Biogeochemical Processes of Nutrients in Soil and Sediments: C, N, and P Cycling

A special issue of Soil Systems (ISSN 2571-8789).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 985

Special Issue Editor


E-Mail Website
Guest Editor
School of Earth, Environment and Society, College of Arts and Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
Interests: geochemistry; soil health; water quality; agricultural best management practices

Special Issue Information

Dear Colleagues,

Coupled biogeochemical mechanisms are involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, in soils and sediments influencing the nutrients’ partitioning between biotic and abiotic compartments. Soil–plant–microbial interactions mediate nutrients’ mineralization/immobilization, sorption/desorption, precipitation/dissolution, and leaching. Plants and soil microbes co-evolve to maintain an ecological balance which is critical to optimal soil function and biomass production.

This Special Issue, ‘Biogeochemical Processes of Nutrients in Soil and Sediments: C, N, and P Cycling’, invites authors to submit their manuscripts addressing new findings in soil nutrient cycling. Some potential topics include the effects of agricultural management practices on nutrient cycling, impacts of soil amendments (organic and/or inorganic) on nutrient dynamics, soil microbial gene expression regulating enzyme activity involved in nutrient cycling, role of minerals (Fe- and Mn-(oxy)hydroxides, aluminosilicate clays) on nutrient stabilization and leaching, and nutrient association with supramolecular humic substances. Papers describing nutrient dynamics in agricultural, wetland, and other natural ecosystems are encouraged for submission.

Dr. Angélica Vázquez-Ortega
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Soil Systems is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrient cycling
  • carbon
  • phosphorus
  • nitrogen
  • soil microbiome
  • gene expression
  • mineral association
  • agricultural soil systems
  • natural soil systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 7121 KiB  
Article
Aridification Inhibits the Release of Dissolved Organic Carbon from Alpine Soils in Southwest China
by Yanmei Li, Jihong Qin, Yuwen Chen, Hui Sun and Xinyue Hu
Soil Syst. 2025, 9(1), 24; https://doi.org/10.3390/soilsystems9010024 - 6 Mar 2025
Viewed by 446
Abstract
The alpine peatlands in western Sichuan Province are currently experiencing aridification. To understand the effects of aridification on the characteristics of organic carbon release from alpine soils, the soil in the northwest Sichuan Plateau was investigated. Soil columns were incubated under different moisture [...] Read more.
The alpine peatlands in western Sichuan Province are currently experiencing aridification. To understand the effects of aridification on the characteristics of organic carbon release from alpine soils, the soil in the northwest Sichuan Plateau was investigated. Soil columns were incubated under different moisture conditions in situ and in the laboratory, and ultraviolet-visible absorption spectroscopy and three-dimensional fluorescence spectroscopy were used to assess the soil dissolved organic carbon (DOC) levels. The results revealed that (1) the cumulative release of DOC from alpine soil in the northwest Sichuan Plateau decreased with decreasing moisture content. The cumulative release of soil DOC in the laboratory (0–5 cm soil reached 1.93 ± 0.43 g/kg) was greater than that from soil incubated in situ (0–5 cm soil reached 1.40 ± 0.13 g/kg); (2) the cumulative release of DOC in 0–5 cm soil exhibited the greatest response to changes in water content, and the cumulative release of DOC from the 0–5 cm soil layer (1.40 ± 0.13 g/kg) was greater than that from the 5–15 cm soil layer (1.25 ± 0.03 g/kg); and (3) UV-visible absorption spectra and 3D fluorescence spectral characteristics indicated that aridification increases the content of chromophoric dissolved organic matter (CDOM) components with strong hydrophobicity, especially tyrosine components (surface soil increased 39.59~63.31%), in alpine soil DOC. This increase in hydrophobic CDOM components enhances the aromaticity and degree of humification of DOC. Our results revealed that drought inhibits the release of soil DOC, which is unfavorable for the sequestration of organic carbon in alpine soils, potentially resulting in the loss of soil carbon pools and further degradation of alpine ecosystem functions. Full article
Show Figures

Figure 1

Back to TopTop