Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Heavy Metals Concentration Analysis
2.4. Heavy Metal Pollution Assessment
2.4.1. Contamination Factor (CF)
2.4.2. Contamination Degree (CD)
2.4.3. Modified Contamination Degree (mCD)
2.4.4. Pollution Load Index (PLI)
2.4.5. Geo-Accumulation Index (Igeo)
2.4.6. Potential Ecological Risk Index (RI)
2.5. Human Health Risk Index
2.5.1. Non-Carcinogenic Hazards
2.5.2. Carcinogenic Hazards
2.6. Statistical Analyses
3. Results and Discussion
3.1. Heavy Metal Contents in the Dumpsite Soil
3.1.1. Contamination Factor (CF)
3.1.2. Contamination Degree (CD)
3.1.3. Modified Contamination Degree (mCD)
3.1.4. Pollution Load Index (PLI)
3.1.5. Geo-Accumulation Index (Igeo)
3.1.6. Potential Ecological Risk Index (RI)
3.2. Human Health Risk Index
3.2.1. Non-Carcinogenic Hazard Quotient (HQ) and Health Index (HI)
3.2.2. Carcinogenic Risks Associated with the Dumpsite Soil
3.2.3. Identification of Site-Specific Interventions to Reduce Human Health Risks
4. Limitations
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Igeo | Geo-accumulation index |
EF | Enrichment factor |
CF | Contamination factor |
PLI | Pollution load index |
PRI | Ecological risk index |
THI | Total hazard index |
AAS | Atomic absorption spectrophotometer |
USEPA | United States Environmental Protection Agency |
CD | Contamination degree |
mCD | Modified contamination degree |
RI | Potential ecological risk index |
HQ | Hazard quotient |
ADI | Average daily intake |
RfD | Chronic reference dose |
SD | Standard deviation |
Ei | Individual potential ecological risk |
References
- Tesseme, A.T.; Vinti, G.; Vaccari, M. Pollution Potential of Dumping Sites on Surface Water Quality in Ethiopia Using Leachate and Comprehensive Pollution Indices. Environ. Monit. Assess 2022, 194, 545. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Solid Waste Management; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Agbeshie, A.A.; Rita, A.; Anokye, J.; Banunle, A. Municipal Waste Dumpsite: Impact on Soil Properties and Heavy Metal Con-Centrations, Sunyani, Ghana. Sci. Afr. 2020, 8, 00390. [Google Scholar] [CrossRef]
- Benhamdoun, A.; Achtak, H.; Vinti, G.; Dahbi, A. Soil Contamination by Trace Metals and Assessment of the Risks Associated: The Dumping Site of Safi City (Northwest Morocco). Environ. Monit. Assess 2023, 195, 941. [Google Scholar] [CrossRef] [PubMed]
- El Fadili, H.; Ben Ali, M.; Touach, N.; El Mahi, M.; Mostapha Lotfi, E. Ecotoxicological and Pre-Remedial Risk Assessment of Heavy Metals in Municipal Solid Wastes Dumpsite Impacted Soil in Morocco. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100640. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, P.; Wang, C.; Hou, J.; Qian, J. Distribution of Metals in Water and Suspended Particulate Matter during the Resuspension Processes in Taihu Lake Sediment, China. Quat. Int. 2013, 286, 94–102. [Google Scholar] [CrossRef]
- Sirven, J.B. Detection of Heavy Metals in Soils by Laser-Induced Breakdown Spectroscopy (LIBS); Université de Bordeaux: Bordeaux, France, 2006. [Google Scholar]
- Vaccari, M.; Vinti, G.; Tudor, T. An Analysis of the Risk Posed by Leachate from Dumpsites in Developing Countries. Environments 2018, 5, 99. [Google Scholar] [CrossRef]
- Aydi, A. Assessment of Heavy Metal Contamination Risk in Soils of Landfill of Bizerte (Tunisia) with a Focus on Application of Pollution Indicators. Environ. Earth. Sci. 2015, 74, 3019–3027. [Google Scholar] [CrossRef]
- Boateng, T.K.; Opoku, F.; Akoto, O. Heavy Metal Contamination Assessment of Groundwater Quality: A Case Study of Oti Land-Fill Site, Kumasi. Appl. Water. Sci. 2019, 9, 33. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, M.; Vinti, G.; Cesaro, A.; Belgiorno, V.; Salhofer, S.; Dias, M.I.; Jandric, A. WEEE Treatment in Developing Countries: Environmental Pollution and Health Consequences—An Overview. Int. J. Environ. Res. Public Health 2019, 16, 1595. [Google Scholar] [CrossRef] [PubMed]
- Vinti, G.; Bauza, V.; Clasen, T.; Tudor, T.; Zurbrügg, C.; Vaccari, M. Health Risks of Solid Waste Management Practices in Rural Ghana: A Semi-Quantitative Approach toward a Solid Waste Safety Plan. Environ. Res. 2023, 216, 114728. [Google Scholar] [CrossRef] [PubMed]
- Vinti, G.; Batinić, B.; Bauza, V.; Clasen, T.; Tudor, T.; Zurbrügg, C.; Vaccari, M. Municipal Solid Waste Management and Health Risks: Application of Solid Waste Safety Plan in Novi Sad, Serbia. Int. J. Environ. Res. 2024, 18, 91. [Google Scholar] [CrossRef]
- Ajay, S.V.; Prathish, K.P. Dioxins Emissions from Bio-Medical Waste Incineration: A Systematic Review on Emission Factors, Inventories, Trends and Health Risk Studies. J. Hazard. Mater 2024, 465, 133384. [Google Scholar] [CrossRef] [PubMed]
- Velis, C.A.; Cook, E. Mismanagement of Plastic Waste through Open Burning with Emphasis on the Global South: A Systematic Review of Risks to Occupational and Public Health. Environ. Sci. Technol. 2021, 55, 7186–7207. [Google Scholar] [CrossRef] [PubMed]
- Cittadino, A.; Ocello, N.; Majul, M.V.; Ajhuacho, R.; Dietrich, P.; Igarzabal, M.A. Heavy Metal Pollution and Health Risk As-Sessment of Soils from Open Dumps in the Metropolitan Area of Buenos Aires, Argentina. Environ. Monit. Assess 2020, 192, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Afrifa, C.G.; Ofosu, F.G.; Bamford, S.A.; Atiemo, S.M.; Aboh, I.J.; Gyampo, O.; Ahiamadjie, H.; Adeti, J.P.; Arthur, J.K. Health Risk Assessment of Heavy Metal Exposure from Soil Dust at Selected Fuel Filling Stations in Accra. Int. J. Sci. Technol. 2015, 4, 289–296. [Google Scholar]
- Liang, Y.; Yi, X.; Dang, Z.; Wang, Q.; Luo, H.; Tang, J. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China. Int. J. Environ. Res. Public Health 2017, 14, 1557. [Google Scholar] [CrossRef] [PubMed]
- Pehoiu, G.; Murarescu, O.; Radulescu, C.; Dulama, I.D.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G. Heavy Metals Accumulation and Translocation in Native Plants Grown on Tailing Dumps and Human Health Risk. Plant Soil 2020, 456, 405–424. [Google Scholar] [CrossRef]
- National Strategy for Waste Reduction and Recovery (NSWR); Summary Report; Ministry of Energy, Mines and Sustainable Development, in Charge of Sustainable Development: Rabat, Morocco, 2019. Available online: https://www.logipro.ma/images/Traitement_des_deee/Rapport_de_synthese_SNRVD_FR.pdf (accessed on 19 April 2025).
- Government of Morocco. Law No. 28.00 Related to Waste Management and Disposal; Official Bulletin No. 5480; Government of Morocco: Rabat, Morocco, 2006; p. 3747.
- Government of Morocco. Framework Law No. 99.12 as a National Charter for the Environment and Sustainable Development; Official Bulletin No. 6240; Government of Morocco: Rabat, Morocco, 2014; p. 3194.
- Government of Morocco. Law No. 77.15 Related to Preventing the Manufacture, Import, Handling, Marketing and Use of Plastic Bags; Official Bulletin No. 6420; Government of Morocco: Rabat, Morocco, 2015; p. 9702.
- Hoy, Z.X.; Woon, K.S.; Chin, W.C.; Fan, Y.; Yoo, S.J. Curbing Global Solid Waste Emissions toward Net-Zero Warming Futures. Science 2023, 382, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.F.; Eggerth, L.L.; Savage, G.M. Management of Solid Wastes in Developing Countries; CISA Publisher: Padova, Italy, 2007. [Google Scholar]
- Afolagboye, L.O.; Ojo, A.A.; Talabi, A.O. Evaluation of Soil Contamination Status around a Municipal Waste Dumpsite Using Contamination Indices, Soil-Quality Guidelines, and Multivariate Statistical Analysis. SN Appl. Sci. 2020, 2, 1864. [Google Scholar] [CrossRef]
- Oruko, R.O.; Edokpayi, J.N.; Msagati, T.A.M.; Tavengwa, N.T.; Ogola, H.J.O.; Ijoma, G.; Odiyo, J.O. Investigating the Chro-Mium Status, Heavy Metal Contamination, and Ecological Risk Assessment via Tannery Waste Disposal in Sub-Saharan Africa (Kenya and South Africa). Environ. Sci. Pollut. Res. 2021, 28, 42135–42149. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, M.; El Fadili, H.; El Mahi, M.; Lotfi, E.M.; Fannakh, A.; Chahine, A. Geochemistry Pollution Status and Ecotoxicolog-Ical Risk Assessment of Heavy Metal (Oid)s in Soil Influenced by Co-Landfilling of MSW and Sewage Sludge, Morocco. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100859. [Google Scholar] [CrossRef]
- Andaloussi, K.; Achtak, H.; Nakhcha, C.; Haboubi, K.; Stitou, M. Assessment of Soil Trace Metal Contamination of an Uncon-Trolled Landfill and Its Vicinity: The Case of the City of ‘Targuist’. Mor. J. Chem. 2021, 9, 513–529. [Google Scholar] [CrossRef]
- U.N.E.P. Global Waste Management Outlook 2024: Beyond an Age of Waste–Turning Rubbish into a Resource 2024; U.N.E.P: Nairobi, Kenya, 2024. [Google Scholar]
- Narayan, A.S.; Marks, S.J.; Meierhofer, R.; Strande, L.; Tilley, E.; Zurbrügg, C.; Lüthi, C. Advancements in and Integration of Water, Sanitation, and Solid Waste for Low-and Middle-Income Countries. Annu. Rev. Environ. Resour. 2021, 46, 193–219. [Google Scholar] [CrossRef]
- Lavagnolo, M.C.; Grossule, V.; Cossu, R. Landfill Disposal in Developing Countries. In Waste Management in Developing Countries. Waste as a Resource; El Bari, H., Trois, C., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–14. [Google Scholar]
- Haboubi, K.; El Himri, A.; Hanafi, I. Sources and Propagation Mechanism of Odor Nuisance in the Landfill of Al Hoceima, Morocco. Biomed. J. Sci. Tech. Res. 2023, 51, 42905–42912. [Google Scholar] [CrossRef]
- Kouali, H.; Achtak, H.; Chaouti, A.; Elkalay, K.; Dahbi, A. Assessment of Trace Metal Contamination in Surficial Fine-Grained Sediments and Mussel, Mytilus Galloprovincialis from Safi Areas in the Northwestern Atlantic Coast of Morocco. Reg. Stud. Mar. Sci 2020, 40, 101535. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency USEPA. Chromium in Drinking Water 2024; USEPA: Washington, DC, USA, 2024.
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The Uptake and Bioaccumulation of Heavy Metals by Food Plants, Their Effects on Plants Nutrients, and Associated Health Risk: A Review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef] [PubMed]
- Benhamdoun, A.; Achtak, H.; Dahbi, A. Bioaccumulation of Trace Metals in Edible Terrestrial Snails, Theba Pisana and Otala Spp., in a Dumpsite Area in Morocco and Assessment of Human Health Risks for Consumers. Environ. Sci. Pollut. Res. 2024, 31, 42810–42826. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, T.O.; Olatunji, A.S.; Jimoh, M.T.; Fajemila, O.T. Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria. J. Health Pollut. 2018, 8, 180906. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Sakan, S.M.; Dordević, D.S.; Manojlović, D.D.; Predrag, P.S. Assessment of Heavy Metal Pollutants Accumulation in the Tisza River Sediments. J. Environ. Manag. 2009, 90, 3382–3390. [Google Scholar] [CrossRef] [PubMed]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Thongyuan, S.; Khantamoon, T.; Aendo, P.; Binot, A.; Tulayakul, P. Ecological and Health Risk Assessment, Carcinogenic and Non-Carcinogenic Effects of Heavy Metals Contamination in the Soil from Municipal Solid Waste Landfill in Central, Thailand. Hum. Ecol. Risk Assess. 2021, 27, 876–897. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and Ecological Risk Assessment of Heavy Metals in Sediments of Nador Lagoon, Morocco. Ecol. Indic 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Zahran, M.A.E.; El Amier, Y.A.; Elnaggar, A.A.; Mohamed, H.A.E.; El Alfy, M. Assessment and Distribution of Heavy Metals Pollutants in Manzala Lake. Egypt. J. Geosci. Environ. Prot. 2015, 3, 107. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sed-Iments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health Risk Assessment of Potentially Toxic Elements in Soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Hazra, G.C.; Saha, B.; Mandal, B. Assessment of Heavy Metals Contamination in Different Crops Grown in Long-Term Sewage Irrigated Areas of Kolkata, West Bengal, India. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Loska, K.; Wiechuła, D.; Korus, I. Metal Contamination of Farming Soils Affected by Industry. Environ. Int 2004, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, J. Risk Assessment of Potentially Toxic Elements (PTEs) Pollution at a Rural Industrial Wasteland in an Aban-Doned Metallurgy Factory in North China. Int. J. Environ. Res. Public Health 2018, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Chen, L.; Zhou, M.; Wang, J.; Zhang, Z.; Duan, C.; Wang, X.; Zhao, S.; Bai, X.; Li, Z.; Fang, L. A Global Meta-Analysis of Heavy Metal(Loid)s Pollution in Soils near Copper Mines: Evaluation of Pollution Level and Probabilistic Health Risks. Sci. Total En-Viron. 2022, 835, 155441. [Google Scholar] [CrossRef] [PubMed]
- Zhihao, W.; Mengchang, H.; Chunye, L. Environmental Impacts of Heavy Metals (Co, Cu, Pb, Zn) in Surficial Sediments of Es-Tuary in Daliao River and Yingkou Bay (Northeast China): Concentration Level and Chemical Fraction. Environ. Earth Sci. 2012, 66, 2417–2430. [Google Scholar]
- Jiao, X.; Teng, Y.; Zhan, Y.; Wu, J.; Lin, X. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China. PLoS ONE 2015, 10, e0127736. [Google Scholar] [CrossRef] [PubMed]
- Klinsawathom, T.; Songsakunrungrueng, B.; Pattanamahakul, P. Heavy Metal Concentration and Risk Assessment of Soil and Rice in and around an Open Dumpsite in Thailand. Environ. Asia 2017, 10, 53–64. [Google Scholar]
- Nuripuoh, J.G.; Duwiejuah, A.B.; Bakobie, N. Awareness and Health Risk Protection Behaviours of Scavengers in the Gbalahi Landfill Site, Ghana, in the Era of Sustainable Development. Discov. Sustain. 2022, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Goel, S.; Kumar, S. Health Risk Assessment for Exposure to Heavy Metals in Soils in and around E-Waste Dumping Site. J. Environ. Chem. Eng. 2022, 10, 107269. [Google Scholar] [CrossRef]
- Ihedioha, J.N.; Ukoha, P.O.; Ekere, N.R. Ecological and Human Health Risk Assessment of Heavy Metal Contamination in Soil of a Municipal Solid Waste Dump in Uyo, Nigeria. Environ. Geochem. Health 2017, 39, 497–515. [Google Scholar] [CrossRef] [PubMed]
- Department of Environment Affairs. The Framework for the Management of Contaminated Land, South Africa; Department of Environment Affairs: Pretoria, Republic of South Africa, 2010.
- U.S.E.P.A. Exposure Factors Handbook, Final ed.; EPA/600/R-09/052F; United States Environmental Protection Agency: Washington, DC, USA, 2011; pp. 2–6.
- U.S.E.P.A. Risk Assessment Guidance for Superfund. In Human Health Evaluation Manual; EPA/540/1-89/002; Office of Solid Waste and Emergency: Washington, DC, USA, 1989. [Google Scholar]
- U.S.E.P.A. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355; United States Environmental Protection Agency: Washington, DC, USA, 2002; pp. 4–24.
- U.S.E.P.A. Risk-Based Concentration Table; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- U.S.E.P.A. Exposure Factors Handbook: Volume I. General Factors; EPA/600/P-59/002Fa; United States Environmental Protection Agency: Washington, DC, USA, 1997.
- Aluko, T.; Njoku, K.L.; Adesuyi, A.A.; Akinola, M.O. Health Risk Assessment of Heavy Metals in Soil from the Iron Mines of Itakpe and Agbaja, Kogi State, Nigeria. Pollution 2018, 4, 527–538. [Google Scholar] [CrossRef]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating Bioaccessibility into Human Health Risk Assessments of Heavy Metals in Urban Park Soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, Y.; Sun, Q.; Zhang, H. Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China. Int. J. Environ. Res. Public Health 2018, 15, 202. [Google Scholar] [CrossRef] [PubMed]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From Geochemical Background Determination to Pollution Assessment of Heavy Metals in Sediments and Soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Vinti, G.; Tudor, T.; Vaccari, M. Characteristics of Leachate from Landfills and Dumpsites in Asia, Africa and Latin Ameri-ca: A Review Update. In Landfill Leachate Management; Tyagi, V.K., Ojha, C.S.P., Eds.; IWA Publishing: London, UK, 2023; pp. 1–14. [Google Scholar]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere 2021, 267, 128874. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Sappa, G.; Vitale, S.; Parisse, B.; Battistel, M. Soil Control of Trace Metals Concentrations in Landfills: A Case Study of the Largest Landfill in Europe, Malagrotta, Rome. J. Geochem. Explor. 2014, 143, 146–154. [Google Scholar] [CrossRef]
- Ajah, K.C.; Ademiluyi, J.; Nnaji, C.C.S. Seasonality and Ecological Risks of Heavy Metals in the Vicinity of a Degen-Erate Municipal Central Dumpsite in Enugu, Nigeria. J. Environ. Health Sci. Eng. 2015, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Li, S.; Wang, L. Assessment of Soil Heavy Metals for Eco-Environment and Human Health in a Rapidly Urbanization Area of the Upper Yangtze Basin. Sci. Rep. 2018, 8, 21569. [Google Scholar] [CrossRef] [PubMed]
- Rudzi, S.K.; Ho, Y.; Kharni, I.I.A. Heavy Metals Contamination in Paddy Soil and Water and Associated Dermal Health Risk among Farmers. Malays. J. Med. Health Sci. 2018, 14, 1–10. [Google Scholar]
- World Health Organization. International Agency for Research on Cancer 2019. Available online: https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Biennial-Reports/IARC-Biennial-Report-2018-2019 (accessed on 19 April 2025).
- Parliament, I. Legislative Decree 3 April 2006, n. 152–Environmental Legislation; Official Gazette of the Italian Republic: Rome, Italy, 2006. [Google Scholar]
- O’Brien, R.M.; Smits, K.M.; Smith, N.M.; Schwartz, M.R.; Crouse, D.R.; Phelan, T.J. Integrating Scientific and Local Knowledge into Pollution Remediation Planning: An Iterative Conceptual Site Model Framework. Environ. Dev 2021, 40, 100675. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Alavi, N.; Oldham, C.; Santos, R.M.; Babaei, A.A.; Vymazal, J.; Paydary, P. Constructed Wetlands for Land-Fill Leachate Treatment: A Review. Ecol. Eng. 2020, 146, 105725. [Google Scholar] [CrossRef]
- Ogata, Y.; Ishigaki, T.; Ebie, Y.; Sutthasil, N.; Chiemchaisri, C.; Yamada, M. Water Reduction by Constructed Wetlands Treating Waste Landfill Leachate in a Tropical Region. Waste Manag. 2015, 44, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Di Trapani, D.; Di Bella, G.; Viviani, G. Uncontrolled Methane Emissions from a MSW Landfill Surface: Influence of Landfill Features and Side Slopes. Waste Manag. 2013, 33, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Vinti, G.; Vaccari, M. Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities. Clean. Technol. 2022, 4, 1138–1151. [Google Scholar] [CrossRef]
- Yeo, D.; Dongo, K.; Mertenat, A.; Lüssenhop, P.; Körner, I.; Zurbrügg, C. Material Flows and Greenhouse Gas Emissions Reduc-Tion Potential of Decentralized Composting in Sub-Saharan Africa: A Case Study in Tiassalé, Côte D’Ivoire. Int. J. Environ. Res. Public Health 2020, 17, 7229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, Y.; Peng, J.; Chen, Y.; Zhan, L.; Li, J. Human Health Risk Assessment for Contaminated Sites: A Retrospective Review. Environ. Int. 2023, 171, 107700. [Google Scholar] [CrossRef] [PubMed]
- Frierdich, A.J.; Scherer, M.M.; Bachman, J.E.; Engelhard, M.H.; Rapponotti, B.W.; Catalano, J.G. Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite. Environ. Sci. Technol. 2012, 46, 10031–10039. [Google Scholar] [CrossRef] [PubMed]
- Sarpong, L.; Boadi, N.O.; Akoto, O. Ecological and Public Health Estimations of Potentially Toxic Elements in Soils from an Abandoned Dumpsite in a Tropical Climatic Zone. Int. J. Environ. Anal. Chem. 2025, 1–17. [Google Scholar] [CrossRef]
- Aralu, C.C.; Okoye, P.-A.C.; Akpomie, K.G.; Chukwuemeka-Okorie, H.O.; Abugu, H.O. Polycyclic Aromatic Hydrocarbons in Soil Situated around Solid Waste Dumpsite in Awka, Nigeria. Toxin Rev. 2023, 42, 122–131. [Google Scholar] [CrossRef]
Heavy Metals (mg/kg) | Cd | Cr | Cu | Zn | ||||
---|---|---|---|---|---|---|---|---|
In | Out | In | Out | In | Out | In | Out | |
Mean | 1.34 | 1.76 | 46.35 | 43.01 | 43.77 | 42.79 | 134.70 | 131.30 |
SD | 0.57 | 0.56 | 16.07 | 18.40 | 49.23 | 5.22 | 80.33 | 14.79 |
Minimum | 0.32 | 0.49 | 16.00 | 8.55 | 4.00 | 29.16 | 80.00 | 104.60 |
Maximum | 2.10 | 2.35 | 71.00 | 78.90 | 234.55 | 49.70 | 430.70 | 154.10 |
Sampling Sites | Cfi = Ci/Cref | CD = ΣCFi | mCD = ΣCFi/n | PLI= (CFi × CFj....CFn)(1/n) | |||
---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Cr | ||||
S1 | 1.41 | 1.45 | 5.21 | 0.37 | 8.45 | 2.11 | 1.41 |
S2 | 1.61 | 1.61 | 6.64 | 0.57 | 10.45 | 2.61 | 1.77 |
S3 | 1.52 | 1.33 | 5.92 | 0.55 | 9.34 | 2.33 | 1.61 |
S4 | 1.46 | 1.49 | 5.14 | 0.80 | 8.90 | 2.22 | 1.73 |
S5 | 1.41 | 1.62 | 4.71 | 0.62 | 8.37 | 2.09 | 1.61 |
S8 | 1.18 | 1.22 | 2.52 | 0.75 | 5.68 | 1.42 | 1.28 |
Average (outside the dumpsite) (S.D.) | 1.43 (0.15) | 1.45 (0.16) | 5.02 (1.40) | 0.61 (0.15) | 8.53 (1.59) | 2.13 (0.40) | 1.59 (0.19) |
S6 | 5.79 | 3.80 | 5.78 | 0.30 | 15.68 | 3.92 | 2.48 |
S7 | 1.04 | 1.23 | 5.21 | 0.56 | 8.06 | 2.01 | 1.39 |
S9 | 0.90 | 0.97 | 1.02 | 0.88 | 3.79 | 0.94 | 0.94 |
S10 | 0.89 | 0.95 | 5.05 | 0.74 | 7.65 | 1.91 | 1.33 |
S11 | 1.04 | 1.13 | 3.62 | 0.62 | 6.43 | 1.60 | 1.28 |
S12 | 1.05 | 1.18 | 4.90 | 0.75 | 7.89 | 1.97 | 1.46 |
S13 | 1.16 | 1.11 | 1.78 | 0.49 | 4.56 | 1.14 | 1.03 |
S14 | 1.25 | 1.62 | 2.38 | 0.74 | 6.00 | 1.50 | 1.37 |
S15 | 0.89 | 1.53 | 2.82 | 0.96 | 6.22 | 1.55 | 1.39 |
S16 | 0.57 | 1.40 | 2.92 | 0.53 | 5.43 | 1.35 | 1.05 |
Average (along the perimeter of the dumpsite) (S.D.) | 1.46 (1.53) | 1.49 (0.84) | 3.55 (1.62) | 0.66 (0.20) | 7.17 (3.30) | 1.79 (0.83) | 1.50 (0.43) |
Sampling Sites | Igeo = log2 Cn/1.5 Bn | |||
---|---|---|---|---|
Cu | Zn | Cd | Cr | |
S1 | 1.07 | 1.12 | 2.93 | −0.85 |
S2 | 1.27 | 1.27 | 3.31 | −0.20 |
S3 | 1.19 | 1.00 | 3.15 | −0.26 |
S4 | 1.12 | 1.16 | 2.92 | 0.26 |
S5 | 1.08 | 1.28 | 2.78 | −0.84 |
S8 | 0.80 | 0.87 | 1.76 | 0.17 |
Average (outside the dumpsite) (S.D.) | 1.09 (0.16) | 1.12 (0.16) | 2.81 (0.55) | −0.28 (0.48) |
S6 | 3.02 | 2.46 | 3.11 | −1.15 |
S7 | 0.64 | 0.89 | 2.95 | −0.24 |
S9 | 0.40 | 0.53 | 0.61 | 0.39 |
S10 | 0.41 | 0.52 | 2.87 | 0.15 |
S11 | 0.64 | 0.76 | 2.35 | −0.11 |
S12 | 0.64 | 0.82 | 2.87 | 0.17 |
S13 | 0.80 | 0.73 | 1.42 | −0.47 |
S14 | 0.90 | 1.24 | 1.75 | 0.14 |
S15 | 0.41 | 1.19 | 2.07 | 0.52 |
S16 | −0.78 | 1.05 | 2.01 | −0.59 |
Average (along the perimeter of the dumpsite) (S.D.) | 0.71 (0.94) | 1.02 (0.56) | 2.20 (0.80) | −0.11 (0.51) |
Sampling Sites | Ei = Ti × CFi | RI = Σ Ei | |||
---|---|---|---|---|---|
Cu | Zn | Cd | Cr | ||
S1 | 7.05 | 1.45 | 156.42 | 0.74 | 165.68 |
S2 | 8.07 | 1.61 | 199.28 | 1.15 | 210.12 |
S3 | 7.60 | 1.33 | 177.85 | 1.11 | 187.91 |
S4 | 7.30 | 1.49 | 154.28 | 1.60 | 164.69 |
S5 | 7.06 | 1.62 | 141.42 | 1.24 | 151.36 |
S8 | 5.92 | 1.22 | 75.85 | 1.50 | 84.50 |
Average outside (S.D.) | 7.17 (0.72) | 1.45 (0.16) | 150.85 (42.03) | 1.22 (0.31) | 160.71 (42.70) |
S6 | 28.97 | 3.80 | 173.57 | 0.60 | 206.94 |
S7 | 5.21 | 1.23 | 156.42 | 1.12 | 164.01 |
S9 | 4.53 | 0.97 | 30.85 | 1.77 | 38.13 |
S10 | 4.47 | 0.95 | 151.71 | 1.48 | 158.63 |
S11 | 5.24 | 1.13 | 108.85 | 1.25 | 116.48 |
S12 | 5.28 | 1.18 | 147.00 | 1.51 | 154.98 |
S13 | 5.82 | 1.11 | 53.57 | 0.99 | 61.50 |
S14 | 6.25 | 1.62 | 71.57 | 1.47 | 80.93 |
S15 | 4.46 | 1.53 | 84.85 | 1.92 | 92.78 |
S16 | 2.85 | 1.40 | 87.60 | 1.07 | 92.93 |
Average along the perimeter (S.D.) | 7.31 (7.67) | 1.49 (0.64) | 106.60 (48.59) | 1.32 (0.39) | 116.73 (52.96) |
Overall average (S.D.) | 7.26 (5.95) | 1.48 (0.66) | 123.19 (49.95) | 1.28 (0.35) | 133.22 (52.67) |
Pathways | Hazard Quotient (HQ) | Total | |||||
---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Zn | ||||
Along the perimeter of the dumpsite | Children | Ingestion | 3.10 × 10−2 | 1.90 × 10−1 | 1.50 × 10−2 | 5.73 × 10−3 | 2.42 × 10−1 |
Inhalation | 1.07 × 10−5 | 7.56 × 10−4 | - | - | 7.67 × 10−4 | ||
Dermal | 4.06 × 10−3 | - | 2.99 × 10−3 | 2.93 × 10−3 | 9.98 × 10−3 | ||
Hazard Index (HI) | 3.50 × 10−2 | 1.90 × 10−1 | 1.80 × 10−2 | 8.66 × 10−3 | 2.52 × 10−1 | ||
Adults | Ingestion | 3.40 × 10−3 | 2.10 × 10−2 | 1.62 × 10−3 | 6.13 × 10−4 | 2.66 × 10−2 | |
Inhalation | 4.60 × 10−6 | 3.20 × 10−4 | - | - | 3.25 × 10−4 | ||
Dermal | 8.40 × 10−4 | - | 6.16 × 10−4 | 2.84 × 10−2 | 2.99 × 10−2 | ||
Hazard Index (HI) | 4.24 × 10−3 | 2.10 × 10−2 | 2.23 × 10−3 | 2.90 × 10−2 | 5.65 × 10−2 | ||
Overall HI inside the dumpsite | 3.92 × 10−2 | 2.11 × 10−1 | 2.02 × 10−2 | 3.77 × 10−2 | 3.08 × 10−1 | ||
Outside dumpsite | Children | Ingestion | 4.50 × 10−2 | 1.80 × 10−1 | 1.40 × 10−2 | 5.56 × 10−3 | 2.45 × 10−1 |
Inhalation | 1.52 × 10−5 | 7.03 × 10−4 | - | - | 7.18 × 10−4 | ||
Dermal | 5.76 × 10−3 | - | 2.91 × 10−3 | 2.86 × 10−3 | 1.15 × 10−2 | ||
Hazard Index (HI) | 5.00 × 10−2 | 1.80 × 10−1 | 1.70 × 10−2 | 8.42 × 10−3 | 2.55 × 10−1 | ||
Adults | Ingestion | 4.82 × 10−3 | 1.90 × 10−2 | 1.58 × 10−3 | 6.00 × 10−4 | 2.60 × 10−2 | |
Inhalation | 6.50 × 10−6 | 3.02 × 10−4 | - | - | 3.09 × 10−4 | ||
Dermal | 1.18 × 10−3 | - | 2.91 × 10−3 | 5.93 × 10−4 | 4.68 × 10−3 | ||
Hazard Index (HI) | 6.00 × 10−3 | 1.90 × 10−2 | 4.49 × 10−3 | 1.19 × 10−3 | 3.07 × 10−2 | ||
Overall HI outside the dumpsite | 5.60 × 10−2 | 1.99 × 10−1 | 2.15 × 10−2 | 9.61 × 10−3 | 2.86 × 10−1 |
Pathways | Carcinogenic Risk | Total Risk | |||
---|---|---|---|---|---|
Cd | Cr | ||||
Along the perimeter of the dumpsite | Children | Ingestion | - | 2.53 × 10−5 | 2.53 × 10−5 |
Inhalation | 3.28 × 10−10 | 7.99 × 10−10 | 1.13 × 10−9 | ||
Dermal | - | - | - | ||
Total risk to children | 3.28 × 10−10 | 2.53 × 10−5 | 2.53 × 10−5 | ||
Adult | Ingestion | - | 6.35 × 10−5 | 6.35 × 10−5 | |
Inhalation | 7.05 × 10−10 | 1.71 × 10−9 | 2.42 × 10−9 | ||
Dermal | - | - | - | ||
Total risk to adults | 7.05 × 10−10 | 6.35 × 10−5 | 6.35 × 10−5 | ||
Total inside dumpsite | 1.03 × 10−9 | 8.88 × 10−5 | 8.88 × 10−5 | ||
Outside dumpsite | Children | Ingestion | - | 2.35 × 10−5 | 2.35 × 10−5 |
Inhalation | 4.67 × 10−10 | 7.42 × 10−10 | 1.21 × 10−9 | ||
Dermal | - | - | - | ||
Total risk to children | 4.67 × 10−10 | 2.35 × 10−5 | 2.35 × 10−5 | ||
Adult | Ingestion | - | 5.90 × 10−5 | 5.90 × 10−5 | |
Inhalation | 1.00 × 10−9 | 1.59 × 10−9 | 2.59 × 10−9 | ||
Dermal | - | - | - | ||
Total risk to adults | 1.00 × 10−9 | 5.90 × 10−5 | 5.90 × 10−5 | ||
Total risk outside the dumpsite | 1.47 × 10−9 | 8.25 × 10−5 | 8.25 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andaloussi, K.; Achtak, H.; El Ouahrani, A.; Kassout, J.; Vinti, G.; Di Trapani, D.; Viviani, G.; Kouali, H.; Sisouane, M.; Haboubi, K.; et al. Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments. Soil Syst. 2025, 9, 82. https://doi.org/10.3390/soilsystems9030082
Andaloussi K, Achtak H, El Ouahrani A, Kassout J, Vinti G, Di Trapani D, Viviani G, Kouali H, Sisouane M, Haboubi K, et al. Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments. Soil Systems. 2025; 9(3):82. https://doi.org/10.3390/soilsystems9030082
Chicago/Turabian StyleAndaloussi, Kaouthar, Hafid Achtak, Abdeltif El Ouahrani, Jalal Kassout, Giovanni Vinti, Daniele Di Trapani, Gaspare Viviani, Hassnae Kouali, Mhammed Sisouane, Khadija Haboubi, and et al. 2025. "Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments" Soil Systems 9, no. 3: 82. https://doi.org/10.3390/soilsystems9030082
APA StyleAndaloussi, K., Achtak, H., El Ouahrani, A., Kassout, J., Vinti, G., Di Trapani, D., Viviani, G., Kouali, H., Sisouane, M., Haboubi, K., & Stitou, M. (2025). Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments. Soil Systems, 9(3), 82. https://doi.org/10.3390/soilsystems9030082