An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Analyzed Sites
2.2. Soil Sample Collection
2.3. Nematode Extraction and Classification
2.4. Soil Chemical Analysis
2.5. Nematode Community Analysis
2.6. Data Analysis
3. Results
3.1. Analysis of the Nematode Communities at the Trophic Group Level
3.2. Analysis of the Polish Case Studies
3.2.1. Nematode Communities
3.2.2. Characteristics of the Nematode Communities
3.2.3. Interactions Between Nematode Trophic Groups’ Abundance and Soil Chemical Properties
4. Discussion
4.1. Composition of the Nematode Communities in Relation to the Method of Management and Cropping System
4.2. Status of the Nematodes’ Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Sohlenius, B. Abundance, Biomass and Contribution to Energy Flow by Soil Nematodes in Terrestrial Ecosystems. Oikos 1980, 34, 186–194. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground Biodiversity and Ecosystem Functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H. Contribution of Nematodes to the Structure and Function of the Soil Food Web. J. Nematol. 2010, 42, 63–67. [Google Scholar] [PubMed]
- Griffiths, B.S.; Römbke, J.; Schmelz, R.M.; Scheffczyk, A.; Faber, J.H.; Bloem, J.; Pérès, G.; Cluzeau, D.; Chabbi, A.; Suhadolc, M.; et al. Selecting Cost Effective and Policy-Relevant Biological Indicators for European Monitoring of Soil Biodiversity and Ecosystem Function. Ecol. Indic. 2016, 69, 213–223. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Ferris, H. Nematode Ecology and Soil Health. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; CABI Books; CAB International: Wallingford, UK, 2018; pp. 62–86. [Google Scholar]
- Neher, D.A. Role of Nematodes in Soil Health and Their Use as Indicators. J. Nematol. 2001, 33, 161. [Google Scholar]
- Neher, D.A. Nematode Communities in Organically and Conventionally Managed Agricultural Soils. J. Nematol. 1999, 31, 142–154. [Google Scholar] [PubMed]
- Lazarova, S.; Coyne, D.; G. Rodríguez, M.; Peteira, B.; Ciancio, A. Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. Diversity 2021, 13, 64. [Google Scholar] [CrossRef]
- Puissant, J.; Villenave, C.; Chauvin, C.; Plassard, C.; Blanchart, E.; Trap, J. Quantification of the Global Impact of Agricultural Practices on Soil Nematodes: A Meta-Analysis. Soil Biol. Biochem. 2021, 161, 108383. [Google Scholar] [CrossRef]
- Salas, A.; Achinelly, M.F. Community Structure of Soil Nematodes Associated with the Rhizosphere of Solanum Lycopersicum in a Major Production Area in Argentina: A Case Study Among Agroecosystem Types. J. Soil. Sci. Plant Nutr. 2020, 20, 43–54. [Google Scholar] [CrossRef]
- Kanfra, X.; Wrede, A.; Mahnkopp-Dirks, F.; Winkelmann, T.; Heuer, H. Networks of Free-Living Nematodes and Co-Extracted Fungi, Associated with Symptoms of Apple Replant Disease. Appl. Soil Ecol. 2022, 172, 104368. [Google Scholar] [CrossRef]
- Kanfra, X.; Liu, B.; Beerhues, L.; Sørensen, S.J.; Heuer, H. Free-Living Nematodes Together with Associated Microbes Play an Essential Role in Apple Replant Disease. Front. Plant Sci. 2018, 9, 1666. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lewis, E.E.; Liu, Q.; Li, H.; Bai, C.; Wang, Y. Effects of Long-Term Continuous Cropping on Soil Nematode Community and Soil Condition Associated with Replant Problem in Strawberry Habitat. Sci. Rep. 2016, 6, 30466. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, F.; Li, H. Spatial Ecology of Soil Nematodes: Perspectives from Global to Micro Scales. Soil Biol. Biochem. 2019, 137, 107565. [Google Scholar] [CrossRef]
- Malusa, E.; Sas-Paszt, L.; Trzcinski, P.; Górska, A. Influences of Different Organis Fertilizers and Amendments on Nematode Trophic Groups and Soil Microbial Communities during Strawberry Growth. Acta Hortic. 2012, 933, 253–260. [Google Scholar] [CrossRef]
- Furmanczyk, E.M.; Malusà, E. Control of Nematodes in Organic Horticulture Exploiting the Multifunctional Capacity of Microorganisms. Horticulturae 2023, 9, 920. [Google Scholar] [CrossRef]
- Gough, E.C.; Owen, K.J.; Zwart, R.S.; Thompson, J.P. A Systematic Review of the Effects of Arbuscular Mycorrhizal Fungi on Root-Lesion Nematodes, Pratylenchus spp. Front. Plant Sci. 2020, 11, 923. [Google Scholar] [CrossRef]
- Hol, W.H.G.; Cook, R. An Overview of Arbuscular Mycorrhizal Fungi–Nematode Interactions. Basic Appl. Ecol. 2005, 6, 489–503. [Google Scholar] [CrossRef]
- Moore, J.C. Impact of Agricultural Practices on Soil Food Web Structure: Theory and Application. Agric. Ecosyst. Environ. 1994, 51, 239–247. [Google Scholar] [CrossRef]
- Neher, D.A.; Darby, B.J. General Community Indices That Can Be Used for Analysis of Nematode Assemblages. In Nematodes as Environmental Indicators; CABI: Wallingford, UK, 2009; pp. 107–123. [Google Scholar]
- Tsiafouli, M.A.; Bhusal, D.R.; Sgardelis, S.P. Nematode Community Indices for Microhabitat Type and Large Scale Landscape Properties. Ecol. Indic. 2017, 73, 472–479. [Google Scholar] [CrossRef]
- Urzelai, A.; Hernández, A.J.; Pastor, J. Biotic Indices Based on Soil Nematode Communities for Assessing Soil Quality in Terrestrial Ecosystems. Sci. Total Environ. 2000, 247, 253–261. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law). COM/2023/416 Final. 2023. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:01978f53-1b4f-11ee-806b-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 10 July 2025).
- Luc, M.; Sikora, R.A.; Bridge, J. (Eds.) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; CABI Bioscience: Egham, UK, 2005. [Google Scholar]
- Yeates, G.W.; Bongers, T.; de Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding Habits in Soil Nematodes Families and Genera—An Outline for Soil Ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Bongers, A.M.T. De Nematoden van Nederland; Natuurhistorische bibliotheek van de KNNV: 46; Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging: Utrecht, The Netherlands, 1988; ISBN 9789050110150. [Google Scholar]
- Bongers, T. The Maturity Index: An Ecological Measure of Environmental Disturbance Based on Nematode Species Composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T. The Maturity Index, the Evolution of Nematode Life History Traits, Adaptive Radiation and Cp-Scaling. Plant Soil 1999, 212, 13–22. [Google Scholar] [CrossRef]
- Sas-Paszt, L.; Sumorok, B.; Derkowska, E.; Trzciński, P.; Lisek, A.; Grzyb, Z.S.; Sitarek, M.; Przybył, M.; Frąc, M. Effect of Microbiologically Enriched Fertilizers on the Vegetative Growth of Strawberry Plants under Field Conditions in the First Year of Plantation. J. Res. Appl. Agric. Eng. 2019, 64, 29–37. [Google Scholar]
- Du Preez, G.; Daneel, M.; De Goede, R.; Du Toit, M.J.; Ferris, H.; Fourie, H.; Geisen, S.; Kakouli-Duarte, T.; Korthals, G.; Sánchez-Moreno, S.; et al. Nematode-Based Indices in Soil Ecology: Application, Utility, and Future Directions. Soil Biol. Biochem. 2022, 169, 108640. [Google Scholar] [CrossRef]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An Automated Calculation System for Nematode-Based Biological Monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Yeates, G.W. Nematodes as Soil Indicators: Functional and Biodiversity Aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 July 2025).
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. gplots: Various R Programming Tools for Plotting Data; R package version 3.1.1. 2024. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 10 July 2025).
- Hamilton, N.E.; Ferry, M. Ggtern: Ternary Diagrams Using Ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef]
- Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using “ggplot2”. R Package Version 0.1.4. 2023. Available online: https://cloud.r-project.org/web/packages/ggcorrplot/ggcorrplot.pdf (accessed on 10 July 2025).
- Li, Y.; Li, J.; Zheng, C.; Cao, Z. Effects of Organic, Low Input, Conventional Management Practices on Soil Nematode Community under Greenhouse Conditions. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014, 64, 360–371. [Google Scholar] [CrossRef]
- Quist, C.W.; Schrama, M.; de Haan, J.J.; Smant, G.; Bakker, J.; van der Putten, W.H.; Helder, J. Organic Farming Practices Result in Compositional Shifts in Nematode Communities That Exceed Crop-Related Changes. Appl. Soil Ecol. 2016, 98, 254–260. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.C.; Lau, S.S. Dynamics of Nematode Communities in Tomatoes Grown in Conventional and Organic Farming Systems, and Their Impact on Soil Fertility. Appl. Soil Ecol. 1996, 3, 161–175. [Google Scholar] [CrossRef]
- Briar, S.S.; Grewal, P.S.; Somasekhar, N.; Stinner, D.; Miller, S.A. Soil Nematode Community, Organic Matter, Microbial Biomass and Nitrogen Dynamics in Field Plots Transitioning from Conventional to Organic Management. Appl. Soil Ecol. 2007, 37, 256–266. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Q.; Liu, X.; Chen, F.; Liang, Y.; Qiang, W.; He, L.; Ge, F. Effects of Pest Management Practices on Soil Nematode Abundance, Diversity, Metabolic Footprint and Community Composition Under Paddy Rice Fields. Front. Plant Sci. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Ayala, V.; Rasmussen, J.; Gerhards, R. Mechanical Weed Control. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Springer: Dordrecht, The Netherlands, 2010; pp. 279–294. ISBN 978-90-481-9276-2. [Google Scholar]
- Zhong, S.; Zeng, H.; Jin, Z. Influences of Different Tillage and Residue Management Systems on Soil Nematode Community Composition and Diversity in the Tropics. Soil Biol. Biochem. 2017, 107, 234–243. [Google Scholar] [CrossRef]
- Zhang, X.; Ferris, H.; Mitchell, J.; Liang, W. Ecosystem Services of the Soil Food Web after Long-Term Application of Agricultural Management Practices. Soil Biol. Biochem. 2017, 111, 36–43. [Google Scholar] [CrossRef]
- Stefanovska, T.; Skwiercz, A.; Pidlisnyuk, V.; Zhukov, O.; Kozacki, D.; Mamirova, A.; Newton, R.A.; Ust’ak, S. The Short-Term Effects of Amendments on Nematode Communities and Diversity Patterns under the Cultivation of Miscanthus × Giganteus on Marginal Land. Agronomy 2022, 12, 2063. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, S.; Hua, K.; Yin, Y.; Chu, H.; Wang, D.; Guo, X. Fertilization Regime Has a Greater Effect on Soil Microbial Community Structure than Crop Rotation and Growth Stage in an Agroecosystem. Appl. Soil Ecol. 2020, 149, 103510. [Google Scholar] [CrossRef]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and Function of the Soil Microbial Community in a Long-Term Fertilizer Experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil Nematode Abundance and Functional Group Composition at a Global Scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Wilschut, R.A.; Geisen, S. Nematodes as Drivers of Plant Performance in Natural Systems. Trends Plant Sci. 2021, 26, 237–247. [Google Scholar] [CrossRef] [PubMed]
- de Ramos, E.K.K.; Pazdiora, P.C.; Dallagnol, L.J.; de Araujo Filho, J.V. Plant Parasitic Nematode Communities Associated to Apple Orchards in the Southern Brazil. Trop. Plant Pathol. 2022, 47, 626–634. [Google Scholar] [CrossRef]
- Yüksel, E.; Imren, M.; Özer, G.; Bozbuğa, R.; Dababat, A.A.; Canhilal, R. Occurrence, Identification, and Diversity of Parasitic Nematodes in Apple (Malus Domestica Borkh.) Orchards in the Central Anatolia Region of Türkiye. J. Plant Dis. Prot. 2023, 130, 1331–1346. [Google Scholar] [CrossRef]
- Pokharel, R.; Marahatta, S.P.; Handoo, Z.A.; Chitwood, D.J. Nematode Community Structures in Different Deciduous Tree Fruits and Grape in Colorado, USA and Impact of Organic Peach and Apple Production Practices. Eur. J. Soil Biol. 2015, 67, 59–68. [Google Scholar] [CrossRef]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; den Nijs, L.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. ISBN 978-94-007-0434-3. [Google Scholar]
- Kanfra, X.; Obawolu, T.; Wrede, A.; Strolka, B.; Winkelmann, T.; Hardeweg, B.; Heuer, H. Alleviation of Nematode-Mediated Apple Replant Disease by Pre-Cultivation of Tagetes. Horticulturae 2021, 7, 433. [Google Scholar] [CrossRef]
- Lopes-Caitar, V.S.; Pinheiro, J.B.; Pinheiro, F.C. Nematodes in Horticulture: An Overview. J. Hortic. Sci. Crop Res. 2019, 1, 106. [Google Scholar]
- Xiao, H.-F.; Li, G.; Li, D.-M.; Hu, F.; Li, H.-X. Effect of Different Bacterial-Feeding Nematode Species on Soil Bacterial Numbers, Activity, and Community Composition. Pedosphere 2014, 24, 116–124. [Google Scholar] [CrossRef]
- Sikder, M.M.; Vestergård, M. Impacts of Root Metabolites on Soil Nematodes. Front. Plant Sci. 2020, 10, 1792. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H.; Sánchez-Moreno, S.; Brennan, E.B. Structure, Functions and Interguild Relationships of the Soil Nematode Assemblage in Organic Vegetable Production. Appl. Soil Ecol. 2012, 61, 16–25. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Williamson, W.; Bonner, K.I. The Response of a Three Trophic Level Soil Food Web to the Identity and Diversity of Plant Species and Functional Groups. Oikos 2003, 102, 45–56. [Google Scholar] [CrossRef]
- Sánchez-Monge, A.; Flores, L.; Salazar, L.; Hockland, S.; Bert, W. An Updated List of the Plants Associated with Plant-Parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and Its Implications for Plant-Parasitism within This Genus. Zootaxa 2015, 4013, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Sudhaus, W.; Fitch, D. Comparative Studies on the Phylogeny and Systematics of the Rhabditidae (Nematoda). J. Nematol. 2001, 33, 1–70. [Google Scholar] [PubMed]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology Pathogenicity and Management; Brill Academic Publishers: Leiden, The Netherlands, 2007; ISBN 978-90-04-15564-0. [Google Scholar]
- Clavero-Camacho, I.; Cantalapiedra-Navarrete, C.; Archidona-Yuste, A.; Castillo, P.; Palomares-Rius, J.E. Distribution, Ecological Factors, Molecular Diversity, and Specific PCR for Major Species of Pin Nematodes (Paratylenchus Spp.) in Prunus Plantations in Spain. Plant Dis. 2022, 106, 2711–2721. [Google Scholar] [CrossRef] [PubMed]
- Crow, R.V.; Macdonald, D.H. Phytoparasitic Nematodes Adjacent to Established Strawberry Plantations. J. Nematol. 1978, 10, 204–207. [Google Scholar] [PubMed]
- Abd-Elgawad, M.M.M. Plant-Parasitic Nematodes of Strawberry in Egypt: A Review. Bull. Natl. Res. Cent. 2019, 43, 7. [Google Scholar] [CrossRef]
- Askary, T.H.; Banday, S.A.; Iqbal, U.; Khan, A.A.; Mir, M.M.; Waliullah, M.I.S. Plant Parasitic Nematode Diversity in Pome, Stone and Nut Fruits. In Agroecology and Strategies for Climate Change; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2012; pp. 237–268. ISBN 978-94-007-1905-7. [Google Scholar]
- McCuiston, J.L.; Hudson, L.C.; Subbotin, S.A.; Davis, E.L.; Warfield, C.Y. Conventional and PCR Detection of Aphelenchoides Fragariae in Diverse Ornamental Host Plant Species. J. Nematol. 2007, 39, 343–355. [Google Scholar] [PubMed]
- Handoo, Z.; Kantor, M.; Carta, L. Taxonomy and Identification of Principal Foliar Nematode Species (Aphelenchoides and Litylenchus). Plants 2020, 9, 1490. [Google Scholar] [CrossRef] [PubMed]
- Nickle, W.R. A Taxonomic Review of the Genera of the Aphelenchoidea (Fuchs, 1937) Thorne, 1949 (Nematoda: Tylenchida). J. Nematol. 1970, 2, 375–392. [Google Scholar] [PubMed]
- Nickle, W.R.; Hooper, D.J. The Aphelenchina: Bud, Leaf, and Insect Nematodes. In Manual of Agricultural Nematology; CRC Press: Boca Raton, FL, USA, 1991; ISBN 978-1-00-306657-6. [Google Scholar]
- Treonis, A.M.; Unangst, S.K.; Kepler, R.M.; Buyer, J.S.; Cavigelli, M.A.; Mirsky, S.B.; Maul, J.E. Characterization of Soil Nematode Communities in Three Cropping Systems through Morphological and DNA Metabarcoding Approaches. Sci. Rep. 2018, 8, 2004. [Google Scholar] [CrossRef] [PubMed]
- Berkelmans, R.; Ferris, H.; Tenuta, M.; van Bruggen, A.H.C. Effects of Long-Term Crop Management on Nematode Trophic Levels Other than Plant Feeders Disappear after 1 Year of Disruptive Soil Management. Appl. Soil Ecol. 2003, 23, 223–235. [Google Scholar] [CrossRef]
- Siebert, J.; Ciobanu, M.; Schädler, M.; Eisenhauer, N. Climate Change and Land Use Induce Functional Shifts in Soil Nematode Communities. Oecologia 2020, 192, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, E.M.; Sushchuk, A.A. Features of Soil Nematode Communities in Various Types of Natural Biocenoses: Effectiveness of Assessment Parameters. Biol. Bull. Russ. Acad. Sci. 2016, 43, 474–482. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Abuljadayel, D.A.; Shafi, M.E.; Albaqami, N.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Mesiha, P.K.; Elnahal, A.S.M.; Almakas, A.; Taha, A.E.; et al. Control of Foliar Phytoparasitic Nematodes through Sustainable Natural Materials: Current Progress and Challenges. Saudi J. Biol. Sci. 2021, 28, 7314–7326. [Google Scholar] [CrossRef] [PubMed]
- Ikoyi, I.; Grange, G.; Finn, J.A.; Brennan, F.P. Plant Diversity Enhanced Nematode-Based Soil Quality Indices and Changed Soil Nematode Community Structure in Intensively-Managed Agricultural Grasslands. Eur. J. Soil Biol. 2023, 118, 103542. [Google Scholar] [CrossRef]
- Nisa, R.U.; Tantray, A.Y.; Kouser, N.; Allie, K.A.; Wani, S.M.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L.; Shah, A.A. Influence of Ecological and Edaphic Factors on Biodiversity of Soil Nematodes. Saudi J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Coleman, D.C. Cross-Site Comparison of Soil Microbial Biomass, Soil Nutrient Status, and Nematode Trophic Groups. Pedobiologia 2000, 44, 2–23. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Abundance and diversity of soil nematodes as influenced by different types of organic manure. Helminthologia 2010, 47, 58–66. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed]
Factor | TNN | Relative Abundance (%) of Trophic Group | Absolute Abundance (n) of Trophic Group | NCR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BF | FF | PF | OM | PR | BF | FF | PF | OM | PR | ||||
Cropping system | |||||||||||||
Fruit long-term | 527 ± 39 a | 61.2 ± 2.2 ab | 12.2 ± 1.4 a | 24.5 ± 1.9 a | 1.4 ± 0.4 ab | 0.8 ± 0.4 a | 326 ± 29 a | 61 ± 7 a | 129 ± 13 a | 7 ± 2 a | 4 ± 3 a | 0.83 ± 0.09 a | |
Fruit medium-term | 431 ± 57 ab | 67.2 ± 4.8 a | 19.7 ± 4.8 a | 12.2 ± 3.7 b | 0.6 ± 0.4 b | 0.3 ± 0.2 a | 290 ± 38 a | 61 ± 9 a | 74±29 b | 4 ± 3 a | 1± 1 a | 0.78 ± 0.18 a | |
Vegetable | 297 ± 31 b | 45.4 ± 6.0 b | 13.8 ± 2.6 a | 37.1 ± 7 a | 2.4 ± 0.7 a | 1.2 ± 0.9 a | 126 ± 23 b | 45 ± 10 a | 115±32 ab | 8 ± 2 a | 3 ± 2 a | 0.76 ± 0.18 a | |
p-value | 0.0039 | 0.0314 | 0.6452 | 0.0032 | 0.0443 | 0.8438 | 0.0002 | 0.3696 | 0.0134 | 0.1912 | 0.8152 | 0.5837 | |
Management method | |||||||||||||
Integrated | 442 ± 76a | 51.1 ± 7.4 b | 19.6 ± 5.8 a | 27.3 ± 9.2 a | 1.6 ± 0.7 a | 0.6 ± 0.5 a | 229 ± 32 a | 68 ± 8 a | 136 ± 27a | 7 ± 2 a | 2 ± 1 a | 0.74 ± 0.18 b | |
Organic | 423 ± 73 a | 64.0 ± 6.1 a | 11.2 ± 2.6 b | 22.5 ± 5.2 a | 1.4 ± 0.8 a | 0.9 ± 1.1 a | 279 ± 29 a | 47 ± 6 b | 88 ± 12 a | 6 ± 2 a | 4 ± 2 a | 0.85 ± 0.10 a | |
p-value | 0.9255 | 0.0483 | 0.0416 | 0.9420 | 0.5641 | 0.7732 | 0.2845 | 0.0248 | 0.3235 | 0.6463 | 0.8227 | 0.0080 | |
Cropping system and Management method | |||||||||||||
Fruit long-term | IPM | 492 ± 70 a | 58.2 ± 3.1 b | 13.6 ± 1.3 a | 26.5 ± 3.5 ab | 1.1 ± 0.7 a | 0.7 ± 0.7 a | 289 ± 47 ab | 66 ± 11 a | 132 ± 27 a | 3 ± 2 a | 2 ± 2 a | 0.81 ± 0.05 a |
ORG | 546 ± 49 a | 62.9 ± 3.0 b | 11.4 ± 2.1 a | 23.4 ± 2.4 ab | 1.6 ± 0.5 a | 0.8 ± 0.6 a | 346 ± 37 a | 58 ± 10 a | 127 ± 17 a | 9 ± 3 a | 6 ± 5 a | 0.85 ± 0.10 a | |
Fruit medium-term | IPM | 442 ± 114 a | 53.3 ± 4.2 b | 27.9 ± 8.7 a | 17.3 ± 6.3 bc | 1.2 ± 0.8 a | 0.3 ± 0.3 a | 241 ± 67 abc | 73 ± 16 a | 119 ± 53 ab | 9 ± 6 a | 1 ± 1 a | 0.69 ± 0.23 a |
ORG | 419 ± 31 a | 81.1 ± 4.1 a | 11.6 ± 0.9 a | 7.1 ± 3.5 c | 0.0 ± 0.0 a | 0.3 ± 0.3 a | 339 ± 30 a | 49 ± 5 a | 30 ± 14 b | 0 ± 0 a | 1 ± 1 a | 0.87 ± 0.04 a | |
Vegetable | IPM | 393 ± 23 a | 41.7 ± 11.4 b | 17.2 ± 3.8 a | 37.9 ± 14.1 ab | 2.5 ± 0.7 a | 0.6 ± 0.4 a | 158 ± 44 bc | 65 ± 14 a | 158 ± 60 ab | 10 ± 3 a | 3 ± 2 a | 0.71 ± 0.20 a |
ORG | 200 ± 21 b | 49.1 ± 4.8 b | 10.5 ± 3.4 a | 36.3 ± 3.6 a | 2.4 ± 1.2 a | 1.8 ± 1.8 a | 94 ± 7 c | 24 ± 8 a | 73 ± 13 ab | 6 ± 3 a | 4 ± 4 a | 0.82 ± 0.15 a | |
p-value | 0.0033 | 0.0031 | 0.4184 | 0.0084 | 0.1395 | 0.9886 | 0.0014 | 0.0837 | 0.0403 | 0.1414 | 0.9797 | 0.1669 |
Trophic Group | Production System of the Field | p-Value | ||
---|---|---|---|---|
Fruit Long-Term | Fruit Medium-Term | Vegetable | ||
TNN | 352 ± 37 a | 204 ± 27 b | 373 ± 39 a | 0.0141 |
Relative abundance (%) | ||||
BF * | 56.2 ± 4.7 a | 51.0 ± 7.4 a | 65.3 ± 4.2 a | 0.2450 |
FF * | 14.4 ± 2.0 b | 44.3 ± 7.6 a | 23.8 ± 2.1 b | 0.0045 |
PF * | 26.2 ± 5.9 a | 4.1 ± 1.0 b | 8.8 ± 2.9 b | 0.0064 |
OM | 1.9 ± 1.2 a | 0.0 ± 0.0 a | 1.7 ± 1.1 a | 0.2634 |
PR | 1.2 ± 1.2 a | 0.6 ± 0.6 a | 0.6 ± 0.6 a | 0.9674 |
Absolute abundance (n) | ||||
BF * | 196 ± 23 a | 101 ± 15 b | 243 ± 31 a | 0.0064 |
FF * | 501 ± 9 a | 94 ± 23 a | 88 ± 10 a | 0.1560 |
PF * | 97 ± 24 a | 8 ± 14 b | 33 ± 11 b | 0.0073 |
OM | 5 ± 3 a | 0 ± 0 a | 7 ± 4 a | 0.2634 |
PR | 3 ± 3 a | 1 ± 1 a | 2 ± 2 a | 0.9674 |
Genus | Production System of the Field | p-Value | ||
---|---|---|---|---|
Fruit Long-Term | Fruit Medium-Term | Vegetable | ||
Relative abundance (%) | ||||
Cephalobus (BF) | 1.9 ± 0.6 b | 1.3 ± 0.8 b | 8.6 ± 0.6 a | 0.0229 |
Aphelenchoides (FF) | 9.0 ± 3.2 b | 38.1 ± 9.8 a | 9.6 ± 3.6 b | 0.0244 |
Paratylenchus (PF) | 0.0 ± 0.0 b | 1.9 ± 0.6 a | 0.0 ± 0.0 b | 0.0279 |
Pratylenchus (PF) | 25.8 ± 5.5 a | 0.0 ± 0.0 c | 7.4 ± 3.1 b | 0.0127 |
Absolute abundance (n) | ||||
Cephalobus (BF) | 6.5 ± 2.4 b | 2.7 ± 1.7 b | 32.2 ± 4.7 a | 0.0173 |
Aphelenchoides (FF) | 34.6 ± 12.5 a | 82.4 ± 26.9 a | 36 ± 14.9 a | 0.3973 |
Paratylenchus (PF) | 0.0 ± 0.0 b | 4.0 ± 1.5 a | 0.0 ± 0.0 b | 0.0279 |
Pratylenchus (PF) | 94.1 ± 22.8 a | 0.0 ± 0.0 c | 28.6 ± 11.2 b | 0.0174 |
Index Name | Fruit Long-Term | Fruit Medium-Term | Vegetable | p-Value |
---|---|---|---|---|
Index H | 1.5 ± 0.1 ab | 1.2 ± 0.1 b | 1.8 ± 0.2a | 0.0322 |
MI | 1.4 ± 0.1 a | 1.6 ± 0.1 a | 1.6 ± 0.1 a | 0.4400 |
MI2-5 * | 2.3 ± 0.2 a | 2.0 ± 0.0 a | 2.1 ± 0.0 a | 0.3032 |
ƩMI | 1.8 ± 0.1 a | 1.6 ± 0.1 a | 1.7 ± 0.1 a | 0.2480 |
PPI * | 3.0 ± 0.0 a | 2.4 ± 0.2 a | 3.0 ± 0.0 a | 0.0577 |
CI | 7.1 ± 1.5 b | 22.1 ± 5.6 a | 12.2 ± 2.6 ab | 0.0489 |
BI | 8.4 ± 1.8 b | 19.9 ± 3.2 a | 17.0 ± 2.6 ab | 0.0310 |
EI | 91.1 ± 1.9 a | 79.8 ± 3.4 a | 82.1 ± 3.1 a | 0.0506 |
SI * | 28.3 ± 17.6 a | 3.1 ± 3.1 a | 15.8 ± 5.4 a | 0.3032 |
Total genera number | 8.3 ± 1.0 ab | 6.3 ± 0.5 b | 10.3 ± 1.1 a | 0.0389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furmanczyk, E.M.; Kozacki, D.; Ourry, M.; Bickel, S.; Olimi, E.; Masquelier, S.; Turci, S.; Bohr, A.; Maisel, H.; D’Avino, L.; et al. An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems. Soil Syst. 2025, 9, 77. https://doi.org/10.3390/soilsystems9030077
Furmanczyk EM, Kozacki D, Ourry M, Bickel S, Olimi E, Masquelier S, Turci S, Bohr A, Maisel H, D’Avino L, et al. An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems. Soil Systems. 2025; 9(3):77. https://doi.org/10.3390/soilsystems9030077
Chicago/Turabian StyleFurmanczyk, Ewa M., Dawid Kozacki, Morgane Ourry, Samuel Bickel, Expedito Olimi, Sylvie Masquelier, Sara Turci, Anne Bohr, Heinrich Maisel, Lorenzo D’Avino, and et al. 2025. "An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems" Soil Systems 9, no. 3: 77. https://doi.org/10.3390/soilsystems9030077
APA StyleFurmanczyk, E. M., Kozacki, D., Ourry, M., Bickel, S., Olimi, E., Masquelier, S., Turci, S., Bohr, A., Maisel, H., D’Avino, L., & Malusà, E. (2025). An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems. Soil Systems, 9(3), 77. https://doi.org/10.3390/soilsystems9030077