Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Soil Management
2.3. Biochar
2.4. Soil Sampling and Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Repeated machinery passes significantly compacted the soil across all treatments, both initially and over time.
- Biochar amendment reduced compaction in the short-term, regardless of application rate, with an average 7.5% reduction in bulk density after the first compaction event.
- Over the following year, the mitigating effect of biochar gradually diminished after additional tractor traffic. It is likely that the positive effect of biochar may have been hindered by the much higher soil moisture content in the biochar-amended plots during springtime, which probably increased soil compaction susceptibility. Moreover, repeated machinery passes may have crushed the biochar particles, thereby reducing their efficacy in mitigating compaction. Biochar, however, consistently improved soil water retention, particularly at higher doses, an increasingly relevant effect in Mediterranean agriculture.
- Short-term laboratory assessments would not accurately represent real-world conditions; therefore, field studies are crucial to fully understand biochar behavior in agricultural systems.
- The long-term impact of biochar on soil structure and compaction mitigation remains unclear.
- Further research should explore particle size effects and biochar–soil interactions over multiple growing seasons and across a wider range of soil types to fully leverage biochar for sustainable soil and water management, particularly in climate-vulnerable regions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batey, T. Soil Compaction and Soil Management—A Review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems: A Review of the Nature, Causes and Possible Solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Mishra, A.K.; Patra, S.; Mariappan, S.; Singh, N. Near-Saturated Soil Hydraulic Conductivity and Pore Characteristics as Influenced by Conventional and Conservation Tillage Practices in North-West Himalayan Region, India. Int. Soil Water Conserv. Res. 2021, 9, 249–259. [Google Scholar] [CrossRef]
- Woldeyohannis, Y.S.; Hiremath, S.S.; Tola, S.; Wako, A. Influence of Soil Physical and Chemical Characteristics on Soil Compaction in Farm Field. Heliyon 2024, 10, e25140. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does Soil Compaction Increase Floods? A Review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Marra, E.; Laschi, A.; Fabiano, F.; Foderi, C.; Neri, F.; Mastrolonardo, G.; Nordfjell, T.; Marchi, E. Impacts of Wood Extraction on Soil: Assessing Rutting and Soil Compaction Caused by Skidding and Forwarding by Means of Traditional and Innovative Methods. Eur. J. For. Res. 2022, 141, 71–86. [Google Scholar] [CrossRef]
- Hartmann, M.; Niklaus, P.A.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarenkov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and Resilience of the Forest Soil Microbiome to Logging-Associated Compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef] [PubMed]
- Bellabarba, A.; Giagnoni, L.; Adessi, A.; Marra, E.; Laschi, A.; Neri, F.; Mastrolonardo, G. Short-Term Machinery Impact on Microbial Activity and Diversity in a Compacted Forest Soil. Appl. Soil Ecol. 2024, 203, 105646. [Google Scholar] [CrossRef]
- Schjønning, P.; Lamandé, M.; Berisso, F.E.; Simojoki, A.; Alakukku, L.; Andreasen, R.R. Gas Diffusion, Non-Darcy Air Permeability, and Computed Tomography Images of a Clay Subsoil Affected by Compaction. Soil Sci. Soc. Am. J. 2013, 77, 1977–1990. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil Compaction Impact and Modelling. A Review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Cruse, R.M.; Sui, Y.Y.; Jhao, Z. Soil Compaction Induced by Small Tractor Traffic in Northeast China. Soil Sci. Soc. Am. J. 2006, 70, 613–619. [Google Scholar] [CrossRef]
- Bouwman, L.A.; Arts, W.B.M. Effects of Soil Compaction on the Relationships between Nematodes, Grass Production and Soil Physical Properties. Appl. Soil Ecol. 2000, 14, 213–222. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Edlund, J.; Bergsten, U.; Lofgren, B. Effects of Two Different Forwarder Steering and Transmission Drive Systems on Rut Dimensions. J. Terramechanics 2012, 49, 291–297. [Google Scholar] [CrossRef]
- Ten Damme, L.; Stettler, M.; Pinet, F.; Vervaet, P.; Keller, T.; Munkholm, L.J.; Lamandé, M. The Contribution of Tyre Evolution to the Reduction of Soil Compaction Risks. Soil Tillage Res. 2019, 194, 104283. [Google Scholar] [CrossRef]
- Hoffmann, S.; Schönauer, M.; Heppelmann, J.; Asikainen, A.; Cacot, E.; Eberhard, B.; Hasenauer, H.; Ivanovs, J.; Jaeger, D.; Lazdins, A.; et al. Trafficability Prediction Using Depth-to-Water Maps: The Status of Application in Northern and Central European Forestry. Curr. For. Rep. 2022, 8, 55–71. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Green, O. A DSS for Planning of Soil-Sensitive Field Operations. Decis. Support Syst. 2012, 53, 66–75. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical Increase in Agricultural Machinery Weights Enhanced Soil Stress Levels and Adversely Affected Soil Functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Vanderhasselt, A.; Cool, S.; D’Hose, T.; Cornelis, W. How Tine Characteristics of Subsoilers Affect Fuel Consumption, Penetration Resistance and Potato Yield of a Sandy Loam Soil. Soil Tillage Res. 2023, 228, 105631. [Google Scholar] [CrossRef]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Dijck, S.J.E.V.; Asch, T.W.J.V. Compaction of Loamy Soils Due to Tractor Traffic in Vineyards and Orchards and Its Effect on Infiltration in Southern France. Soil Tillage Res. 2002, 63, 141–153. [Google Scholar] [CrossRef]
- Polge De Combret-Champart, L.; Guilpart, N.; Mérot, A.; Capillon, A.; Gary, C. Determinants of the Degradation of Soil Structure in Vineyards with a View to Conversion to Organic Farming. Soil Use Manag. 2013, 29, 557–566. [Google Scholar] [CrossRef]
- Pessina, D.; Galli, L.E.; Santoro, S.; Facchinetti, D. Sustainability of Machinery Traffic in Vineyard. Sustainability 2021, 13, 2475. [Google Scholar] [CrossRef]
- Biddoccu, M.; Opsi, F.; Cavallo, E. Relationship between Runoff and Soil Losses with Rainfall Characteristics and Long-Term Soil Management Practices in a Hilly Vineyard (Piedmont, NW Italy). Soil Sci. Plant Nutr. 2014, 60, 92–99. [Google Scholar] [CrossRef]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of Tractor Traffic on Spatial Variability of Soil Strength and Water Content in Grass Covered and Cultivated Sloping Vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Baker, K.L.; Graceson, A.; Bonnett, S.; Ball, B.C.; Cloy, J.M. Soil Compaction Effects on Grassland Silage Yields and Soil Structure under Different Levels of Compaction over Three Years. Eur. J. Agron. 2019, 109, 125916. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Tuti, M.D.; Kundu, S.; Bisht, J.K.; Bhatt, J.C. Conservation Tillage Impacts on Soil Aggregation and Carbon Pools in a Sandy Clay Loam Soil of the Indian Himalayas. Soil Sci. Soc. Am. J. 2012, 76, 617–627. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, M.; Wu, W.; Tanveer, S.K.; Wen, X.; Liao, Y. The Effects of Conservation Tillage Practices on the Soil Water-Holding Capacity of a Non-Irrigated Apple Orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Abbas, D.; Di Fulvio, F.; Spinelli, R. European and United States Perspectives on Forest Operations in Environmentally Sensitive Areas. Scand. J. For. Res. 2018, 33, 188–201. [Google Scholar] [CrossRef]
- Sohi, S.P. Pyrolysis Bioenergy with Biochar Production—Greater Carbon Abatement and Benefits to Soil. GCB Bioenergy 2013, 5, i–iii. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar Stability and Impact on Soil Organic Carbon Mineralization Depend on Biochar Processing, Aging and Soil Clay Content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of Biochar on Water Retention of Two Agricultural Soils—A Multi-Scale Analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa–Hersztek, M.; Tabor, S. Effects of Co-Composted Maize, Sewage Sludge, and Biochar Mixtures on Hydrological and Physical Qualities of Sandy Soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-Term Effects of Biochar on Soil Chemistry, Biochemistry, and Microbiota: Results from a 10-Year Field Vineyard Experiment. Appl. Soil Ecol. 2024, 195, 105217. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Wang, P.; Liu, X.; Cheng, K.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Crowley, D.; et al. Changes in Microbial Biomass and the Metabolic Quotient with Biochar Addition to Agricultural Soils: A Meta-Analysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef]
- Maienza, A.; Baronti, S.; Cincinelli, A.; Martellini, T.; Grisolia, A.; Miglietta, F.; Renella, G.; Stazi, S.R.; Vaccari, F.P.; Genesio, L. Biochar Improves the Fertility of a Mediterranean Vineyard without Toxic Impact on the Microbial Community. Agron. Sustain. Dev. 2017, 37, 47. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of Biochar Application on Plant Water Relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Vaccari, F.P.; Genesio, L.; Taiti, C.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Costa, C.; et al. Long-Term Soil Biological Fertility, Volatile Organic Compounds and Chemical Properties in a Vineyard Soil after Biochar Amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar Increases Vineyard Productivity without Affecting Grape Quality: Results from a Four Years Field Experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- García-Jaramillo, M.; Meyer, K.M.; Phillips, C.L.; Acosta-Martínez, V.; Osborne, J.; Levin, A.D.; Trippe, K.M. Biochar Addition to Vineyard Soils: Effects on Soil Functions, Grape Yield and Wine Quality. Biochar 2021, 3, 565–577. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and Biochar-Compost as Soil Amendments to a Vineyard Soil: Influences on Plant Growth, Nutrient Uptake, Plant Health and Grape Quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Does Biochar Improve All Soil Ecosystem Services? GCB Bioenergy 2021, 13, 291–304. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V.; Igaz, D. Biochar and Biochar with N Fertilizer Impact on Soil Physical Properties in a Silty Loam Haplic Luvisol. J. Ecol. Eng. 2019, 20, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 12th ed.; Prentice Hall Publishers: London, UK, 1999; ISBN 9780138524449. [Google Scholar]
- Gholamahmadi, B.; Jeffery, S.; Gonzalez-Pelayo, O.; Prats, S.A.; Bastos, A.C.; Keizer, J.J.; Verheijen, F.G.A. Biochar Impacts on Runoff and Soil Erosion by Water: A Systematic Global Scale Meta-Analysis. Sci. Total Environ. 2023, 871, 161860. [Google Scholar] [CrossRef] [PubMed]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Divya, P.V.; Garg, A.; Ananthakrishnan, K.P. Influence of Biochar on Geotechnical Properties of Clayey Soil: From the Perspective of Landfill Caps and Bioengineered Slopes. In Problematic Soils and Geoenvironmental Concerns; Latha Gali, M., Raghuveer Rao, P., Eds.; Springer: Singapore, 2021; pp. 137–146. [Google Scholar]
- Kumar, H.; Ganesan, S.P.; Bordoloi, S.; Sreedeep, S.; Lin, P.; Mei, G.; Garg, A.; Sarmah, A.K. Erodibility Assessment of Compacted Biochar Amended Soil for Geo-Environmental Applications. Sci. Total Environ. 2019, 672, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.F.; Raghavan, V. Influence of Wood-Derived Biochar on the Physico-Mechanical and Chemical Characteristics of Agricultural Soils. Int. Agrophysics 2018, 32, 1–10. [Google Scholar] [CrossRef]
- Richards, L. Porous Plate Apparatus for Measuring Moisture Retention and Transmission by Soil. Soil Sci. 1948, 66, 105–110. [Google Scholar] [CrossRef]
- Spinelli, R.; De Francesco, F.; Eliasson, L.; Jessup, E.; Magagnotti, N. An Agile Chipper Truck for Space-Constrained Operations. Biomass Bioenergy 2015, 81, 137–143. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J.; Monaci, F.; Busoni, E. Rock Fragment Content and Fine Soil Bulk Density. CATENA 1994, 23, 65–71. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A. Decomposition and Soil Organic Matter Dynamics. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 104–116. ISBN 978-1-4612-1224-9. [Google Scholar]
- Kremers, J.; Boosten, M. Soil Compaction and Deformation in Forest Exploitation. A Literature Review on Causes and Effects and Guidelines on Avoiding Compaction and Deformation; Stichting Probos: Wageningen, The Netherlands, 2018. [Google Scholar]
- Blanco-Canqui, H. Does Biochar Application Alleviate Soil Compaction? Review and Data Synthesis. Geoderma 2021, 404, 115317. [Google Scholar] [CrossRef]
- Reddy, K.R.; Yaghoubi, P.; Yukselen-Aksoy, Y. Effects of Biochar Amendment on Geotechnical Properties of Landfill Cover Soil. Waste Manag. Res. 2015, 33, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.J.; Chen, X.W.; Ng, C.W.W.; Guo, H.W. Effects of Biochar on Water Retention and Matric Suction of Vegetated Soil. Géotechnique Lett. 2018, 8, 124–129. [Google Scholar] [CrossRef]
- Garg, A.; Bordoloi, S.; Ni, J.; Cai, W.; Maddibiona, P.G.; Mei, G.; Poulsen, T.G.; Lin, P. Influence of Biochar Addition on Gas Permeability in Unsaturated Soil. Géotechnique Lett. 2019, 9, 66–71. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; Reinert, D.J.; Braida, J.A. Load Dissipation by Corn Residue on Tilled Soil in Laboratory and Field-Wheeling Conditions. J. Sci. Food Agric. 2016, 96, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Kuhwald, M.; Dörnhöfer, K.; Oppelt, N.; Duttmann, R. Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model. Sustainability 2018, 10, 1618. [Google Scholar] [CrossRef]
- Lamprinakos, R. Kalehiwot Manahilo Negah Evaluating the Compaction Behavior of Soils with Biochar Amendment. In Eighth International Conference on Case Histories in Geotechnical Engineering; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 141–147. [Google Scholar]
- Lyasko, M.I.; Terzian, V.A. Evaluation of the Compaction Effect and Directional Stability of a Wheeled Tractor Operating on Hillsides. Soil Tillage Res. 1993, 28, 37–49. [Google Scholar] [CrossRef]
- Jourgholami, M.; Soltanpour, S.; Abari, M.E.; Zenner, E.K. Influence of Slope on Physical Soil Disturbance Due to Farm Tractor Forwarding in a Hyrcanian Forest of Northern Iran. IForest-Biogeosci. For. 2014, 7, 342–348. [Google Scholar] [CrossRef]
- Cichota, R.; Vogeler, I.; Snow, V.O.; Webb, T.H. Ensemble Pedotransfer Functions to Derive Hydraulic Properties for New Zealand Soils. Soil Res. 2013, 51, 94–111. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Zenner, E.; Najafi, A.; Salehi, A.; Nikooy, M. Compaction of Forest Soils with Heavy Logging Machinery. Silva Balc. 2017, 18, 25–39. [Google Scholar]
- Solgi, A.; Naghdi, R.; Tsioras, P.A.; Nikooy, M. Soil Compaction and Porosity Changes Caused During the Operation of Timberjack 450C Skidder in Northern Iran. Croat. J. For. Eng. 2015, 36, 217–225. [Google Scholar]
- Najafi, A.; Sam Daliri, H. Assessment of Crawler Tractor Effects on Soil Surface Properties. Casp. J. Environ. Sci. 2013, 11, 185–194. [Google Scholar]
- Jamshidi, M. Introduction to System of Systems. In System of Systems Engineering: Principles and Applications; Jamshidi, M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–36. ISBN 978-1420065886. [Google Scholar]
- Majnounian, B.; Jourgholami, M. Effects of Rubber-Tired Cable Skidder on Soil Compaction in Hyrcanian Forest. Croat. J. For. Eng. 2013, 34, 123–135. [Google Scholar]
- Marra, E.; Wictorsson, R.; Bohlin, J.; Marchi, E.; Nordfjell, T. Remote Measuring of the Depth of Wheel Ruts in Forest Terrain Using a Drone. Int. J. For. Eng. 2021, 32, 224–234. [Google Scholar] [CrossRef]
- Marshall, J.; Muhlack, R.; Morton, B.J.; Dunnigan, L.; Chittleborough, D.; Kwong, C.W. Pyrolysis Temperature Effects on Biochar–Water Interactions and Application for Improved Water Holding Capacity in Vineyard Soils. Soil Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Atkinson, C.J. How Good Is the Evidence That Soil-Applied Biochar Improves Water-Holding Capacity? Soil Use Manag. 2018, 34, 177–186. [Google Scholar] [CrossRef]
- Baronti, S.; Magno, R.; Maienza, A.; Montagnoli, A.; Ungaro, F.; Vaccari, F. Long Term Effect of Biochar on Soil Plant Water Relation and Fine Roots: Results after 10 Years of Vineyard Experiment. Sci. Total Environ. 2022, 851, 158225. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are Soil–Water Functions Affected by Biochar Application? Geoderma 2015, 249, 1–11. [Google Scholar] [CrossRef]
- Thao, T.; Gonzales, M.; Ryals, R.; Dahlquist-Willard, R.; Diaz, G.C.; Ghezzehei, T.A. Biochar Impacts on Soil Moisture Retention and Respiration in a Coarse-Textured Soil under Dry Conditions. Soil Sci. Soc. Am. J. 2024, 88, 1919–1931. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-J.; Novak, A.; Yang, Y.; Wang, J. Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water 2021, 13, 407. [Google Scholar] [CrossRef]
- Verheijen, F.G.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The Influence of Biochar Particle Size and Concentration on Bulk Density and Maximum Water Holding Capacity of Sandy vs Sandy Loam Soil in a Column Experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of Tractor Passes on Hydrological and Soil Erosion Processes in Tilled and Grassed Vineyards. Water 2019, 11, 2118. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Shi, B.; Zhou, Q. Does Biochar Mitigate Rainfall-Induced Soil Erosion? A Review and Meta-Analysis. Biogeotechnics 2024, 2, 100096. [Google Scholar] [CrossRef]
- Burgeon, V.; Fouché, J.; Leifeld, J.; Chenu, C.; Cornélis, J.-T. Organo-Mineral Associations Largely Contribute to the Stabilization of Century-Old Pyrogenic Organic Matter in Cropland Soils. Geoderma 2021, 388, 114841. [Google Scholar] [CrossRef]
Unit | Value | |
---|---|---|
Sand a (2–0.05 mm) | g kg−1 | 606 |
Silt (0.05–0.002 mm) | g kg−1 | 242 |
Clay (<0.002 mm) | g kg−1 | 152 |
Coarse fragments | g kg−1 | 360 |
BD bulk soil | Mg m−3 | 1.39 |
Total carbon b | g kg−1 | 6.56 ± 0.22 |
Total organic carbon (TOC) c | g kg−1 | 3.00 ± 0.23 |
AWC d Ksat e | mm m−1 mm h−1 | 58.08 93.99 ± 42.14 |
pH f | 7.4 |
Unit | Value | |
---|---|---|
C | % | 77.81 |
N | % | 0.91 |
C/N | - | 63.53 |
Ca | % | 2.5 |
K | % | 1.4 |
Mg | % | 0.91 |
P | % | 1.3 |
pH | - | 9.8 |
CEC | cmolc kg−1 | 101 |
Bulk density | Mg m−3 | 0.4 |
Specific surface area (BET) | m2 g−1 | 410 ± 6 |
Maximum water absorption (WHC) | % (w w−1) | 162.2 |
Total porosity | mm3 g−1 | 2722 |
Variable (N = 134) | Mean | Std. Dev. | Std. Error | Min | Q25 | Median | Q75 | Max |
---|---|---|---|---|---|---|---|---|
Soil moisture a, % | 11.41 | 3.69 | 0.32 | 0.22 | 10.39 | 11.42 | 13.00 | 29.15 |
Coarse fragments, % | 27.76 | 13.74 | 1.19 | 1.10 | 16.80 | 29.80 | 38.80 | 53.00 |
Bulk density, Mg m−3 | 1.381 | 0.136 | 0.012 | 1.028 | 1.279 | 1.393 | 1.486 | 1.627 |
Comparison | Fixed Factor | F | p-Value |
---|---|---|---|
Initial soil conditions | Treatment | 0.558 | 0.557 |
Slope | 0.108 | 0.744 | |
Treatment*×Slope | 2.219 | 0.124 | |
Soil compaction | Treatment | 3.695 | 0.030 |
(T1) | Slope | 1.348 | 0.249 |
Compaction | 20.160 | <0.001 | |
Treatment*Slope | 2.264 | 0.111 | |
Treatment*Compaction | 0.686 | 0.507 | |
Slope*Compaction | 0.433 | 0.512 | |
Treatment*Slope*Compaction | 1.009 | 0.369 | |
Soil re-compaction | Treatment | 3.037 | 0.054 |
(T2) | Slope | 0.569 | 0.453 |
Re-compaction | 6.036 | 0.016 | |
Treatment*Slope | 0.584 | 0.560 | |
Treatment*Re-compaction | 2.314 | 0.105 | |
Slope*Re-compaction | 7.749 | 0.007 | |
Treatment*Slope*Re-compaction | 0.581 | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Francesco, F.; Mastrolonardo, G.; Fantoni, G.; Ungaro, F.; Baronti, S. Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard. Soil Syst. 2025, 9, 81. https://doi.org/10.3390/soilsystems9030081
De Francesco F, Mastrolonardo G, Fantoni G, Ungaro F, Baronti S. Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard. Soil Systems. 2025; 9(3):81. https://doi.org/10.3390/soilsystems9030081
Chicago/Turabian StyleDe Francesco, Fabio, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro, and Silvia Baronti. 2025. "Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard" Soil Systems 9, no. 3: 81. https://doi.org/10.3390/soilsystems9030081
APA StyleDe Francesco, F., Mastrolonardo, G., Fantoni, G., Ungaro, F., & Baronti, S. (2025). Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard. Soil Systems, 9(3), 81. https://doi.org/10.3390/soilsystems9030081