Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Characterization of the Soils and Vinasses
2.2. Experimental Procedures
2.3. Assessment of the Soil Bacterial Communities
2.3.1. Analysis of Soil Bacterial Community Structure Using Terminal Restriction Fragment Length Polymorphism (T-RFLP)
2.3.2. Analysis of Soil Bacterial Community Composition Using High-Throughput Sequencing
2.4. Data Analyses
3. Results
3.1. Analysis of the Structure of Soil Bacterial Communities
3.2. Analysis of Soil Bacterial Community Composition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Soil | |
---|---|---|
RL | RYL | |
pH (1M KCl) | 4.4 ± 0.1 | 4.9 ± 0.4 |
OM (g dm−3) | 25 | 18 |
P (mg dm−3) | 15 | 12 |
S (mg dm−3) | 10 | 5 |
K (mg dm−3) | 52 | 80 |
Ca (mg dm−3) | 560 | 340 |
Mg (mg dm−3) | 120 | 84 |
Cu (mg dm−3) | 0.8 | 1 |
Fe (mg dm−3) | 55 | 116 |
Mn (mg dm−3) | 15.4 | 4.3 |
Zn (mg dm−3) | 4.9 | 2.4 |
B (mg dm−3) | 0.1 | 0.1 |
Al (mg dm−3) | <9 | 9 |
H + Al (mmolc dm−3) | 25 | 28 |
CEC (mmolc dm−3) | 63.9 | 54.3 |
Sand (g kg−1) | 502 | 800 |
Silt (g kg−1) | 172 | 24 |
Clay (g kg−1) | 326 | 176 |
WHC (%) | 33 | 20 |
Texture | Sandy Clay Loam | Sandy Loam |
PTE | Vinasses (mg L−1) | Soils (mg kg−1) | |||
---|---|---|---|---|---|
VA | VB | VC | RL | RYL | |
As | 0.056 | 0.011 | <0.01 a | 1.3 | 2.15 |
Cd | <0.002 a | <0.002 a | <0.002 a | 1.025 | 0.025 |
Co | 0.104 | 0.043 | 0.017 | 8.425 | 1.55 |
Cr | 0.034 | 0.068 | 0.071 | 51.65 | 18.62 |
Cu | 0.317 | 0.954 | 0.209 | 75.87 | 13 |
Hg | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a |
Mo | 0.02 | 0.025 | 0.013 | 0.8 | 0.625 |
Ni | 0.043 | 0.064 | 0.047 | 11.57 | 3.85 |
Pb | 0.024 | 0.028 | 0.014 | 14.55 | 4.575 |
Zn | 0.520 | 0.222 | 0.337 | 42.95 | 15.25 |
Soil | Treatment | p-Value | R |
---|---|---|---|
RL | Control | 0.84 | −0.242 |
VA-C1 | 0.91 | −0.210 | |
VA-C2 | 0.82 | −0.193 | |
VB-C1 | 0.95 | −0.152 | |
VB-C2 | 0.89 | −0.238 | |
VC-C1 | 0.95 | −0.202 | |
VC-C2 | 0.97 | −0.202 | |
RYL | Control | 0.56 | −0.037 |
VA-C1 | 0.98 | −0.317 | |
VA-C2 | 0.88 | −0.131 | |
VB-C1 | 0.94 | −0.162 | |
VB-C2 | 0.66 | −0.075 | |
VC-C1 | 0.40 | −0.048 | |
VC-C2 | 0.93 | −0.111 |
References
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane Vinasse: Environmental Implications of Its Use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef]
- Jiang, Z.-P.; Li, Y.-R.; Wei, G.-P.; Liao, Q.; Su, T.-M.; Meng, Y.-C.; Zhang, H.-Y.; Lu, C.-Y. Effect of Long-Term Vinasse Application on Physico-Chemical Properties of Sugarcane Field Soils. Sugar Tech 2012, 14, 412–417. [Google Scholar] [CrossRef]
- Carpanez, T.G.; Moreira, V.R.; Assis, I.R.; Amaral, M.C.S. Sugarcane Vinasse as Organo-Mineral Fertilizers Feedstock: Opportunities and Environmental Risks. Sci. Total Environ. 2022, 832, 154998. [Google Scholar] [CrossRef]
- Yang, S.D.; Liu, J.X.; Wu, J.; Tan, H.W.; Li, Y.R. Effects of Vinasse and Press Mud Application on the Biological Properties of Soils and Productivity of Sugarcane. Sugar Tech 2013, 15, 152–158. [Google Scholar] [CrossRef]
- CETESB. Norma Técnica P4.231: Vinhaça—Critérios e Procedimentos Para Aplicação No Solo Agrícola; CETESB: São Paulo, Brazil, 2015. [Google Scholar]
- Fuess, L.T.; Garcia, M.L. Implications of Stillage Land Disposal: A Critical Review on the Impacts of Fertigation. J. Environ. Manag. 2014, 145, 210–229. [Google Scholar] [CrossRef]
- de Oliveira, B.G.; Carvalho, J.L.N.; Cerri, C.E.P.; Cerri, C.C.; Feigl, B.J. Soil Greenhouse Gas Fluxes from Vinasse Application in Brazilian Sugarcane Areas. Geoderma 2013, 200–201, 77–84. [Google Scholar] [CrossRef]
- Christofoletti, C.A.; Pedro-Escher, J.; Fontanetti, C.S. Assessment of the Genotoxicity of Two Agricultural Residues after Processing by Diplopods Using the Allium Cepa Assay. Water Air Soil. Pollut. 2013, 224, 1523. [Google Scholar] [CrossRef]
- Alves, P.R.L.; Natal-da-Luz, T.; Sousa, J.P.; Cardoso, E.J.B.N. Ecotoxicological Characterization of Sugarcane Vinasses When Applied to Tropical Soils. Sci. Total Environ. 2015, 526, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Moran-Salazar, R.G.; Sanchez-Lizarraga, A.L.; Rodriguez-Campos, J.; Davila-Vazquez, G.; Marino-Marmolejo, E.N.; Dendooven, L.; Contreras-Ramos, S.M. Utilization of Vinasses as Soil Amendment: Consequences and Perspectives. SpringerPlus 2016, 5, 1007. [Google Scholar] [CrossRef]
- Alves, P.R.L.; Estrada-Bonilla, G.A.; Bini, D.; Cardoso, E.J.B.N. Changes in the Microbial Metabolism of Agricultural Tropical Soils Amended with Sugarcane Vinasses. Sugar Tech 2019, 21, 364–369. [Google Scholar] [CrossRef]
- Santos, T.M.C.; Santos, M.A.L.; Santos, C.G.; Santos, V.R.; Pacheco, D.S. Efeito da fertirrigação com vinhaça nos microrganismos do solo. Rev. Caatinga 2009, 22, 155–160. [Google Scholar]
- Pramanik, P.; Chung, Y.R. Changes in Fungal Population of Fly Ash and Vinasse Mixture during Vermicomposting by Eudrilus eugeniae and Eisenia fetida: Documentation of Cellulase Isozymes in Vermicompost. Waste Manag. 2011, 31, 1169–1175. [Google Scholar] [CrossRef]
- Prado, R.D.M.; Caione, G.; Campos, C.N.S. Filter Cake and Vinasse as Fertilizers Contributing to Conservation Agriculture. Appl. Environ. Soil. Sci. 2013, 2013, 581984. [Google Scholar] [CrossRef]
- Aleixo, A.P.; Kaschuk, G.; Alberton, O. Soil Fungal and Bacterial Biomass Determined by Epifluorescence Microscopy and Mycorrhizal Spore Density in Different Sugarcane Managements. Ciência Rural. 2014, 44, 588–594. [Google Scholar] [CrossRef]
- Stephen, G.S.; Shitindi, M.J.; Bura, M.D.; Kahangwa, C.A.; Nassary, E.K. Harnessing the potential of sugarcane-based liquid byproducts—molasses and spentwash (vinasse) for enhanced soil health and environmental quality. A systematic review. Front. Agron. 2024, 6, 1358076. [Google Scholar] [CrossRef]
- da Luz, F.B.; Gonzaga, L.C.; Cherubin, M.R.; Castioni, G.A.F.; Carvalho, J.L.N. Soil Health Impact of Long-term Sugarcane Vinasse Recycling. Biofuels Bioprod. Biorefin. 2024, 18, 2064–2077. [Google Scholar] [CrossRef]
- Omori, W.P.; Camargo, A.F.D.; Goulart, K.C.S.; Lemos, E.G.D.M.; Souza, J.A.M.D. Influence of Vinasse Application in the Structure and Composition of the Bacterial Community of the Soil under Sugarcane Cultivation. Int. J. Microbiol. 2016, 2016, 2349514. [Google Scholar] [CrossRef]
- Senatore, D.; Queirolo, A.; Monza, J.; Bajsa, N. Using sugar cane vinasse as a biofertilizer: Effects on soil microbial community due to periodical application. Environ. Sustain. 2023, 6, 173–182. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Diniz, T.R.; Braga, L.P.P.; Silva, G.G.Z.; Franchini, J.C.; Rossetto, R.; Edwards, R.A.; Tsai, S.M. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems. PLoS ONE 2015, 10, e0129765. [Google Scholar] [CrossRef]
- Lourenço, K.S.; Suleiman, A.K.A.; Pijl, A.; van Veen, J.A.; Cantarella, H.; Kuramae, E.E. Resilience of the Resident Soil Microbiome to Organic and Inorganic Amendment Disturbances and to Temporary Bacterial Invasion. Microbiome 2018, 6, 142. [Google Scholar] [CrossRef]
- Sanchez-Lizarraga, A.L.; Arenas-Montaño, V.; Marino-Marmolejo, E.N.; Dendooven, L.; Velazquez-Fernandez, J.B.; Davila-Vazquez, G.; Rodriguez-Campos, J.; Hernández-Cuevas, L.; Contreras-Ramos, S.M. Vinasse Irrigation: Effects on Soil Fertility and Arbuscular Mycorrhizal Fungi Population. J. Soils Sedim. 2018, 18, 3256–3270. [Google Scholar] [CrossRef]
- de Alcântara Neto, F.; Pinheiro, D.A.; Rocha, S.M.B.; Leite, M.R.L.; Costa, R.M.; da Silva, J.M.; Ventura, S.H.; Costa, M.K.L.; Sousa, T.K.D.S.A.; Miranda, R.D.S.; et al. Bacterial Community in Sugarcane Rhizosphere Under Bacillus subtilis Inoculation and Straw Return. Soil. Syst. 2025, 9, 44. [Google Scholar] [CrossRef]
- Bini, D.; Santos, C.A.D.; Bernal, L.P.T.; Andrade, G.; Nogueira, M.A. Identifying Indicators of C and N Cycling in a Clayey Ultisol under Different Tillage and Uses in Winter. Appl. Soil. Ecol. 2014, 76, 95–101. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G.; Chhabra, S.; Prasad, R. Role of Soil Microbes in Biogeochemical Cycle for Enhancing Soil Fertility. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–157. [Google Scholar] [CrossRef]
- Ouyang, Y.; Reeve, J.R.; Norton, J.M. The Quality of Organic Amendments Affects Soil Microbiome and Nitrogen-Cycling Bacteria in an Organic Farming System. Front. Soil. Sci. 2022, 2, 869136. [Google Scholar] [CrossRef]
- Meng, J.; Li, Y.; Qiu, Y.; Luo, Y.; Fang, Y.; Van Zwieten, L.; Wang, H.; Chen, H. Biochars Regulate Bacterial Community and Their Putative Functions in the Charosphere: A Mesh-Bag Field Study. J. Soils Sediments 2023, 23, 596–605. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Curci, M.; Cazzato, E.; Lasorella, C.; Traversa, A.; Crecchio, C.; Spagnuolo, M. Shifts in Soil Bacterial Communities under Three-Year Fertilization Management and Multiple Cropping Systems. Soil. Syst. 2024, 8, 5. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Staff, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- ISO 11268-2; Soil Quality—Effects of Pollutants on Earthworms—Part 2: Determination of Effects on Reproduction of Eisenia fetida/Eisenia andrei. International Organization for Standardization: Geneva, Switzerland, 2012.
- Raij, B.V.; Andrade, J.C.D.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico de Campinas (IAC): Campinas, Brazil, 2021. [Google Scholar]
- Dane, J.H.; Topp, C.G. Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar] [CrossRef]
- Compart, D.M.P.; Carlson, A.M.; Crawford, G.I.; Fink, R.C.; Diez-Gonzalez, F.; DiCostanzo, A.; Shurson, G.C. Presence and Biological Activity of Antibiotics Used in Fuel Ethanol and Corn Co-Product Production1. J. Anim. Sci. 2013, 91, 2395–2404. [Google Scholar] [CrossRef]
- Kiehl, E.J. Fertilizantes Organicos; Kiehl, E.J., Ed.; Ceres: Piracicaba, Brazil, 1985. [Google Scholar]
- United States Environmental Protection Agency. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; Method 3051A; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- United States Environmental Protection Agency. Microwave Assisted Acid Digestion of Aqueous Samples and Extracts; Method 3015A; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Schütte, U.M.E.; Abdo, Z.; Bent, S.J.; Williams, C.J.; Schneider, G.M.; Solheim, B.; Forney, L.J. Bacterial Succession in a Glacier Foreland of the High Arctic. ISME J. 2009, 3, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Estrada-Bonilla, G.A.; Lopes, C.M.; Durrer, A.; Alves, P.R.L.; Passaglia, N.; Cardoso, E.J.B.N. Effect of Phosphate-Solubilizing Bacteria on Phosphorus Dynamics and the Bacterial Community during Composting of Sugarcane Industry Waste. Syst. Appl. Microbiol. 2017, 40, 308–313. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistical Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- CONAMA. Resolução n°420 de 28 dez 2009. Diário Of. União 2009, 1, 81–84. [Google Scholar]
- Tajik, S.; Ayoubi, S.; Lorenz, N. Soil Microbial Communities Affected by Vegetation, Topography and Soil Properties in a Forest Ecosystem. Appl. Soil. Ecol. 2020, 149, 103514. [Google Scholar] [CrossRef]
- Matteoli, F.P.; Silva, A.M.M.; Feiler, H.P.; de Araújo, V.L.V.P.; Cardoso, E.J.B.N. Predicting Soil Farming System and Attributes Based on Soil Bacterial Community. Appl. Soil. Ecol. 2022, 171, 104335. [Google Scholar] [CrossRef]
- Silva, A.M.M.; Estrada-Bonilla, G.A.; Lopes, C.M.; Matteoli, F.P.; Cotta, S.R.; Feiler, H.P.; Rodrigues, Y.F.; Cardoso, E.J.B.N. Does Organomineral Fertilizer Combined with Phosphate-Solubilizing Bacteria in Sugarcane Modulate Soil Microbial Community and Functions? Microb. Ecol. 2022, 84, 539–555. [Google Scholar] [CrossRef]
- Cassman, N.A.; Lourenço, K.S.; Do Carmo, J.B.; Cantarella, H.; Kuramae, E.E. Genome-Resolved Metagenomics of Sugarcane Vinasse Bacteria. Biotechnol. Biofuels 2018, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, A.K.A.; Gonzatto, R.; Aita, C.; Lupatini, M.; Jacques, R.J.S.; Kuramae, E.E.; Antoniolli, Z.I.; Roesch, L.F.W. Temporal Variability of Soil Microbial Communities after Application of Dicyandiamide-Treated Swine Slurry and Mineral Fertilizers. Soil. Biol. Biochem. 2016, 97, 71–82. [Google Scholar] [CrossRef]
- Gomes, N.C.M.; Landi, L.; Smalla, K.; Nannipieri, P.; Brookes, P.C.; Renella, G. Effects of Cd- and Zn-Enriched Sewage Sludge on Soil Bacterial and Fungal Communities. Ecotoxicol. Env. Saf. 2010, 73, 1255–1263. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a PH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Siles, J.A.; Rachid, C.T.C.C.; Sampedro, I.; García-Romera, I.; Tiedje, J.M. Microbial Diversity of a Mediterranean Soil and Its Changes after Biotransformed Dry Olive Residue Amendment. PLoS ONE 2014, 9, e103035. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Liu, Y.; Li, J.; Hu, H. Soil Organic Matter Contents Modulate the Effects of Bacterial Diversity on the Carbon Cycling Processes. J. Soils Sedim. 2023, 23, 911–922. [Google Scholar] [CrossRef]
- Insam, H.; Hutchinson, T.C.; Reber, H.H. Effects of Heavy Metal Stress on the Metabolic Quotient of the Soil Microflora. Soil. Biol. Biochem. 1996, 28, 691–694. [Google Scholar] [CrossRef]
- Guo, Q.; Yin, Q.; Du, J.; Zuo, J.; Wu, G. New Insights into the r/K Selection Theory Achieved in Methanogenic Systems through Continuous-Flow and Sequencing Batch Operational Modes. Sci. Total Environ. 2022, 807 Pt 1, 150732. [Google Scholar] [CrossRef]
- Gumiere, T.; Durrer, A.; Bohannan, B.J.M.; Andreote, F.D. Biogeographical Patterns in Fungal Communities from Soils Cultivated with Sugarcane. J. Biogeogr. 2016, 43, 2016–2026. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.M.W.; O’Gorman, E.J.; McElroy, D.J.; McKew, B.A.; Coleman, R.A.; Emmerson, M.C.; Dumbrell, A.J. The Ecological Impacts of Multiple Environmental Stressors on Coastal Biofilm Bacteria. Glob. Change Biol. 2021, 27, 3166–3178. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhang, Q.; Ai, C.; Liang, G.; He, P.; Lei, Q.; Zhou, W. Analysis of Microbial Utilization of Rice Straw in Paddy Soil Using a DNA-SIP Approach. Soil. Sci. Soc. Am. J. 2020, 84, 99–114. [Google Scholar] [CrossRef]
- Mandic-Mulec, I.; Stefanic, P.; van Elsas, J.D. Ecology of Bacillaceae. Microbiol. Spectr. 2015, 3, TBS-0017-2013. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Andreote, F.D. Microbiologia do Solo, 2nd ed.; ESALQ: Piracicaba, Brazil, 2016. [Google Scholar]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of Salinity and Water Content on Soil Microorganisms. Int. Soil. Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Kannan, A.; Upreti, R.K. Influence of Distillery Effluent on Germination and Growth of Mung Bean (Vigna radiata) Seeds. J. Hazard. Mater. 2008, 153, 609–615. [Google Scholar] [CrossRef]
- España-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominguez-Maldonado, J.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: Characterization and Treatments. Waste Manag. Res. J. A Sustain. Circ. Econ. 2011, 29, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Yu, L. Effects of Cd or/and Pb on Soil Enzyme Activities and Microbial Community Structure. Ecol. Eng. 2011, 37, 1889–1894. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of Irrigation-Induced Salinity and Sodicity on Soil Microbial Activity. Soil. Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Crecchio, C.; Gelsomino, A.; Ambrosoli, R.; Minati, J.L.; Ruggiero, P. Functional and Molecular Responses of Soil Microbial Communities under Differing Soil Management Practices. Soil. Biol. Biochem. 2004, 36, 1873–1883. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Tu, S.; Lindström, K. Soil Microbial Biomass, Crop Yields, and Bacterial Community Structure as Affected by Long-Term Fertilizer Treatments under Wheat-Rice Cropping. Eur. J. Soil. Biol. 2009, 45, 239–246. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions, and Emerging Trends in Microbial Application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Carrión, V.J.; Perez-Jaramillo, J.; Cordovez, V.; Tracanna, V.; De Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.F.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-Induced Activation of Disease-Suppressive Functions in the Endophytic Root Microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef]
- Ntambo, M.S.; Meng, J.-Y.; Rott, P.C.; Royer, M.; Lin, L.-H.; Zhang, H.-L.; Gao, S.-J. Identification and characterization of Xanthomonas albilineans causing sugarcane leaf scald in China using multilocus sequence analysis. Plant Pathol. 2019, 68, 269–277. [Google Scholar] [CrossRef]
Parameter | Vinasses | ||
---|---|---|---|
VA | VB | VC a | |
pH (1M KCl) | 4.6 | 4.9 | 5.2 |
OM (g L−1) | 28 | 17.4 | 13.7 |
TC (g L−1) | 15.6 | 9.7 | 7.6 |
TN (g L−1) | 0.6 | 0.7 | 0.3 |
C:N ratio | 28 | 13 | 22 |
P (g L−1) | 0.42 | 0.1 | 0.9 |
S (g L−1) | 1.59 | 0.99 | 0.41 |
K (g L−1) | 9.2 | 8.3 | 8.5 |
Ca (g L−1) | 0.98 | 1.27 | 0.65 |
Mg (g L−1) | 1 | 0.48 | 0.52 |
Cu (mg L−1) | 1 | 1 | 1 |
Fe (mg L−1) | 8 | 33 | 28 |
Mn (mg L−1) | 2 | 7 | 4 |
Zn (mg L−1) | 1 | 1 | 1 |
EC (mS cm−1) | 20.7 | 20.2 | 10.6 |
Density (g cm−3) | 0.9 | 0.9 | 1 |
Ethanol (%) | 0.2 | 0 | 0 |
Soil | Vinasses | Control | mL kg−1 | m3 ha−1 | ||
---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | |||
RL | VA | 0 | 67 | 200 | 134 | 400 |
VB | 0 | 74 | 200 | 148 | 400 | |
VC | 0 | 72 | 200 | 144 | 400 | |
RYL | VA | 0 | 38 | 120 | 76 | 240 |
VB | 0 | 42 | 120 | 84 | 240 | |
VC | 0 | 60 | 120 | 120 | 240 |
Soil Type | Treatment | Control | VA-C1 | VA-C2 | VB-C1 | VB-C2 | VC-C1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | R | p-Value | R | p-Value | R | p-Value | R | p-Value | R | p-Value | R | ||
RL | Control | 0.0001 a | 0.931 a | ||||||||||
VA-C1 | 0.0001 | 0.889 | |||||||||||
VA-C2 | 0.0001 | 0.625 | 0.0003 | 0.320 | |||||||||
VB-C1 | 0.0002 | 0.603 | 0.0002 | 0.402 | 0.0016 | 0.341 | |||||||
VB-C2 | 0.0002 | 0.744 | 0.0006 | 0.332 | 0.0302 | 0.184 | 0.0055 | 0.275 | |||||
VC-C1 | 0.0001 | 0.69 | 0.167 | 0.054 | 0.001 | 0.363 | 0.0024 | 0.215 | 0.0005 | 0.407 | |||
VC-C2 | 0.0001 | 0.465 | 0.0018 | 0.209 | 0.385 | 0.003 | 0.0836 | 0.091 | 0.0581 | 0.112 | 0.0212 | 0.132 | |
RYL | Control | 0.0001 a | 0.93 a | ||||||||||
VA-C1 | 0.0001 | 0.616 | |||||||||||
VA-C2 | 0.0003 | 0.609 | 0.0026 | 0.270 | |||||||||
VB-C1 | 0.0002 | 0.492 | 0.0001 | 0.477 | 0.0001 | 0.506 | |||||||
VB-C2 | 0.0001 | 0.777 | 0.001 | 0.465 | 0.0157 | 0.225 | 0.0021 | 0.458 | |||||
VC-C1 | 0.0002 | 0.382 | 0.1688 | 0.061 | 0.0001 | 0.329 | 0.0002 | 0.352 | 0.0036 | 0.357 | |||
VC-C2 | 0.0001 | 0.396 | 0.0097 | 0.154 | 0.0043 | 0.164 | 0.0014 | 0.257 | 0.0103 | 0.241 | 0.0343 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, P.R.L.; Estrada-Bonilla, G.A.; Silva, A.M.M.; Gumiere, T.; Bigaton, A.D.; Bini, D.; dos Santos, C.A.; Cardoso, E.J.B.N. Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols. Soil Syst. 2025, 9, 102. https://doi.org/10.3390/soilsystems9030102
Alves PRL, Estrada-Bonilla GA, Silva AMM, Gumiere T, Bigaton AD, Bini D, dos Santos CA, Cardoso EJBN. Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols. Soil Systems. 2025; 9(3):102. https://doi.org/10.3390/soilsystems9030102
Chicago/Turabian StyleAlves, Paulo Roger Lopes, German Andres Estrada-Bonilla, Antonio Marcos Miranda Silva, Thiago Gumiere, Ademir Durrer Bigaton, Daniel Bini, Cristiane Alcantara dos Santos, and Elke Jurandy Bran Nogueira Cardoso. 2025. "Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols" Soil Systems 9, no. 3: 102. https://doi.org/10.3390/soilsystems9030102
APA StyleAlves, P. R. L., Estrada-Bonilla, G. A., Silva, A. M. M., Gumiere, T., Bigaton, A. D., Bini, D., dos Santos, C. A., & Cardoso, E. J. B. N. (2025). Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols. Soil Systems, 9(3), 102. https://doi.org/10.3390/soilsystems9030102