidence from small-scale farmers of high-density plantations in Kashmir. J. Agric. Educ. Ext. 2025, 31, 259–284. [Google Scholar] [CrossRef]
- Thierfelder, C.; Baudron, F.; Setimela, P.; Nyagumbo, I.; Mupangwa, W.; Mhlanga, B.; Lee, N.; Gérard, B. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev. 2018, 38, 16. [Google Scholar] [CrossRef]
- Ambler, K.; De Brauw, A.; Murphy, M. Increasing the adoption of conservation agriculture: A framed field experiment in Northern Ghana. Agric. Econ. 2023, 54, 742–756. [Google Scholar] [CrossRef]
- Sims, B.; Heney, J. Promoting smallholder adoption of conservation agriculture through mechanization services. Agriculture 2017, 7, 64. [Google Scholar] [CrossRef]
- Abdulai, A.R. Toward digitalization futures in smallholder farming systems in Sub-Sahara Africa: A social practice proposal. Front. Sustain. Food Syst. 2022, 6, 866331. [Google Scholar] [CrossRef]
- Wekesah, F.M.; Mutua, E.N.; Izugbara, C.O. Gender and conservation agriculture in sub-Saharan Africa: A systematic review. Int. J. Agric. Sustain. 2019, 17, 78–91. [Google Scholar] [CrossRef]
- Kalovoto, D.M.; Kimiti, J.M.; Manono, B.O. Influence of women empowerment on adoption of agroforestry technologies tocounter climate change and variability in semi-arid Makueni County, Kenya. Int. J. Environ. Sci. Nat. Resour. 2020, 24, 47–55. [Google Scholar] [CrossRef]
- Hidrobo, M.; Kosec, K.; Gartaula, H.N.; Van Campenhout, B.; Carrillo, L. Making complementary agricultural resources, technologies, and services more gender-responsive. Glob. Food Secur. 2024, 42, 100778. [Google Scholar] [CrossRef]
- van Asseldonk, M.; Girvetz, E.; Pamuk, H.; Wattel, C.; Rubenz, R. Policy incentives for smallholder adoption of climate-smart agricultural practices. Front. Political Sci. 2023, 5, 1112311. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Y.; Wang, S.; Guan, B.; Balkovic, J.; Kraxner, F. To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ. 2019, 662, 141–150. [Google Scholar] [CrossRef]
- Devkota, M.; Frija, A.; Dhehibi, B.; Rudiger, U.; Alary, V.; M’hamed, H.C.; Louahdi, N.; Idoudi, Z.; Rekik, M. Better crop-livestock integration for enhanced agricultural system resilience and food security in the changing climate: Case study from low-rainfall areas of North Africa. In Food Security and Climate-Smart Food Systems: Building Resilience for the Global South; Springer International Publishing: Cham, Switzerland, 2022; pp. 263–287. [Google Scholar] [CrossRef]
- Rekik, M.; López Ridaura, S.; M’hamed, H.C.; Djender, Z.; Dhehibi, B.; Frija, A.; Devkota Wasti, M.; Rudiger, U.; Bonaiuti, E.; Najjar, D.; et al. Use of Conservation Agriculture in Crop-Livestock Systems (CLCA) in the Drylands for Enhanced Water Use Efficiency, Soil Fertility and Productivity in NEN and LAC Countries–Project Progress Report: Year I-April 2018 to March 2019; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2019. [Google Scholar]
- Hermans, T.D.; Whitfield, S.; Dougill, A.J.; Thierfelder, C. Bridging the disciplinary gap in conservation agriculture research, in Malawi. A review. Agron. Sustain. Dev. 2020, 40, 3. [Google Scholar] [CrossRef]
Category | Effect | References | |
---|---|---|---|
Soil Structure | Improves aggregate stability, especially in topsoil, due to residue retention and reduced disturbance. | [36,39,40,42] | |
Physical Properties | Bulk Density | slight increases (~1.4%) with residue retention; decreases linked to higher residue incorporation and fauna activity. | [4,44,54] |
Water Infiltration & Retention | Enhanced infiltration and moisture retention due to improved structure, porosity, subsoiling further improves retention. | [7,44,46,54] | |
Reduced Erosion | Significantly reduces erosion by 7.5–80% compared to conventional tillage, especially with residue retention and cover crops. | [49,50,53,105] | |
Soil Organic Carbon | Increases SOC by 20–40% in topsoil over 5–7 years; enhances carbon sequestration, especially with zero tillage and residue retention. | [57,61,62] | |
Chemical Properties | Soil pH | Stabilizes or increases pH, particularly with cover crops and residue retention; effects vary with depth and management. | [7,42,67,69] |
Cation Exchange Capacity (CEC) | Increases CEC in topsoil due to higher SOC, improving nutrient retention and soil fertility. | [42,72] | |
Nutrient Cycling | Enhances nutrient cycling by improving aggregation, reducing runoff/leaching, and increasing organic matter and microbial activity. | [60,72,74,76] | |
Microbial Activity | Increases microbial biomass carbon and nitrogen, boosts microbial activity due to sustained organic matter inputs and reduced disturbance. | [59,60,65] | |
Biological Properties | Soil Fauna | Higher residue retention and reduced tillage stimulate soil fauna activity, improving soil structure and nutrient cycling. | [54,59] |
Biodiversity | Promotes greater soil biodiversity by providing stable habitats and food sources through organic matter and minimal disturbance. | [41,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, F.K.; Anyebe, O.; Tanko, F.; Abdulkadir, A.; Manono, B.O.; Matsika, T.A.; Abubakar, F.; Bello, S.K. Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions. Soil Syst. 2025, 9, 103. https://doi.org/10.3390/soilsystems9030103
Sadiq FK, Anyebe O, Tanko F, Abdulkadir A, Manono BO, Matsika TA, Abubakar F, Bello SK. Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions. Soil Systems. 2025; 9(3):103. https://doi.org/10.3390/soilsystems9030103
Chicago/Turabian StyleSadiq, Fatihu Kabir, Ojone Anyebe, Fatima Tanko, Aisha Abdulkadir, Bonface O. Manono, Tiroyaone Albertinah Matsika, Fahad Abubakar, and Suleiman Kehinde Bello. 2025. "Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions" Soil Systems 9, no. 3: 103. https://doi.org/10.3390/soilsystems9030103
APA StyleSadiq, F. K., Anyebe, O., Tanko, F., Abdulkadir, A., Manono, B. O., Matsika, T. A., Abubakar, F., & Bello, S. K. (2025). Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions. Soil Systems, 9(3), 103. https://doi.org/10.3390/soilsystems9030103